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A CONTRIBUTION STATEMENT

Yining Hong was responsible for all of the code development, paper writing, and experiments. She
also collected the data for Minecraft.

Beide Liu contributed to most of the data collection with regard to Unreal data. He was in charge
of setting up the Unreal Engine, purchasing assets online, writing the Python scripts for automate
agent control, and recording first-person and third-person videos of Unreal data.

Maxine Wu collected the data of Google 3D Tiles. She was also responsible for the task setup of
RLBench and the data collection of RLBench. She also curated part of the driving data.

Yuanhao Zhai wrote the codes for AnimateDiff, which was one of the baseline models.

The other people took on the advising roles, contributing extensively to the project by offering in-
novative ideas, providing detailed technical recommendations, assisting with troubleshooting code
issues, and conducting multiple rounds of thorough paper reviews. They provided valuable exper-
tise on video diffusion models. Zhengyuan Yang, Yingnian Wu and Lijuan Wang were involved
in brainstorming and critical review throughout the project. Specifically, Zhengyuan Yang pro-
vided much technical support. Yingnian Wu came up with the idea of TEMP-LORA for modelling
episodic memory as well as the masked video diffusion model. Lijuan Wang provided valuable
insights throughout the project.

B MORE DETAILS ABOUT THE METHOD

B.1 PRELIMINARIES ON LATENT DIFFUSION MODELS

Stable Diffusion (Rombach et al., 2022), operates in the compressed latent space of an autoencoder
obtained by a pre-trained VAE . Given an input x0, the process begins by encoding it into a latent
representation: z0 = E(x0) where E is the VAE encoder function. Noise is then progressively
added to the latent codes through a Gaussian diffusion process:

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI) (1)

for t = 1, . . . , T , where T is the total number of diffusion steps and βt are noise schedule parameters.
This iterative process can be expressed in a simpler form:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ (2)

where ϵ ∼ N (0, I), ᾱt =
∏t

i=1 αi, and αi = 1 − βi. Stable Diffusion employs an ϵ-prediction
approach, training a neural network ϵθ to predict the noise added to the latent representation. The
loss function is defined as:

L = Et,z0∼pdata,ϵ∼N (0,1),c

[
||ϵ− ϵθ(zt, t, c)||22

]
(3)

Here, c represents the conditioning (e.g., text), and θ denotes the neural network parameters, typi-
cally implemented as a U-Net (Ronneberger et al., 2015).

During inference, the model iteratively denoises random Gaussian noise, guided by the learned ϵθ,
to generate latent representations. These are then decoded to produce high-quality images consistent
with the given textual descriptions.

Video diffusion models (Ho et al., 2022) typically build upon LDMs by utilizing a 3D U-Net ar-
chitecture, which enhances the standard 2D structure by adding temporal convolutions after each
spatial convolution and temporal attention blocks following spatial attention blocks.

B.2 PRELIMINARIES ON LOW-RANK ADAPTATION (LORA)

LoRA Hu et al. (2021) transforms the fine-tuning process for large-scale models by avoiding the
need to adjust all parameters. Instead, it utilizes compact, low-rank matrices to modify only a subset
of the model’s weights. This approach keeps the original model parameters fixed, addressing the
problem of catastrophic forgetting, where new learning can overwrite existing knowledge. LoRA
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utilizes compact, low-rank matrices to modify only a subset of the model’s weights, therefore avoid-
ing the need to adjust all parameters. In LoRA, the weight matrix W ∈ Rm×n is updated by adding
a learnable residual. The modified weight matrix W ′ is:

W ′ = W +∆W = W +ABT

where A ∈ Rm×r and B ∈ Rn×r are low-rank matrices, and r is the rank parameter that determines
their size. In this paper, we denote the LoRA finetuning as the fast learning process and the pre-
training as slow learning process. The equation then becomes:

W ′ = W +∆W = Wslow +Wfast = Φ+Θ (4)

where Φ corresponds to the pre-trained slow-learning weights, and Θ corresponds to the LoRA
paraemters in the fast learning phase.

B.3 MODELSCOPET2V DETAILS

We base our slow learning model on ModelscopeT2V (Wang et al., 2023). Here, we introduce the
details of this model.

Given a text prompt p, the model generates a video vpr through a latent video diffusion model
that aligns with the semantic meaning of the prompt. The architecture is composed of a visual
space where the training video vgt and generated video vpr reside, while the diffusion process and
denoising UNet ϵθ operate in a latent space. Utilizing VQGAN, which facilitates data conversion
between visual and latent spaces, the model encodes a training video vgt = [f1, . . . , fF ] into its
latent representation Zgt = [E(f1), . . . , E(fF )]. During the training phase, the diffusion process
introduces Gaussian noise to the latent variable, ultimately allowing the model to predict and denoise
these latent representations during inference.

To ensure that ModelScopeT2V generates videos that adhere to given text prompts, it incorporates a
text conditioning mechanism that effectively injects textual information into the generative process.
Inspired by Stable Diffusion, the model augments the UNet structure with a cross-attention mech-
anism that allows for conditioning of visual content based on textual input. The text embedding c
derived from the prompt p is utilized as the key and value in the multi-head attention layer, enabling
the intermediate UNet features to integrate text features. The text encoder from the pre-trained CLIP
ViT-H/14 converts the prompt into a text embedding, ensuring a strong alignment between language
and vision embeddings.

