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Figure 1: Instructed Visual Assembly. Given a visual collection, an input timeline, and an assembly
instruction, our model (called the Timeline Assembler) performs the instructed assembly task and
generates an output timeline with the desired edits. The collection comprises various media elements,
such as video clips or images. The timeline is a sequential arrangement of these elements.

Abstract

The objective of this work is to manipulate visual timelines (e.g., a video) through
natural language instructions, making complex timeline editing tasks accessible to
non-expert or potentially even disabled users. We call this task Instructed visual
assembly. This task is challenging as it requires (i) identifying relevant visual
content in the input timeline as well as retrieving relevant visual content in a given
input (video) collection, (ii) understanding the input natural language instruction,
and (iii) performing the desired edits of the input visual timeline to produce an
output timeline. To address these challenges, we propose the Timeline Assembler,
a generative model trained to perform instructed visual assembly tasks. The contri-
butions of this work are three-fold. First, we develop a large multimodal language
model, which is designed to process visual content, compactly represent timelines
and accurately interpret timeline editing instructions. Second, we introduce a novel
method for automatically generating datasets for visual assembly tasks, enabling
efficient training of our model without the need for human-labeled data. Third, we
validate our approach by creating two novel datasets for image and video assembly,
demonstrating that the Timeline Assembler substantially outperforms established
baseline models, including the recent GPT-4o, in accurately executing complex
assembly instructions across various real-world inspired scenarios.

∗Czech Institute of Informatics, Robotics and Cybernetics at the Czech Technical University in Prague.
1Work partially done during an internship at Adobe.

Workshop on Video-Language Models at 38th Conference on Neural Information Processing Systems (NeurIPS
2024).

https://sites.google.com/kaust.edu.sa/timeline-assembler


1 Introduction

Imagine returning from a zoo trip and finding a visual timeline, e.g., in the form of a short video,
of highlights automatically generated by your device [32, 9]. While reviewing the timeline, you
notice some shots are misplaced and a memorable moment with that kid petting a goat is missing.
Traditionally, making such modifications would require finding the additional shot in your video
collection as well as potential cumbersome interactions with video editing tools. This may be even
harder for users with small-screen devices or users with disabilities for whom it is hard to interact
with traditional interfaces. A more intuitive approach, illustrated in Figure 1, involves using natural
language to direct edits. The users simply state their desired changes, much like setting a calendar
event by voice. Such a system uses the collection of visual assets, the current timeline, and the
provided instruction to return the refined timeline with the requested edits.

We define this capability as instructed visual assembly, a process that involves the automated editing
of a visual timeline in response to user-provided natural language instructions. To effectively automate
this task, the system requires a comprehensive understanding of three key elements: the instruction
itself, the existing visual timeline, and the collection of visual assets. For instance in Figure 1, if a
user instructs the system to "swap the first two clips and add the shot of the kid with the goat," the
system must first understand the multimodal context by interpreting the wording of the instruction
and relating it to the visual data in the timeline and the collection. The system must then identify the
specific elements to be edited, such as the initial two shots, and retrieve the additional clip of the child
with the goat from the collection. This process involves deep multimodal understanding to determine
not only what the user intends but also how these intentions translate into direct manipulation of
visual content. Despite these challenges, instructed visual assembly can enable intuitive video
creation interfaces for novices, and users with disabilities, mitigating the complexities associated with
mastering traditional video editing tools and interfaces, as well as easing the management of visual
content. Moreover, it can ease the editing of videos on devices with small screens where simple
operations like drag and drop become cumbersome.

This is the first work that explicitly addresses the task of instructed visual assembly. While this task
shares similarities with language-based video editing [12, 37], which consists of editing the pixels
of a source video based on language instructions, instructed visual assembly distinctively focuses
on executing instructions to arrange visual elements in a timeline. There are other related tasks in
the video assembly space, such as automatic shot transitioning [36, 35] and B-roll recommendation
[18, 50, 45]. However, these tasks primarily provide creative guidance, diverging from the instructed
visual assembly goal of composing timelines through natural language instructions.

