
A Appendix

A.1 Details of calculating the Similarity Score

We give an example of the calculating the IntraclassDis in SimilarityScore when the denominator
becomes 0. Suppose the intra-class distance of each xi is [0.1, 0.2, nan, 0.6], where nan means the
denominator is 0, then we replace nan with the average intra-class distance (0.1+0.2+0.6)/3 = 0.3
and the distance becomes [0.1, 0.2, 0.3, 0.6].

A.2 Acceleration of Consistency Score Calculation

As described in the paper, our proposed ABLSim algorithm could be accelerated by GPU and parallel
computations. In our implementation, we use the GPU version of CuPy1 to calculate the score.

We also develop an incremental calculation algorithm that calculates the scores based on previous
calculation results in beam search. To calculate the score of consistency measure, ABLSim needs to
compute the average inter-class distance and intra-class distance with respect to the revised label z.
Assume that the label zpre is part of z, and we have computed its score in the previous iteration in
beam search. ABLSim records the sum and the number of instances when calculating the previous
average distance, and updates them incrementally in the next iteration. This operation dramatically
reduces the need for memory space and lowers the time complexity.

A.3 Complexity

The time complexity of beam search algorithm is O(m ∗ b ∗ setsize) (m: input size; b: beam width;
setsize: the size of the candidate set of revised labels), and the space complexity is O(b ∗ setsize),
which are both polynomial.

The complexity for abducing candidates could be exponential in the worst case. However, the
search space could be pruned by abduction and leveraging the similarity and confidence score. The
implementation of ABLSim could be further accelerated conveniently by engineering techniques like
parallel computing and caching. For example, in the experiment, we store the abduced results (valid
solutions) in the cache to speed up the already fast constrained problem solving. This is feasible
because the domain knowledge in our experiments is fixed.

The exponential time complexity is an inevitable problem in neuro-symbolic (NeSy) learning, which
assumes no direct supervision for training the perceptual model and only has labels of the final
output. The pseudo-label search is intrinsically NP-hard. To make the training possible, end-to-end
NeSy models usually require exponential numbers of labeled samples; while hybrid neural logical
models use domain knowledge and perform optimization in the exponential hypothesis space. They
usually navigate in this space just by the probabilistic distribution output from the perceptual neural
net, which could be unreliable when the neural net is under-trained. That’s why the exponential
complexity problem slows down their learning process.

A.4 Experimental Details

A.4.1 Decidability of Knowledge Base

The knowledge base used in our experiments is described by definite clauses, and the domain is finite
since the number of abducible groundings is finite. Hence the logical abduction of ABLSim in our
experiments is decidable.

A.4.2 Neural Network & Hyperparameters

All compared methods share the same neural network structure for the same dataset. The neural
networks in our experiments are implemented by PyTorch2. The BERT [2] model is implemented by
TensorFlow3.

1https://cupy.dev/
2https://pytorch.org/
3https://www.tensorflow.org/
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• MNIST (CIFAR-10) Addition. For the MNIST addition task, we use the same neural
network structure and the same hyper-parameters as in DeepProbLog4 [7]. For the CIFAR-
10 addition task, we use the ResNet-50 [3] structure as SimCLR5 [1]. The training data of
CIFAR-10 are augmented by applying random cropping (followed by resizing back to the
original size), random color distortions, and random flip. We use the Adam [5] optimizer
and its default hyperparameters. In abduction, the features used in ABLSim are the outputs
from the penultimate layer of neural networks. We set the weighting coefficient θ = 0.96
and beam width b = 600.

• Handwritten Formula Recognition. For the handwritten images, we use the same neural
network structure as in the open-source code6 of NGS [6]. The default hyperparameters
have low performance in the experiments. We fine-tune the hyperparameters and use a
learning rate of 10−3 and a search step of 50. For the CIFAR-10 version, we use the same
ResNet-50 [3] structure and hyperparameters as in our previous experiments.

• CIFAR-10 Decimal Equation Decipherment. The dataset contains 16,384 training equa-
tions and 4,096 testing equations in total. We use the same ResNet-50 [3] structure and
hyperparameters as in our previous experiments, while the self-supervised model weights
are trained by SimCLR5 [1].

• Theft Judicial Sentencing. The dataset contains 687 court records of theft happened in
2017—2018, which has been anonymized with no possible way to identify a person. There
are eight kinds of sentencing element labels, including recidivism, confession, surrender,
juvenile, forgiveness, no loss, pickpocket, burglary. Our implementation is based on the
source code of SS-ABL7 [4] and we use the same knowledge base. We employ the multi-
label Bidirectional Encoder Representations from Transformers (BERT) [2] as the classifier,
a state-of-the-art model for Natural Language Processing (NLP). We use the pre-trained
model and default hyperparameters in the official implementation8.

A.4.3 Learning Curves

We show the learning curves of ABLSim in the MNIST (CIFAR-10) Addition and Handwritten
Formula Recognition experiments. As shown in Figure 1 and Figure 2, the curves on the left
represent handwritten images experiments, while the curves on the right represent CIFAR-10 images
experiments. The blue line is the abduction success rate (the proportion of the correctly abduced
labels); the red line is the test accuracy of the perceptual model. Shaded regions indicate standard
deviation.

As we can observe, since the task of handwritten images is simple, both model test accuracy and
abduction success rate increase fast and reach nearly optimal. For the CIFAR-10 tasks, the abduction
success rate is greater than the model test accuracy, because it is hard for the perception model to
learn from CIFAR-10 images. Nevertheless, the model reaches a high test accuracy at the end.
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(a) MNIST.
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(b) CIFAR-10.

Figure 1: Model test accuracy and abduction success rate of ABLSim in MNIST and CIFAR-10
Addition experiments.
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(a) Handwritten.
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Figure 2: Model test accuracy and abduction success rate of ABLSim in HWF (handwritten and
CIFAR-10 images) experiments.
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