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1 Introduction
The file is a supplementary file of paper [18]. This file is organized as follows: Section 2 presents
the pseudo-code of UOTA approach. Section 3 discusses the role of τ in UOTA. Section 4 shows
the proof of Lemma 1 and Theorem 1 proposed in the main file. Section 5, Section 6 and Section
8 explain more implementation details of the empirical implementation. We use “M” or “S” to
distinguish contents in the main file or in the supplementary file. For instance, we refer to specific
figure/table/equation/section in the main file as Fig. M.x/Table M.x/Section M.x/Eq. (M.x)/. We
use Fig. S.x/Table S.x/Section S.x/Eq. (S.x) to indicate contents in supplementary file. Our code is
available at: https://github.com/ssl-codelab/uota.

2 Pseudo-code of UOTA Approach in PyTorch style
# f: encoder f
# g: encoder g
# L: various self -supervised objectives
# tau: temperature of UOTA
# M: number of sub -losses for each instance pair

for x in loader: # load a mini -batch x with n samples
multi_x0 , multi_x1 = aug(x), aug(x) # random augmentations
multi_z = f(multi_x0) # trainable features z_ij: (M*N,D)
multi_k = g(multi_x1) # features k_ij: (M*N,D)

with no_grad (): # compute w based on trainable features z_ij
w = W(multi_z.reshape(M, N, D), tau)

loss = mean(w * L(multi_z , multi_k)) # Eq.(M.12)
loss.backward ()
update(f, g)

# UOTA: compute w based on trainable features z_ij
def W(multi_z , tau):

M, N, D = multi_z.shape
z_mu = mean(multi_z , dim=0, keepdim=True) # Eq.(M.10): (1,N,D)
z_delta = (multi_z - z_mu).reshape(-1, D).T # Eq.(M.10): (D,M*N)
sigma = mm(z_delta , z_delta.T) / N # Eq.(M.10): (D,D)

tmp = mm(z_delta.T, inverse(sigma) / tau)
w = exp(-mm(tmp , z_delta)).diagonal(-2, -1) # Eq.(M.9) : (M*N,)
w = w / w.sum() * (M * N) # Eq.(M.11): (M*N,)
return w

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/ssl-codelab/uota


50 100 150 200 250 300 350 400
UOTA 

80.0

80.5

81.0

81.5
To

p-
1 

Ac
c.

MoCo-v2 *

MoCo-v2 * +UOTA

(a) Impact of τ .

0.0 0.5 1.0 1.5 2.0 2.5
Sample weight value

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Nu
m

be
r o

f v
al

ue
s

1e5

MoCo-v2 *  =50
MoCo-v2 *  =100
MoCo-v2 *  =200
MoCo-v2 *  =300
MoCo-v2 *  =400

(b) Weight distribution v.s τ .

Figure 1: Illustrations of hyperparameter τ : (a) Impact of τ , (b) Weight distribution v.s τ .

3 Ablation Study on Hyperparamter τ

Owing to page limit of the main paper, we present the supplementary discussion on hyperparamter τ
here. We follow the same experimental setup as in Section M.4.1, and pretrain a ResNet18 on the
ImageNet100 dataset. We run UOTA on top of the baseline model MoCo-v2* with 8 views, and
evaluate UOTA’s performance on linear classification task. Please see Section S.5 for more training
details and experimental setups on this task. All the scores are reported in Top-1 accuracy.

Before seeing any curves, we shall understand that, the τ in our Eq. (M.9) and Eq. (M.11) play a
similar role as the temperature defined in [8, 10, 16, 19], i.e., τ controls the concentration of the
probability w̄i,j . A relatively large τ will dilute the effect of distance metric (zi,j −µi)TΣ−1(zi,j −
µi) on w̄i,j , making the distribution of w̄i,j more even and flat across samples. A relatively small
τ will force the w̄i,j to be more sensitive to the changes in distance (zi,j − µi)TΣ−1(zi,j − µi),
making the distribution of w̄i,j asymptotically to “one hot” (probability concentrating around the
smallest (zi,j − µi)TΣ−1(zi,j − µi) value). In the meanwhile, the value of τ also correspondingly
determines the “effective number of samples” [14] active in training. As the value of τ drops below
some certain point, we start to lose effective number of samples, according to [14]. Reduced “effective
number of samples” potentially will hamper the performance when compared to plain MoCo-v2*
formulation, as we are losing views. However, if τ becomes too big, the w̄i,j tends to become even
across samples (concentrating around constant 1), making the outlier arbitration capability of UOTA
vanishing.

