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Domain-Conditioned Transformer for Fully Test-time Adaptation
Anonymous Authors

ABSTRACT
Fully test-time adaptation aims to adapt a network model online
based on sequential analysis of input samples during the inference
stage.We observe that, when applying a transformer networkmodel
into a new domain, the self-attention profiles of image samples in
the target domain deviate significantly from those in the source
domain, which results in large performance degradation during
domain changes. To address this important issue, we propose a new
structure for the self-attention modules in the transformer. Specif-
ically, we incorporate three domain-conditioning vectors, called
domain conditioners, into the query, key, and value components
of the self-attention module. We learn a network to generate these
three domain conditioners from the class token at each transformer
network layer. We find that, during fully online test-time adapta-
tion, these domain conditioners at each transform network layer are
able to gradually remove the impact of domain shift and largely re-
cover the original self-attention profile. Our extensive experimental
results demonstrate that the proposed domain-conditioned trans-
former significantly improves the online fully test-time domain
adaptation performance and outperforms existing state-of-the-art
methods by large margins.

CCS CONCEPTS
• Computing methodologies → Transfer learning; Online
learning settings; Computer vision.

KEYWORDS
Test-time Adaptation, Domain-Conditioned Transformer

1 INTRODUCTION
Transformers have achieved remarkable success in various ma-
chine learning tasks. However, their performance often degrades
significantly when being tested in new domains due to the data
distribution shifts [40] between the training data in the source
domain and the test data in the target domain [36]. Source-free
unsupervised domain adaptation (UDA) [26, 30, 48, 52] aims to
adapt network models without access to source-domain samples.
Nevertheless, these approaches require complete access to the en-
tire target dataset and retraining of the source model for multi-
ple epochs, making them impractical for real-world applications.
Recently developed test-time adaptation (TTA) methods exhibit
promising capabilities in adapting pre-trained models to unlabeled
data during testing [29, 37, 46, 49, 51]. There are two major types
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Figure 1: Visualization of output class tokens across vari-
ous layers of our adapted ViT-B/16 network in ImageNet-C
dataset. In layer 1, the features exhibit domain-separability
and class-inseparability due to the presence of domain
shift, with a considerable distance between domains and
a small distance between classes. Our DCT method effec-
tively mitigates the influence of domain shift over succes-
sive layers. Consequently, the domain distance decreases
while the class distance increases, leading to the features
domain-inseparable yet class-separable across the layers of
the Domain-Conditioned Transformer.

of TTA methods: (1) test-time training (TTT) [10, 35, 46] and (2)
fully test-time adaptation [37, 38, 49, 51], depending on whether
source domain data is accessed or not. In this study, we focus on
fully test-time adaptation.

For fully test-time adaptation, the TENT method [51] updates
the batch normalization module by minimizing entropy loss. The
MEMO method [58] optimizes the entropy of averaged predictions
over multiple random augmentations of input samples. Meanwhile,
the VMP method [22] introduces perturbations into model param-
eters based on variational Bayesian inference. Note that these ap-
proaches assume a sufficiently large number of samples in a mini-
batch and a well-balanced label distribution in each mini-batch of
the target domain. However, this assumption does not always hold
in practice. To address this challenge, the SARmethod [38] proposes
a sharpness-aware and reliable optimization scheme, which elim-
inates samples with significant gradients and encourages model
weights to converge to a flat minimum. The TTN method [31]
optimizes interpolation weights during the post-training phase,
requiring access to labeled source data. The RoTTA method [56]
introduces robust batch normalization through category-balanced
sampling.

Recently, transformer-based methods have achieved remarkable
success in various machine learning tasks due to their powerful
self-attention capabilities. In this work, we propose to explore how
transformer networks can be successfully adapted to new domains
during the testing stage. During our experiments, we find that when
transformer models are applied to new domains, their self-attention
distance profiles, defined as the spatial distribution of self-attention
between tokens, for image samples in the target domain deviate
significantly from those in the source domain. Note that the self-
attention is one of the core modules in the transformer network

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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design. Once this self-attention profile has been perturbed by the
domain changes or corruptions, the performance of the transformer
model will degrade significantly. A research question arises: how
do we remove these perturbations caused by the domain shifts from
the self-attention profile so as to improve the test-time adaptation
performance of transformer models?

To address this challenge, we propose to explore a new approach,
called domain-conditioned transformer, for fully test-time adapta-
tion of transformer models. Specifically, we introduce three domain-
conditioning vectors, called domain conditioners, into the query, key,
and value components of the self-attention modules. These domain
conditioners are designed to capture domain-specific perturbation
information and remove these perturbations layer by layer. We
learn a domain conditioner generation network to generate these
domain conditioners from class tokens of the previous network
layers, containing both semantic and domain information. We ob-
serve that, our proposed approach gradually mitigates the impact
of domain shift. As shown in Figure 1, the domain information is
gradually removed and the class information is enhanced across
the domain-conditioned transformer layers. This gradual adjust-
ment process facilitates the recovery of the original self-attention
profile, allowing the model to maintain its performance across di-
verse domains. Our extensive experimental results demonstrate
that the proposed domain-conditioned transformer significantly
improves the online test-time domain adaptation performance and
outperforms existing state-of-the-art methods by large margins.

2 RELATEDWORK
This work is related to test-time adaptation, source-free unsuper-
vised domain adaptation, parameter efficient transfer learning, and
prompt learning.