In this paper, we present a method for teaching a generative model, named Timeline Assembler,
to follow assembly instructions and generate timelines with the appropriate edits. The Timeline
Assembler builds on Large Language Models (LLMs) to leverage their remarkable skills in following
instructions [49, 47] and interpreting multimodal content [28, 54]. Specifically, we adapt a multimodal
LLM [54] to handle the nuances of instructed visual assembly. This adaptation presents two major
challenges. Firstly, existing multimodal LLMs are designed to process a single image or video. Thus,
devising a representation for handling visual collections and timelines using LLMs remains an open
challenge. Secondly, as shown by our experiments, existing multimodal LLMs struggle to understand
and execute visual assembly instructions, hinting that further tuning for the assembly task is required.
However, we face the challenge of doing so without human-labeled data, which is hard to acquire at
scale for such specialized tasks.

Our work makes the following contributions to address the challenges above:

(1) We design a multimodal LLM architecture to process visual collections, encode timelines, and
ingest natural language instructions to generate edited output timelines. Our architecture represents
each image or video clip in the collection with a unique identifier and a visual representation
compatible with the LLM’s input space [28]. Secondly, we encode the timeline using the unique
identifiers of each arranged visual element. Finally, we map the LLM’s output tokens directly back
to a timeline, associating each token to its relevant visual element. This design not only ensures a
compact representation of the visual collection and the timeline, but also facilitates a straightforward
reconstruction of timelines from the model’s output tokens.

(2) We propose a new approach to automatically generate a paired dataset (input/output) for instructed
visual assembly. Our method programmatically creates a collection, input/output timelines, and
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assembly instructions from an input visual sequence and task candidates. Using this approach, we
generate data to learn the projection layer and Low-Rank Adapters (LoRA) [15] for effective LLM
performance on assembly tasks. Our training approach is not only human-labels-free but also efficient
and enables a wide range of timeline editing tasks.

(3) We construct two datasets, one for image sequence assembly (of still images) and one for
video assembly, to evaluate instructed visual assembly. On both datasets, our method substantially
outperforms baseline approaches, including powerful LLMs such as GPT3.5, highlighting the benefits
of our approach. Moreover, we show that our model can match or even exceed the performance
of specialized (single-task) assembly models, perform equally well regardless of the length of the
timelines, and execute multiple complex instructions at a time.

2 Related Work

Multimodal LLMs as Multi-task Interfaces. Our work shares a similar spirit with recent trends
that use LLM capabilities to perform multiple tasks for different applications [14]. Several methods
have been proposed for image and language tasks [54, 2, 28, 22, 8, 20], video understanding [31,
24, 7, 43, 29], multimodal understanding [51, 52], recommendation systems [13], and robotics and
motion planning [19, 26, 4, 10, 16]. Our Timeline Assembler distinguishes itself by specializing in
the domain of visual timelines, interpreting natural language to modify sequences of visual data. This
unique application extends the use of LLMs beyond physical tasks to the manipulation of multimedia
content.

Video Assembly. Several computer vision techniques have been proposed for automated video
editing tasks [39, 36, 42, 3, 21, 35, 6, 40]. Likewise, multiple works have proposed to tackle video
assembly. Li et al. [25] propose multi-shot vlog assembly, drawing parallels to our approach where
an initial sequence guides subsequent shot selections from a candidate pool. Furthermore, other
works [46, 48, 50, 30] have developed tools that assemble videos from input queries, leveraging
multiple components for an intuitive video creation experience. While these works emphasize on
providing creative guidance, our model introduces a user-guided approach to video assembly, enabling
a novel interface to manipulate and arrange timelines with language instructions.