In Fig. S.1(a), we firstly illustrate the performance curve of UOTA against the variation of τ . As can
be seen, the suitable range of τ is reasonably wide. As τ varies between 50 and 400, UOTA+MoCo-
v2* surpasses the plain MoCo-v2* by a clear margin. But as τ further increases beyond 350,
performance gradually approaches the similar level as plain MoCo-v2*, due to the fact that wi,j
across all the samples xi,j are approaching a constant value, which makes all samples equally
important. The performance of UOTA+MoCo-v2* therefore effectively approaches that of a plain
MoCo-v2* framework. Conversely, when τ decreases to be smaller than 100, the performance also
drastically drops, due to the fact that the effective number in the training is potentially less than
MoCo-v2*’s 8 views.

In Fig. S.1(b), we illustrate the distribution of w̄i,j (according to Eq. (M.11)) across training
samples under the variation of τ . For illustration purpose, we scale up the value of each w̄i,j by
multiplying MN, which removes the normalization scales, and helps better qualitative analysis on
distribution of wi,j in an interpretable way, i.e., we define ŵi,j = MNw̄i,j and plot value ŵi,j
in Fig. S.1(b). Specifically, we compute the w̄i,j values using Eq. (M.11) at the 8 views plain
MoCo-v2* model’s 50th training epoch, and then plot the histograms of ŵi,j on 126,689 number
of training samples of ImageNet100. Fig. S.1(b) well displays the concentration behavior of ŵi,j
via tuning the value of τ : as τ increases (e.g., 400), all the ŵi,j values tend to concentrate around
the constant value of 1 (all samples are equally important), showing vanishing effect of the distance
metric (zi,j − µi)TΣ−1(zi,j − µi). On the contrary, as τ gradually decreases, ŵi,j values spread
out and show better diversity and variance reflective of the sample-wise (zi,j −µi)TΣ−1(zi,j −µi)
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values. But when τ further decreases below 50, wi,j becomes more and more one-hot like and
assigns more probability mass to 0 values (losing more effective sample sizes). This also echos the
observation in Fig. S.1(a).

4 Proof

For the proof of Lemma 1 and Theorem 1, we are assuming the same regularity conditions including
Assumptions A and B on the loss function L as in [3]. Note without ambiguity wi,j in this section
denotes the properly normalized weights.

4.1 Proof of Lemma 1

Given that θG = arg minθ Ex[
∫
Lθ(x,n)dp∗(n)] and

θ̂G = arg min
θ
L∗ = arg min

θ

1

N

N∑
i=1

M∑
k=1

Lθ(xi,nk)wi,k,

with Theorem 5.23 of [17], we have

√
N(θ̂G − θG) = −V −1G ·

1√
N

N∑
i=1

M∑
k=1

∇LθG
(xi,nk)wi,k + op(1),

where op(1)→ 0 in probability as N →∞. Therefore

MSE(θ̂G) = ‖θG − θ0‖2 +
1

N
tr(V −1G · Covx

[
∇
∫
LθG

(x,n)w(n)dp̃(n)
]
· V −1G ), (1)

where ∇ denotes the gradient with respect to θ and V G denotes the Hessian matrix
Hess(Ex[

∫
Lθ(x,n)w(n)dp̃(n)]) at θG. Note the term Covx[∇

∫
LθG

(x,n)w(n)dp̃(n)] can be
rewritten as in the proof of Lemma 1 of [3]:

Covx
[
∇
∫
LθG

(x,n)w(n)dp̃(n)
]
− ExEp∗MG(x,n)

= Ex(∇E∗p(LθG
(x,n)) · ∇E∗p(LθG

(x,n))T )− Ex(∇E∗p(LθG
(x,n))) · Ex(∇E∗p(LθG

(x,n)))T

− Ex(Ep∗(∇LθG
(x,n) · ∇LθG

(x,n)T ))

= −Ex(Covw∇LθG
(x,n)).

The last equation holds since Ex(∇Ep∗(LθG
(x,n))) = 0 by changing the order of∇ and Ex under

regularity conditions on L. The rest of the results can be proved by decomposing ExEp∗MG(x,n)
further in the manner of proof of Lemma 1 in [3].