The core of the latent video diffusion model lies in the denoising UNet, which encompasses vari-
ous blocks, including the initial block, downsampling block, spatio-temporal block, and upsampling
block. Most of the model’s parameters are concentrated in the denoising UNet ϵθ, which is tasked
with the diffusion process in the latent space. The model aims to minimize the discrepancy between
the predicted noise and the ground-truth noise, thereby achieving effective video synthesis through
denoising. ModelScopeT2V’s architecture also includes a spatio-temporal block, which captures
complex spatial and temporal dependencies to enhance video synthesis quality. The spatio-temporal
block is comprised of spatial convolutions, temporal convolutions, and attention mechanisms. By ef-
fectively synthesizing videos through this structure, ModelScopeT2V learns comprehensive spatio-
temporal representations, allowing it to generate high-quality videos. The model implements a com-
bination of self-attention and cross-attention mechanisms, facilitating both cross-modal interactions
and spatial modeling to capture correlations across frames effectively.

C DATASET STATISTICS

We provide the dataset statistics in Figure 1.

D MORE EXPERIMENTAL DETAILS

D.1 EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

We utilize approximately 64 V100 GPUs for the pre-training of SLOWFAST-VGEN, with a batch
size of 128. The slow learning rate is set to 5e-6, while the fast learning rate is 1e-4. Training
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Figure 1: Statistics of our Training Dataset.

videos of mixed lengths are used, all within the context window of 32 frames. During training, we
freeze the VAE and CLIP Encoder, allowing only the UNet to be trained. For inference and fast
learning, we employ a single V100 GPU. For TEMP-LORA, a LoRA rank of 32 is used, and the
Adam optimizer is employed in both learning phases.

D.2 COMPUTATION COSTS

In Table 1, we show the computation costs with and without TEMP-LORA. While the inclusion of
TEMP-LORA does introduce some additional computation during the inference process, the differ-
ence is relatively minor and remains within acceptable limit.

Ours wo TEMP-LORA Ours w TEMP-LORA
Average Inference Time per Sample (seconds) 12.9305 13.8066
Inference Memory Usage (MB) 9579 9931

Table 1: Comparison of Computation Costs with and without TEMP-LORA

D.3 HUMAN EVALUATION DETAILS

In our human evaluation session for action-conditioned long video generation, 30 participants as-
sessed the generated video samples (50 videos per person) based on three criteria:

• Video Quality (0 to 1): Participants evaluated the overall visual quality, considering aspects
such as resolution, clarity, and aesthetic appeal.

• Coherence (0 to 1): They examined the logical flow of actions and whether the events
progressed seamlessly throughout the video, ensuring there were no abrupt changes or
disconnections.

• Adherence to Actions (0 to 1): Participants judged how accurately the generated videos
reflected the specified action prompts, assessing whether the actions were effectively de-
picted.

Each video was rated by at least three different individuals to ensure reliability. The collected ratings
were then compiled for analysis, with average scores calculated to assess performance across the
different criteria.

E EXPERIMENTS ON ABLATIONS AND VARIATIONS OF SLOWFAST-VGEN

We introduce several variations of SLOWFAST-VGEN, including:
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SCuts ↓ SRC ↑
Our (w original TEMP-LORA) 0.55 92.24
Ours (wo Local Learning Rule) 0.36 90.27
Ours (wo Chunk Input) 1.24 90.01
Ours (wo/ Temp-LoRA) 1.88 89.04
Ours SLOWFAST-VGEN 0.37 93.71

Table 2: Scene Cuts and SRC Scores. Comparison of scene cuts and SRC scores for our method
with and without Temp-LoRA.

• Ours wo Chunk Input that only conditions on single-frame images instead of previous
chunk

• Ours wo Local Learning Rule that samples over the whole generated sequence for training
TEMP-LORA, instead of using local inputs and outputs to train.

• Ours w original TEMP-LORA that uses the original TEMP-LORA structure that were
designed for long text generation.

We show the results below. From the table, we can see that SLOWFAST-VGEN trained over sampled
full sequence also shows good performances. However, our observation indicates that this method
tends to over-smooth the generated sequences, leading to blurry videos for later frames.

F MORE QUALITATIVE EXAMPLES

F.1 MORE QUALITATIVE EXAMPLES OF SLOW LEARNING

In Figure 2 and Figure 3, we include more qualitative examples with regard to slow learning.

F.2 MORE QUALITATIVE EXAMPLES OF FAST LEARNING

In Figure 4 and Figure 5, we include more qualitative examples with regard to fast learning.
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Figure 2: Qualitative Examples on Slow Learning. Part 1.
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Figure 3: Qualitative Examples on Slow Learning. Part 2.
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Figure 4: Qualitative Examples on Fast Learning. Part 1. We mark consistent objects / frames in
green bounding boxes and inconsistent ones in red.
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Figure 5: Qualitative Examples on Fast Learning. Part 2. We mark consistent objects / frames in
green bounding boxes and inconsistent ones in red.
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