Instruction Fine-tuning and Aligning with User Intent. Our paper builds on methods that adapt
language models to closely following human instructions [38, 5]. Wei et al.[49] first introduced
instruction-tuning, enhancing the usability and multi-tasking of LLMs. [34] expanded this by
integrating Reinforcement Learning from Human preferences (RLHF). [47] demonstrated that GPT3-
generated instructions could achieve results similar to InstructGPT through self-instruct fine-tuning.
Our work uses similar ideas and tailors instruction fine-tuning for visual assembly tasks. We do so
by automatically gathering novel visual assembly instruction data that serves as training data to our
LoRA [15] fine-tuned multimodal LLM.

3 Timeline Assembler

3.1 Timeline Assembler Architecture

Our goal is to design the Timeline Assembler to integrate visual and textual data to generate output
timelines that precisely align with the given assembly instructions. The Timeline Assembler generates
an edited timeline S̃ from an assembly instruction q, an initial timeline S, and a collection of video
clips C. With instructions often phrased in multiple ways, ensuring consistent output results poses a
considerable challenge. To tackle these challenge, the Timeline Assembler leverages an instruction-
following Large Language Model (LLM) that reasons over text and visual tokens. Our overall
architecture, illustrated in Figure 2, comprises a set of tokenizers that convert multimodal inputs into
a set of tokens X. These tokens are then passed to an LLM, which returns an output sequence of
tokens XS̃ that represent a timeline in the LLM space. Finally, we reconstruct the output timeline S̃
from XS̃. We describe each of these components in detail next.

Collection Tokenizer. Our goal is to represent a collection of visual elements as an array of unique
identifier tokens and visual tokens to enable an LLM to process the visual content in the collection.
Each identifier token serves to distinctly identify the visual elements within the collection, while the
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Figure 2: Timeline Assembler Architecture. We design a multimodal architecture to execute
visual assembly instructions to generate visual timelines. Our model takes as inputs: a collection of
images/videos C, a timeline S, and an assembly instruction q. Each image/video in the collection
is represented with a unique identifier token xi

k (color-coded) and a visual token xi
v, forming the

sequence XC . The input timeline is represented with the sequence of tokens XS , which comprises
the list of identifier tokens of the images/videos in the timeline. The assembly instruction is tokenized
into Xq . Given the input tokens, the task of the Large Language Model is to generate output timeline
tokens XS̃ , which are reconstructed into the output timeline S̃.

visual tokens encapsulate the visual information. With this design, the LLM can reference the visual
representations associated with each element in the collection.

Let C = {v1, v2, . . . , vn} denote the visual collection, where vi represents a visual element composed
of an image or video clip. The collection tokenizer has two key components: a mapping function
H that generates a unique identifier token xi

k for each visual element vi; and a visual encoder that
embeds every visual input vi to produce a visual token xi

v . The mapping function H obtains a unique
text token xi

k by assigning a token from a set of previously tokenized integers. In practice, this
mapping function operates as a look-up table that helps to assign (and find) the unique identifier
token of a given visual element. The visual encoder ingests a visual element vi and outputs a visual
token xi

v. In practice, a pretrained visual encoder g ingests and extracts visual representations from
the input visual elements, and a projection layer hγ(·) maps these visual representations into a visual
token that is aligned with the input space of the LLM [33]. Each visual element vi is then represented
as a tuple (xi

k,x
i
v) consisting of a unique identifier token and a visual token, respectively, such that

the entire array of collection tokens XC = [(x1
k,x

1
v), (x

2
k,x

2
v), . . . , (x

n
k ,x

n
v )].

Timeline Tokenizer. The goal of the timeline tokenizer is to map a sequence of visual elements
within a timeline to their corresponding identifier tokens, allocated during the collection’s initial
tokenization. By utilizing these pre-existing tokens, the tokenizer avoids the need for re-tokenizing
visual elements as they appear in the timeline. Doing so prevents redundant visual tokenization,
enabling the LLM to handle in practice more extensive collections and longer timelines. As a result,
the visual elements (images or videos) are represented only once to save space. Their corresponding
identifier token acts as a reference (or pointer) to the (typically high-dimensional) visual token.