4.2 Proof of Theorem 1

By combining Eq. (M.5) - (M.8) in Lemma 1, the mean squared error of θ̂G can be further simplified
as

MSE(θ̂G) ∼ C + ‖θG − θ0‖2 +
1

N
tr(V −1G · Covx

[
∇Ep∗(LθG

(x,n))
]
· V −1G ), (2)

where C is a constant invariant of the choice of {wi,j}. Without loss of generality, assume the model
parameters θ are orthogonalized so that Eq. (S.2) can be further simplified as only depending on

‖θG − θ0‖2 +
1

N

1

V 2
G

Ex
[(
Ep∗(L′θG

(x,n))
)2]

,

where L′θG
(x,n) denotes the diagonal gradient matrix of L with respect to θ and V 2

G is the diagonal
Hessian matrix at θG.

Assume the loss function L satisfies a symmetric condition: there exists an interval of (θ1,θ2)
such that θ0,θG ∈ (θ1,θ2). Suppose for all θ ∈ (θ1,θ2), Lθ(xi,nj) = Lθ(xi,nk) whenever
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the squared Mahalanobis distance of the corresponding features zi,j and zi,k are equal: (zi,j −
µi)

TΣ−1(zi,j − µi) = (zi,k − µi)TΣ−1(zi,k − µi). As a result, for θG ∈ (θ1,θ2), the second
term in Eq. (S.2) can be written as

1

N

1

V 2
G

Ex
[( M∑

j=1

L̆′θG
(d2(zi,j ,µi))wi,j

)2]
, (3)

where L̆ denotes the function as a result of rewriting L in terms of the squared Maha-
lanobis distance denoted by d2(zi,j ,µi). Note arg minθ Ex

∑M
j=1 L̆θ(d2(zi,j ,µi))wi,j =

arg minθ Ex[
∫
Lθ(x,n)dp∗(n)] = θG. Suppose the distribution of the Mahalanobis distance

of the generated {zi,j} is approximately uniform, and Ex
[(∑M

j=1 L̆′θG
(d2(zi,j ,µi))wi,j

)2]
can

be well approximated by (
∫
L̆θG

(x))w̆(x))2, where w̆ is the representation of w as a function of
the Mahalanobis distance. Then for all loss function L such that |E1(L̆θG

(x))| < |E2(L̆θG
(x))|,

where E1 and E2 are expectations under standard exponential and uniform distribution defined on an
interval of admissible values of the Mahalanobis distance, the proposed wi,j given in Eq. (M.9) in the
main paper decreases Eq. (S.3) comparing to equal weights. Essentially, zi,j with larger Mahalanobis
distance is down-weighted to reduce its leverage in the estimating equation (for methods using similar
techniques, see, for example, [9]).

Finally, given Assumption B in [3], the squared bias ‖θG − θ0‖2 is reduced by selecting measure
p(n) to approach the invariance Ex

∫
Lθ(x,n)dp(n) = Ex[Lθ(x, Id)] on interval (θ1,θ2), as

‖θG− θ0‖ ∼ |Ex
∫
LθG

(x,n)dp(n)−Ex[Lθ0
(x, Id)]|/l where l is square-integrable function not

depending on θ. Given our assumption that w(n)p(n) = p∗(n) improves invariance comparing to
p̃(n) with |Ex

∫
Lθ(x,n)dp∗(n)− Ex[Lθ(x, Id)]| < |Ex

∫
Lθ(x,n)dp̃(n)− Ex[Lθ(x, Id)]| for

θ ∈ (θ1,θ2), using triangular inequality, we conclude that imposing the weight adjustments with w
defined in Eq. (M.9) can effectively reduce the MSE.

5 Implementation Details of Section M.4.1

We pretrain a ResNet-18 Network on ImageNet100 by applying Eq. (M.12) to various SSL algorithms.
We then evaluate linear classification performance on both original SSL baseline models and UOTA
approach on top of these baseline models. For all algorithms presented, we use batch size N = 128
and train for 200 epochs. We use the default optimization pipelines used for each specific published
method. We are confident that we have tuned the hyperparamters for all the approaches to our best.
After we obtain the pretrained model, we then train a supervised linear classifier on top of the frozen
representations of ResNet-18, by following protocols implemented in [2, 4, 7, 8].

5.1 Optimization for Pretraining SSL Baselines on ImageNet100 (Table M.1)

UOTA. We adhere to exactly same optimization pipeline (architecture, optimizer, learning rate,
hyperparameters, etc., ) used for training each original baseline model “X” in order to train and
optimize each “X+UOTA” model. For each “X+UOTA” model, we firstly train its baseline X for
number of Nwarm warm up epochs, and then we resume the “X+UOTA” training by following
the algorithm described as in Section S.2. Total number of training epochs are 200, including
warm up epochs. We also tune the hyperparameter τ defined in Eq. (M.9) for each model. These
hyperparameters are illustrated in Table S.1:

Table 1: Hyperparameters for UOTA loss when Producing Table M.1.

Hyperparamter/Model MoCo-v2+UOTA MoCo-v2*+UOTA BYOL+UOTA SwAV+UOTA
Nwarm 20 20 20 30
τ 200 200 250 200

Here, we would like to further ablate the effect of the resuming point (from which epoch to resume a
MoCo-v2 baseline model by adding UOTA, while the total training epochs remains as 200 epochs
on ImageNet100 dataset. The reference accuracy of a baseline MoCo-v2 is 73.0%. The ablation is
reported in Table S.2.
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Table 2: Resuming point ablations. Top 1 accuracy is reported in %.

Nwarm 0 10 20 30 50 100 150
Top 1 73.5 73.7 74.0 73.9 73.6 73.7 73.4

We noticed that even by training UOTA+MoCo-v2 from the very beginning (without resuming
baseline), we can gain some improvement over the baseline model (73.0%). As we delay the
resuming point, UOTA is improving until the resuming point is 20 epochs. If UOTA is activated
beyond 20 epochs, the performance drops, as UOTA’s effective training epochs reduces due to the
constrained total training epochs (in total 200 epochs).

X+UOTA Losses. We explicitly describe the UOTA loss used for each baseline. This procedure
can be briefly summarized as: we associate each w̄i,j term (updated via Eq. (M.9), Eq. (M.11))
with the sample-wise loss of each baseline model, wherever the trainable feature zi,j is present.
For “trainable”, we mean the loss can be backpropagated through zi,j . In this section, we expand
Eq. (M.12) to include each specific SSL loss. We also use notation zi,j to replace the notation of
trainable features in each original loss for illustration purpose (please see published baselines for
original notation). For algorithms having multi-crop augmentations (i.e., MoCo-v2* and SwAV),
we used in total 8 views for each baseline. This is equivalent to using some specific M number of
trainable sub-losses for each instance, according to pairwise optimization rule defined by each specific
baselines. Here, for both BYOL and SwAV, we only illustrate the single sided core sub-loss used in
each algorithm without showing its symmetric loss to avoid notation cluttering. This is because the
symmetric loss is essentially the same as the original core sub-loss only having a different feature
variable plugged in the loss. Note our implementation exactly resembles the symmetric loss under the
swapping operation by computing w̄i,j to associate with every loss having trainable features. Please
see how the symmetric losses are constructed in [2] and [7].

1. MoCo-v2+UOTA

Lours = − 1

N

M=1∑
j=1

w̄i,j log
exp(zTi,jk

+/t)

exp(zTi,jk
+/t) +

∑B
` exp(zTi,jk

−
i,`/t)

, (4)

2. MoCo-v2*+UOTA

Lours = − 1

MN

N∑
i

M∑
j

w̄i,j log
exp(zTi,jk

+/t)

exp(zTi,jk
+/t) +

∑B
` exp(zTi,jk

−
i,`/t)

, (5)

3. BYOL+UOTA

Lours = − 1

MN

N∑
i

M=1∑
j=1

w̄i,j‖zi,j − zξi,j‖
2
2, (6)

4. SwAV+UOTA

Lours = − 1

MNNk

N∑
n

M∑
j

w̄i,j

[
Nk∑
k

qs,ki,j logpt,ki,j

]
, (7)

where

pt,ki,j =
exp(zTi,jck/t)∑
k′ exp(zTi,jck′/t)

(8)

Replacing µi by zi for MoCo-v2+UOTA. When we implement UOTA on top of the baseline
models with M = 1, µi becomes unavailable in the sense that there is only a single trainable
feature zi,j during each training iteration. Take for instance, for the original MoCo-v2 baseline,
there is only a single trainable query feature zi,j = q, whereas k+ is frozen during training.
Correspondingly, to associate UOTA with MoCo-v2, we use the feature zi of original instance xi
without any augmentation to replace µi. In the main paper, this µi = zi replacement operation has
also been explained in Section M.3.3 and ablated in empirical study Section M.4.3 (Table M.3). The
cost of this replacement though, is an extra forward of the original instance xi.
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Learning rate for X+UOTA. For each specific “X” model, we use the exactly same lr as “X” under
each specific optimizer to train each “X+UOTA” model.