In detail, let S = {vS1, vS2, . . . , vSl} denote the input timeline, where vSi denotes the i-th visual
element in the timeline, and l is the length of the timeline. Using the mapping function H, we
can retrieve the identifier token for each visual element vSi and construct the tokenized timeline
XS = [xS1

k ,xS2
k , . . . ,xSl

k ].

Instruction Tokenizer. Given an input instruction text prompt q, the goal of the tokenizer is to
map the sequence of strings/words into a discrete set of p tokens such that: Xq = [x1

q,x
2
q, . . . ,x

p
q ],

where Xq is a sequence of tokens that represents the full text prompt q. In practice, we leverage the
byte-level BPE text tokenizer [41] of our large language model.

Finally, the input to the LLM is the union of token sequences X, defined as X = [XC ,XS ,Xq].

Large Language Model. Our goal is to develop a model that can assemble and edit timelines
of visual sequences. The model must be able to understand natural language instructions and a
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multimodal context representing a visual collection and the input timeline. To do so, we leverage
multimodal LLMs given their capabilities at managing multiple multimodal tasks [28, 8], reasoning
over long sequences [7, 27], and encapsulating knowledge from a plethora of sources [34, 44].

Therefore, we employ a Large Language Model fθ(·), parameterized by θ, to generate an updated
timeline sequence XS̃ in response to an input instruction. The model takes a sequence of previously
defined multi-modal tokens X as input and, at test time, outputs a sequence of identifier tokens
representing the updated timeline’s visual elements: fθ(X) → XS̃ = [xS̃1

k ,xS̃2
k , . . . ,xS̃Q

k ], where
Q is the output timeline length, and xS̃i

k is the identifier token for the i-th element in the updated
timeline.

Timeline Reconstruction. Given the output tokens XS̃ , produced by the LLM fθ(.), the goal of this
step is to reconstruct the output timeline S̃. To do so, we map each output token, which in practice are
identifier tokens, to their corresponding visual elements using a reverse mapping operation from H.

3.2 Constructing Visual Assembly Tasks

Our goal is to train the Timeline Assembler to effectively perform various visual assembly tasks.
To facilitate this, we define a suite of atomic operations that act as the foundational elements for
constructing and manipulating visual timelines. These operations are:

• Insert (in): Add an element from the collection to the timeline.
• Remove (rm): Delete an entry from the timeline.
• Replace (rp): Substitute one element in the timeline with another from the collection.
• Swap (sw): Exchange positions of two elements within the timeline.

To reference elements, either in the timeline or the collection, we use two types of cues:

• Positional Cue (p): Refers to an element by its identifier or position in the timeline.
• Semantic Cue (r): Refers to an element through a language-based description of its visual

content.

These operations and cues combine to form eight distinct assembly tasks T = tc, where t represents
the operations in, rm, rp, sw and c denotes the types of cues p, r . An illustration of each
one of these tasks can be found in Figure ??. To generate training data for these tasks, we apply a
transformation function ϕtc to an initial timeline Si. This function manipulates the timeline to produce
a modified version S̃i. For example, to train the model for the "remove" operation, we artificially
introduce an additional shot into the timeline. An automatically generated caption explicitly instructs
the model to identify and remove this newly added shot, thus reverting the timeline to its original
form. This direct instruction ensures the model learns the specific task through controlled adjustments.
Each transformation is guided by instruction templates qt, filled with the applicable cues ci, to ensure
the instructions are clear and relevant to the task at hand. We use this procedure to generate data
with multiple lengths, and multiple instructions at a time that combine multiple atomic operations in
one instruction, as we will show later in the experiment Section 4. We explain the data generation
procedure in more detail in Section 3.2 of the supplementary material.

3.3 Training the Timeline Assembler

We illustrate our training procedure in Figure 3. The Timeline Assembler’s model Mγ,θ has two
learnable modules: the projection layer hγ(·) and the language model fθ(·). Since we want to keep
the multitask, instruction-following capabilities of the LLM, fθ(·), we keep its weights mostly frozen
except for a lightweight set of learnable Low-Rank Adapters (LoRA) [15].

Our goal is to fine-tune the weights of the projection layer and large language model using our
proxy assembly tasks gathered in the training dataset D. In practice, we optimize the negative
log-likelihood loss (NLL) as cited in Brown et al. (2020) by using the following: Loss(θ, γ) =

−
∑N

i=1 logP (X̂i|Xi; θ, γ). where N is the number of samples and P (X̂i|Xi; θ, γ) is the probability
assigned by the model Mγ,θ to the correct output sequence X̂i given the input Xi formed by the
collection tokens Xi

C , timeline tokens Xi
S , and assembly instruction tokens Xi

q for sample i.
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Figure 3: Training the Timeline As-
sembler. The Collection Tokenizer is
composed of a frozen visual encoder
g(·), a mapping function H that gener-
ates an identifier token for each input
visual asset (image/video) in the collec-
tion, and a learnable projection layer
hγ(·) that maps visual embeddings into
visual tokens aligned with the LLM. We
keep the LLM fθ(·) mostly frozen except
for a lightweight set of learnable LoRA
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4 Experiments

Implementation Details. Our model has four main components as shown in Figure 3: the visual
backbone, the projection layer, the LLM, and the low-rank matrices from LoRA [15]. As shown
in Figure 3, the visual backbone and the LLM are kept frozen throughout the training. We only
train the projection layer and the LoRA parameters. For the visual encoder, we adopt the same
architecture as BLIP-2 [23] with ViT-g/14 from EVA-CLIP [11] and a Q-former that outputs 32
tokens per image [23]. We initialize the projection layer with that from MiniGPT-4 [54]. Finally, for
the instruction-following LLM, we use Vicuna [53]. For the visual tasks, we use BLIP-2 Flan T5 XL
[23] captions as cues c. We provide additional details in Section ?? in the supplementary material.

Evaluation Metrics. Our system’s performance is assessed using assembly accuracy, which de-
termines whether a generated timeline exactly matches the corresponding ground-truth timeline. A
true positive is a timeline with all its elements identical to the ground-truth, while a false positive
occurs if any element in the predicted timeline differs from the ground-truth. We calculate the Overall
assembly accuracy by evaluating each instance in the testing datasets and computing the percentage
of correctly predicted samples. Additionally, we report the assembly accuracy for each cue type.

4.1 New Datasets for Instructed Visual Assembly

We present the details of our Instructed Assembly Datasets. For both cases, the size of the collection
is 20 visual assets (images or videos). However, the design is not limited to this number (we show
results with different collection sizes in the supplementary material). For the timeline length, we use
l = 5 for Table 1, and 2 <= l <= 19 for Section 4.4. Every task implies a single modification to
the timeline. We use two data sources D̃ to create Instruction Visual Assembly Datasets. Both are
described below. To ensure instruction-phrasing generalization, we ensure that the training templates
do not overlap with the validation and testing ones.

Visual Storytelling Assembly Dataset (VIST-A). We use images from [17] as source of image
sequences to form our new Visual Storytelling Assembly dataset. The original dataset in [17],
contains Flickr images linked to each other by annotators, to create visual stories each consisting of 5
images and their captions. We use the procedure explained in Section ?? to generate offline samples
for each one of the assembly tasks. For testing, we create 80 samples per task for a total of 640 visual
storytelling assembly tasks. For training, we create data online.