Augmentations for X+UOTA. For all X+UOTA models, we use exactly the same augmentation
policy as what the baseline model “X” published, without changing any hyperparameters.

MoCo-v2. For MoCo-v2 [5], we download code from the official website
https://github.com/facebookresearch/moco. We train MoCo-v2 with the shuffleBN action
defined in [5], and use an SGD optimizer with a learning rate lr = 0.1, momentum 0.9, weight decay
10−4. The learning rate is updated during training by following cosine decay rule [12].

MoCo-v2*. To implement MoCo-v2*, we borrow training techniques from SwAV to facilitate the
construction of a “multi-crop” variant of MoCo-v2. Specifically, the MoCo-v2* loss is defined as:

LMoCo = − 1

MN

N∑
i

M∑
j

log
exp(zTi,jk

+/t)

exp(zTi,jk
+/t) +

∑B
` exp(zTi,jk

−
i,`/t)

, (9)

where zi,j corresponds to the feature of the jth trainable view xi,j of the ith instance, and resembles
the zi,j definition in our main file. The feature zi,j here plays the role as query vector q defined as in
[5]. To produce Table M.1, we use M = 8 for MoCo-v2*, to facilitate comparison with the 8 views
SwAV. Loss Eq. (S.9) is then only backpropagated through the trainable zi,j during the training.
Feature k+ and k− are respectively the positive key and negative keys constructed following the
implementation [5] without backpropagation. To train MoCo-v2*, we firstly sample 8 augmentations
under the multi-crop operation specified by SwAV, and we plug the feature zi,j of each augmentation
xi,j into loss Eq. (S.9). To best leverage the multi-crop augmentation pipeline, we also use the
exactly same training procedure proposed in SwAV (without using the SwAV loss) for MoCo-v2*: we
optimize Eq. (S.9) using the LARS [20] optimizer with a base learning rate of lr = 2.0, momentum
of 0.9, weight decay of 10−6. According to SwAV, the learning rate policy follows a cosine learning
rate decay schedule [12] with a “final learning rate” of 0.002.

SwAV. For the SwAV pretraining, we adapt implementation by referring to the published code
https://github.com/facebookresearch/swav. We use the default training pipeline therein with param-
eters carefully tuned. These include LARS [20] optimizer with a base learning rate of lr = 2.0,
momentum 0.9, weight decay of 10−6. The learning rate follows a cosine learning rate decay schedule
[12] with a “final learning rate” of 0.002. Particularly, we tune for the number of epochs used in the
SwAV “warm up” procedure. And we find using warm up 20 epochs, and 282 for the queue length
and 300 for the number of prototypes are optimal on ImageNet100 dataset (corresponding to the
SwAV scores reported in main paper). We believe we have tuned all of these hyperparameters to our
best on the ImageNet100 dataset.

BYOL. In regard of the BYOL pretraining, we download the code from https://github.com/open-
mmlab/OpenSelfSup and modify it so that the hyperparamers are suitable for pretraining on Im-
ageNet100. We use the default LARS optimizer with a cosine decay learning rate schedule as
described in [7]. We tune the base learning rate and find lr = 0.6 the best on Image100 dataset. To
pretrain BYOL on ImageNet100, we follow the default definition on all of the remaining training
hyperparameters as in [7].

UOTA on supervised tasks. We found that similar OOD issues raised by excessive distortions also
exist in supervised learning. To show this, we download the code from [1], without altering any
default augmentation parameters, and we train a supervised ResNet18 model on ImageNet100 for
100 epochs, referred to as baseline “Sup. IN100”. We also train a model “Sup. IN100+UOTA” under
the same setup. The top 1 accuracy for “Sup. IN100” is 81.9%, whereas the top 1 score for “Sup.
IN100+UOTA” is 83.1%, verifying UOTA’s effectiveness in such supervised learning scenario.