Video Sequence Assembly Dataset (VID-A). We collect a total of 12, 088 YouTube Shorts [1]. We
use these videos to show the capabilities of the Timeline Assembler for video assembly. We divide
each video into shots and take the center frame as the shot representation. We create all possible
timelines of a video by sampling every possible sequence of n consecutive shots. The visual collection
is formed by the shots of the video and when needed. We construct the Video Sequence Assembly
Dataset (VID-A) by creating 80 samples per task for a total of 640 video assembly tasks for testing.
We create three validations sets using this procedure, one with timeline length of 5 for Section 4.2,
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Table 1: Instructed Visual Assembly Results. We compare the Timeline Assembler against multiple
baseline approaches. We include zero-shot results for powerful open-source and private VLMs. We
compare the performance of our Assembler across various model capacities on two novel datasets,
VST and VISTA, reporting assembly accuracy for Overall, Positional, and Semantic (cues). * denotes
adjustment on the original implementation of the models.

Assembly Accuracy(%)
VIST-A (Image-based) VID-A (Video-based)

Positional Semantic Overall Positional Semantic Overall

Zero-shot
MiniGPT-4[54] * 0.0 0.0 0.0 0.0 0.0 0.0
LLaVA-1.5[8] * 5.6 0.0 2.8 4.7 0.3 2.5
GPT-4o 72.8 25.0 48.9 72.8 18.8 45.8
Ours
Timeline Assembler-7B 90.1 58.1 74.1 91.8 41.8 66.8
Timeline Assembler-13B 96.9 66.4 81.6 93.7 47.5 70.6

one with variable timeline lengths for multi-len experiments in Section 4.4, and one with several
instructions and variable timeline lengths for compositional experiments in Section 4.4. For training,
we generate data samples using Algorithm ?? online.

4.2 Instructed Visual Assembly Results

In Table 1, we compare our model with state-of-the-art multimodal models. We observed that both
MiniGPT-4 and LLaVA-1.5 lacked the capacity to manage a vast amount of visual data simultaneously.
Accordingly, we adjusted these models to handle the entire collection at once; for more details on
these adjustments, please refer to the supplementary material ??. After modifying both models for
our task, neither showed satisfactory performance in these challenging tasks. We discuss the failure
cases of these two models further in Section ?? of the supplementary material. We attribute their
inadequate performance primarily to the data and instructions on which they were trained, which
significantly differ from the task of instructed visual assembly.

To establish a stronger baseline, we evaluated the recent GPT-4o and found that this model achieved
very impressive zero-shot performance on both datasets, recording 48.9% on VIST-A and 45.8% on
VID-A. However, when trained specifically for the task, our Timeline Assembler clearly emerged
as the best alternative for instructed visual assembly, outperforming all models in both positional
and semantic tasks. The smaller Timeline Assembler-7B achieves 66.8% on the VID-A dataset.
When scaled up to 13B parameters, the Timeline Assembler improves to 70.6%. Thus, our strategy
proves effective and further enhances the capabilities of LLMs and multimodal LLMs for assembly
tasks. For a detailed breakdown of the results for each task and additional analysis on the low
performance of the baselines, please refer to Table ?? in the supplementary material. Additionally,
we implemented additional baselines to perform instructed visual assembly using text-only language
models, leveraging BLIP-2 [23] and replacing every image with its corresponding caption. Detailed
explanations and results of these additional experiments are presented in Table ?? in the supplementary
material.

4.3 Analysis of the Timeline Assembler

Impact of Multi-Task Training (Table 2). We compare the Timeline Assembler against specialized
models trained for each one of the assembly tasks. We use a similar training strategy but train 8
individual models, one for each assembly task on the VIST-A dataset. To determine which of the 8
models to use for a given instruction, we propose three approaches:

• Random Selection: selects one of the eight models for a given instruction.

• Oracle Task Classifier: employs an Oracle Task classifier to choose the model.
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Table 2: Impact of Multi-Task Training. We present a comparative analysis of our proposed model’s
performance under single-task versus multi-task training paradigms. For the single-task case, we
use one model per assembly task and a Task Classifier to decide which model to use. The Random
and Oracle classifiers serve as lower-bound and upper-bound references for the single-task cases,
respectively. We use GPT-4o to classify every instruction into one of the tasks. Our model (featured
in the last row) is a single model that understands and performs every task and does not need any task
classifier. For each task we report the assembly accuracy (%) on the VIST-A dataset.