5.2 Linear Evaluation Protocol (Table M.1)

All the scores in Section M.4 are reported based on the Top-1 and Top-5 score via linear classification
evaluation protocol. In detail, we firstly pretrain the networks using the baseline models described in
Section S.5.1. We initialize the ResNet-18 network parameters with that copied from each pretrained
model till the global pooling layer, then freeze the backbone parameters and only train the classifiers
on the frozen features out of each pretrained network. For all training algorithm, we use a batch size
N = 256 to train the classifier over 100 epochs.
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For MoCo-v2 and MoCo-v2+UOTA linear classification training, we use SGD optimizer with
lr = 30, without weight decay. The learning rate decays respectively at the 60th and 80th epoch. For
MoCo-v2* and MoCo-v2*+UOTA linear classification training, we use SGD optimizer with lr = 0.3,
without weight decay, and with a cosine learning rate schedule. For BYOL and BYOL+UOTA model,
we use SGD optimizer with Nesterov momentum with lr = 2.0, without weight decay, and with a
cosine learning rate schedule. For SwAV and SwAV+UOTA model, we use optimizer SGD, with
lr = 0.1, weight decay 10−6, and with a cosine learning rate schedule.

5.3 Optimization for Pretraining other Outlier Removal Baselines (Table M.2)

In Table M.2, we present various outlier removal and noise robust algorithms when applied on the
MoCo-v2* model. We now elaborate the optimization details when applying these approaches to
SSL scenarios. In this section, we use zi,j to represent the trainable query feature q in each approach.
We firstly define the loss f(zi,j) as:

f(zi,j) =
exp(zTi,jk

+/t)

exp(zTi,jk
+/t) +

∑B
` exp(zTi,jk

−
i,`/t)

, (10)

We then frequently refer to loss f(zi,j) in the following section, in order to represent certain loss
components in various SSL approaches. This helps ease the symbol cluttering issue.

Focal. We implement the Focal loss as follows.

LFocal = − 1

MN

N∑
i

M∑
j

α(1− f(zi,j))
γ log f(zi,j), (11)

where the hyperparameters of α = 1.0 and γ = 2.0 offer the best performance.

GCE. We implement the GCE approach via loss:

Lq(zi,j) =
1

MN

N∑
i

M∑
j

(1− f(zi,j)
q)

q
, (12)

Lq(k) =
1− kq

q
, (13)

LGCE =

{
Lq(k) if f(zi,j) ≤ k
Lq(zi,j) if f(zi,j) > k

(14)

where we tune the value of k = 2.5× 10−4 and we find q = 0.1 offers the best performance.

MIL-NCE. We use exactly the MIL-NCE loss as published in [13], where we use 8 views (M = 7)
formulation:

LMIL−NCE = − 1

N

N∑
i

log

∑M
j exp(zTi,jk

+/t)∑M
j exp(zTi,jk

+/t) +
∑M
j

∑B
` exp(zTi,jk

−
i,`/t)

. (15)

Debiased Contrastive Learning. We modify the Debiased Contrastive Learning framework so that
its multiple views originally used to approximate the expectation on positives are also suitable for
multi-view MoCo-v2* framework. We refer to [6] and define:

Ng = max(−Nτ+ 1

M

M∑
j

exp(zTi,jk
+/t) +

B∑
`

exp(zTi,jk
−
i,`/t), N exp−1/t) (16)

LDCL = − 1

MN

N∑
i

M∑
j

log
exp(zTi,jk

+/t)

exp(zTi,jk
+/t) +Ng

, (17)

We use the t = 0.2 and τ+ = 0.01 as suggested by [6] on ImageNet100.

For all the mentioned approaches above, we use lr = 0.3 and SGD optimizer to train the linear
classifier on frozen features, as the same as MoCo-v2*. Then we report the Top-1 score in Table M.2.
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6 Implementation Details of Section M.4.2 (Fig. M.2, Table M.3)

In Section M.4.2, we conduct ablation studies against hyperparameters crop-min and number of views.
For producing Fig. M.2(a), we used Nwarm = 20, lr = 0.1, to pretrain a ResNet18 with MoCo-
v2+UOTA and MoCo-v2 respectively. The pretraining procedure and linear evaluation employs
exactly the same protocols and same setups (and remaining hyperparamters) as described in Section
S.5. For producing Fig. M.2(b), we used the same training schedule mentioned in Section S.5 for both
MoCo-v2*+UOTA and MoCo-v2* baseline. We used Nwarm = 20 for MoCo-v2*+UOTA. Please
refer to Table S.3 for τ values. To produce Table M.3, we tune τ values under different estimate
strategies as shown in Table S.4. The remaining setups for Table M.3 is the same as that for producing
the MoCo-v2*+UOTA entry in Table M.2.