Multi Task Positional Cues Semantic Cues Avg.
Task Classifier Insert Remove Replace Swap Insert Remove Replace Swap

Lower-Bound ✗ Random 10.0 15.0 17.5 11.3 20.0 17.5 15.0 16.3 15.3
Upper-Bound ✗ Oracle 99.2 98.8 100.0 98.8 71.3 70.0 69.6 26.3 79.2
Single-Task Models ✗ GPT-4o 88.1 97.6 80.0 76.5 67.7 70.0 46.1 12.1 67.3
Timeline Assembler ✓ N/A 98.8 90.4 85.4 85.8 65.8 66.7 54.2 45.8 74.1

• GPT-4o Classification: uses GPT-4o to classify the instruction and select the appropriate
model. This classifier achieves an accuracy of 81.6%. Details about the performance of the
GPT-4o Task classifier are provided in the supplementary material.

Table 2 shows the remarkable performance of the Timeline Assembler. It is surpassed by only 5% by
the single-task models in conjunction with the Oracle classifier. This finding highlights the Timeline
Assembler’s strong multi-tasking capabilities. The Timeline Assembler, being a single model that
effectively handles multiple tasks without the need for a task classifier, proves to be highly practical.
These results suggest that incorporating more assembly tasks could further enhance the Timeline
Assembler model’s efficacy.

Impact of Training Scale. We analyze how data size impacts the Timeline Assembler’s learning.
We limit the percentage of VIST-A and VID-A data samples available during training. Since we
create training data on-the-fly, cutting down the number of sequences available during training means
less variability in the data. Therefore, we scale the number of epochs accordingly. Table 3a shows
three sizes for VIST-A and VID-A datasets. We observe that the availability of more data for creating
assembly tasks on-the-fly leads to better performance.

Cross Dataset Analysis. Table 3b presents the results when our model is trained on one dataset and
tested on the other. Our model demonstrates generalizability across datasets. When the Timeline
Assembler is trained on visual stories, it can still learn how to perform video sequence assembly and
vice versa. Complementary to the observations in Table 3a, when merging the two datasets during
training, the Timeline Assembler performs the best across both datasets by gaining a notable 6% on
VIST-A and 8% on VID-A. Thus, the favored approach is to continuously incorporate more data.

Ablation of Learnable Modules. Table 3c contrasts our model’s performance with and without its
key components. First, when deactivating LoRA (first row), the Timeline Assembler’s performance
drops by a significant 31%. Second, initializing the projection layer from [54] but freezing it (second
row) instead of finetuning it, substantially lowers the assembly accuracy by 12.5%. Finally, when the
projection layer is trained from scratch (third row), the performance is still competitive, as it only
drops by 4%. These results validate that training both, the projection layer and LoRA adapters, is
crucial in training Timeline Assembler to perform instructed visual assembly tasks.

4.4 Timeline Assembler Capabilities

In this section, we evaluate the Timeline Assembler on more complex tasks inspired by real video
editing applications. We aim at evaluating the Timeline Assembler under two difficult scenarios:
(i) The first scenario consists of handling variable input timeline lengths. This scenario challenges
the Timeline Assembler with varying-length sequences and increasingly harder tasks as the length
increases. (ii) The second scenario challenges the Timeline Assembler to deal with the composition of
instructions specified in a single query. In this task, the model must understand multiple instructions
at once and perform several timeline modifications to successfully resolve the user’s input.
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Table 3: Analysis of the Timeline Assembler. (a) studies the impact of varying the training data size.
(b) delves into the model’s generalization by testing its performance when trained on one dataset and
tested on another; ‘mean’ is the average accuracy across both tests. (c) presents an ablation study,
indicating the model’s performance with different variations of the model on VIST-A.

(a) Training scale

Training scale VIST-A VID-A
10% 17.2 15.9
50% 71.9 61.7
100% 74.1 62.2

(b) Cross dataset analysis

Testing
Training VIST-A VID-A mean
VIST-A 74.1 62.2 68.2
VID-A 71.7 66.8 69.2
all 80.0 68.8 74.4

(c) Learnable module ablation

VIST-A
w/o LoRA 43.0
frozen hγ(·) init. from [54] 61.6
hγ(·) from scratch 70.5
Ours 74.1

Multi-Length Timeline Assembler. In the previous sections, we evaluated the Timeline Assembler’s
capabilities with fixed input timeline lengths of 5 assets. However, in real-life applications, dealing
with multiple timeline lengths is essential. Therefore, using Algorithm ?? with the same data source
as VID-A, we construct a test set for multiple-length assembly tasks, which we call multilen-VID-A.
At training time, we also create data on-the-fly using Algorithm ??. Figure 4 reports the assembly
accuracy of the assembler trained on multiple lengths against the strongest baseline GPT-4o from
Table 1. We report the average assembly accuracy across all tasks within different ranges of timeline
lengths (detailed per-task results can be found in the supplementary material). We observe a decrease
in GPT-4o’s performance as the input timeline length increases to 5 and above, indicating that the
tasks become more difficult. Our Timeline Assembler performs consistently across different lengths.

Compositional Timeline Assembler. Another desirable feature for the assembler is to handle
compositions of assembly instructions. This compositional capability would allow greater flexibility
in the assembler’s functionality. Therefore, we create a test set of compositional semantic assembly
tasks, named Compositional-VID-A. Since semantic tasks are more challenging (as shown in Table 1),
we combine them for our test set, presenting a highly challenging yet practical scenario for the
assembler. Our test set includes combinations of two semantic tasks in a single instruction. Examples
of such instructions can be found in Figures ?? to ??. In Table 4, we present different training
strategies and their impact on assembly accuracy for multilen-VID-A and Compositional-VID-A. We
note that GPT-4o struggles with multiple tasks simultaneously. Notably, the compositional Timeline
Assembler outperforms GPT-4o and manages to perform compositional operations 36.3% of the
time. Interestingly, the best way to train the Timeline Assembler for compositional tasks is to also
incorporate single tasks (“Atomic-Task Training”) during training, as shown in rows 2 (compositional
only) vs. 3 (compositional and atomic) of Table 4. The Compositional Timeline Assembler also
performs well on Multi-len VID-A and VID-A, we report these results in the supplementary material.

(2-5) (5-10) (10-15) (15-19)
Input Timeline Length Group
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ur
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y % 77.7% 82.0%
73.6% 75.7%

39.8%
28.0% 30.0% 29.6%

Multi-Length Timeline Assembler GPT-4o

Figure 4: Multi-Length Timeline Assem-
bler. Performance across various timeline
lengths. Unlike GPT-4o, which has de-
creasing performance after timeline lengths
larger than 5, our Timeline Assembler is
consistent across different lengths.

Table 4: Compositional Timeline Assembler. We
show results on compositional tasks. Our Compo-
sitional Timeline Assembler outperforms GPT-3.5.
Additionally, we show the benefit of including single-
tasks (atomic) during training.

Semantic
Training Comp.

Model Atomic Comp. VID-A (%)

GPT-4o ✗ ✗ 3.8
Timeline Assembler ✗ ✓ 26.3
Timeline Assembler ✓ ✓ 36.3

5 Conclusion
We introduce the Timeline Assembler, the first generative model for instructed visual assembly.
We train our model using automatically generated assembly tasks. We validate our approach on
two newly built instruction visual assembly datasets and show that the Timeline Assembler follows
assembly instructions more accurately than competing baselines including strong (multi-modal) large
language models. Looking ahead, we believe the Timeline Assembler is a step towards generative
models capable of complex reasoning (such as timeline editing or long-form story telling) over large
collections of multi-modal assets. We include the limitations of our paper in ??.
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