Table 3: Impact of different crop-min (1-6 columns) and various number of views (7-10 columns) for hyperpa-
rameter τ in UOTA.

Hyperparameters
Crop-mini (MoCo-v2): Number of views (MoCo-v2*):
0.10 0.12 0.14 0.16 0.18 0.20 4-view 6-view 8-view 10-view

UOTA τ 300 400 300 300 250 200 200 250 200 250

Table 4: Hyperparameter τ for different estimate strategies for Covariance and Mean in Eq. (M.10) of UOTA.

Covariance & mean Σ = I & µi Local Σi & µi Global Σ & zi Global Σ & µi
τ 6 10 200 200

7 Implementation Details of Section M.4.2 (Table M.4, Table M.5)

To compare scores reported in NDA [15] as shown in our Table M.4, we run all the relevant baselines
by strictly following the ResNet50 training setups of Table 6 in [15]. Specifically, for ImageNet-100
pretraining we have the following hyperhaprameters for MoCo-v2 and MoCo-v2+UOTA: batchsize
N = 128, lr = 0.015, temperature = 0.2, feature dimentionality = 128. We implement unsupervised
pretraining for 200 epochs and supervised training (linear classifier) for 100 epochs. For downstream
linear classfication on ImageNet100, we use learning rate lr = 30.

To produce the binary classification result as reported in Table M.5 main file, we adopt the SGD
optimizer with a learning rate lr = 0.1 momentum of 0.9 without weight decay for training 10 epochs.
The learning rate is updated by cosine decay schedule.

8 Implementation Details of Section M.4.3 (Table M.4.6, Table M.4.7 )

In Section M.4.3, we evaluate the generalization capability of various algorithms by pretraining each
ResNet50 Network on ImageNet1K. Here, we explain the training details of optimizing SwAV+UOTA
loss. Specifically, we use all the default settings as published in [2] to train SwAV, i.e., with LARS
optimizer, lr = 0.6, weight decay 10−6, and a cosine learning rate schedule with a final learning
rate 0.006. We well reproduced the published score as in [2]. For all the data augmentations, we
also follow exactly the augmentation policy and multi-crop operation as defined in SwAV. To train
SwAV+UOTA loss, we find lr = 1.2 returns the best performance (corresponding to the score
reported in Section M.4.3). For other hyperparameters, we set τ = 350, Nwarm = 100. Note, on
ImageNet1K, our optimal learning rate for SwAV+UOTA model (lr = 1.2) doubles the optimal
learning rate of SwAV (lr = 0.6), because we notice the loss on “effective number of samples” tends
to have a larger impact on ImageNet1K (we did not tune learning rate on ImageNet100, and directly
used model “X” learning rate to train “X+UOTA” on ImageNet100). We therefore correspondingly
enlarge the learning rate, to make the effective loss scale of UOTA comparable to SwAV. This enlarged
learning rate makes up for the loss of effective sample size (equivalently a constant multiplying the
original UOTA loss) as defined in the conventional importance sampling technique.

To train the linear classification downstream task on ImageNet1K, we, again, adhere to SwAV’s
default setup to reproduce SwAV (SGD optimizer, weight decay 10−6, learning rate lr = 0.3 with
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cosine schedule). For SwAV+UOTA, we use all the same training techniques and hyperparamters as in
SwAV, except that we find lr = 1.2 is optimal on ImageNet1K given the new resultant SwAV+UOTA
pretrained feature distribution.

In Section M.4.3, we also finetune the pretrained networks on the COCO dataset and evaluate
the performance of various algorithms for object detection, instance segmentation and keypoint
detection tasks. Our evaluation metrics are standard COCO AP (averaged over [0.5:0.95:0.05] IoUs),
AP50(IoU=0.5) and AP75(IoU=0.75) scores respectively. For all of three downstream tasks, we
attach FPN [11] to the corresponding training architectures. According to [8], we use extra batch
normalization on the FPN layers, mask head and keypoint head. We perform the training on 4
V100 GPUs with total batch size N = 16, and we train all models for 90k iterations (1× schedule),
according to [8]. All the hyperparameters not mentioned here follow the definitions in [8].
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