2.1 Test-time Adaptation
Test-time adaptation (TTA) aims to adapt a pre-trained source
model to unlabeled data with domain shift during inference. There
are two major approaches: test-time training [10, 35, 46] and fully
test-time adaptation [37, 38, 51]. [46] proposes the first test-time
training (TTT) method where feature extractor network parameters
are updated using a self-supervised loss on a proxy learning task.
The TTT++ method [35] improves this approach with a feature
alignment strategy based on online moment matching. Extending
this line of research, the TTT-MAE method [10] incorporates a
transformer backbone and replaces self-supervision with masked
auto-encoders [15]. Note that all these TTT methods require spe-
cialized training in the source domain.

In contrast, fully test-time adaptation methods fine-tune pre-
trained models during inference without access to the source data.
The TENT method [51] proposes fully test-time adaptation by
fine-tuning Batch Normalization (BN) layers. The NHL method
[49] learns early-layer representations in an unsupervised manner,
drawing inspiration from neurobiology-inspired Hebbian learning.
Methods have also been developed to update the model inputs in-
stead of the network parameters. For example, the DDA method
[11] projects the input data from the target domain into the source
domain based on a diffusion model during testing. The method
proposed by [9] modifies the target inputs by learning image-level

visual prompts, keeping source model parameters frozen during
testing. It has been noted that existing online model updating meth-
ods suffer from performance degradations due to sample imbalances
and distribution shifts. To address this issue, SAR [38] proposes to
eliminate noisy samples with high gradients and perform flattening
of model weights towards a minimum, thereby enhancing the ro-
bustness of the model. DELTA [59] uses moving averaged statistics
to perform the online adaptation of the normalized features.

2.2 Source-free Unsupervised Domain
Adaptation

Source-free unsupervised domain adaptation (source-free UDA)
aims to adapt the model trained on the source domain to the unla-
beled target domains without leveraging the source data [19, 24, 26,
27, 30, 45, 55]. Pseudo-labeling [24] methods assign a class label for
each unlabeled target sample and uses the label for the supervised
learning objective. The SHOT method [30] computed pseudo labels
through the nearest centroid classifier and optimized the model
with information maximization criteria. The KUDA method [45]
utilized the prior knowledge about label distribution to refinemodel-
generated pseudo labels. The SFDA-DEmethod [5] aligned domains
by estimating source class-conditioned feature distribution. The
HCL method [19] proposed a solution for addressing the lack of
source data by introducing both instance-level and category-level
historical contrastive learning. The DIPE method [52] focuses on ex-
ploring the domain-invariant parameters of the model, rather than
trying to learn domain-invariant representations. These source-free
methods are offline, requiring access to the complete test dataset.
It also costs a number of epochs for model adaptation. In contrast,
our fully online test time adaptation adapts the given source model
on the fly during testing which only accesses the test samples once.

2.3 Parameter Efficient Transfer Learning
As themodel size grows rapidly with the development of foundation
models, there has been a growing interest among researchers fo-
cusing on Parameter Efficient Transfer Learning [18, 25]. This area
of study focuses on adapting large-scale pre-trained models to dif-
ferent downstream tasks with minimal modification of parameters.
These methods strategically select a subset of pre-trained param-
eters and, if needed, introduce a limited number of additional pa-
rameters into a pre-trained network. These selected parameters are
updated specifically for new tasks, while the majority of the original
model parameters are frozen to ensure efficiency and effectiveness.
For instance, the method proposed by [32] introduces learnable
vectors to rescale keys, values in attention mechanisms, and in-
ner activations in position-wise feed-forward networks through
element-wise multiplication. Diff pruning [14] learns an adaptively
pruned task-specific “diff” vector extending the original pre-trained
parameters. BitFit [57] employs sparse fine-tuning, where only
the bias terms (or a subset of them) are modified. AdaptFormer
[4] adapts pre-trained Vision Transformers (ViTs) for various vi-
sion tasks by replacing the original MLP block with a trainable
down-up bottleneck module. In contrast, LST [47] introduces a sep-
arate ladder side network, a smaller network that uses intermediate
activations as inputs based on shortcut connections, rather than
inserting additional parameters inside the backbone networks. It
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should be noted that all of these parameter efficient transfer learn-
ing methods adapt pre-trained models to downstream tasks through
supervised learning.

2.4 Prompt Learning
The notion of prompts originated in Natural Language Processing
(NLP), where linguistic instructions, known as prompts, are added
to input text to guide pre-trained language models in specific down-
stream tasks [33]. Recent methods [25, 28, 34] represent prompts as
task-specific vector inputs and optimize them directly through error
back-propagation. These prompt-tuning methods learn prompts
from downstream data within the input embedding space, requiring
fewer parameters to be updated during the adaptation process.

Prompt learning has been successfully applied to vision-language
models [13, 43, 60, 61]. CoOp [61] fine-tunes the prompt of the text
encoder in CLIP [41]. CoCoOp [60] conditions the learned prompt
on the model’s input data to address out-of-distribution issues. TPT
[43] optimizes the prompt of CLIP’s text encoder during test time,
enhancing generalization performance by minimizing entropy with
confidence selection. DAPL [13] constructs a prompt comprising
domain-agnostic context, domain-specific context, and class label
for the text encoder using a contrastive objective to disentangle
semantic and domain representations. It’s crucial to note that these
prompt methods are based on text encoders in Vision-Language
Models, whereas our approach exclusively focuses on the Vision
Transformer (ViT) encoder.

In addition to text prompt learning, techniques have emerged
for learning visual prompts in computer vision tasks. The method
proposed by [9] focuses on continuous TTA tasks, where domain-
specific and domain-agnostic prompts are learned and attached
to target input images on a per-pixel basis. Meanwhile, BlackVIP
[39] learns individual prompts for each image through a neural net-
work, without requiring prior knowledge about pre-trained model
architectures and parameters. Visual Prompt Tuning (VPT) [12, 21]
introduces task-specific learnable parameters into the input se-
quence of each ViT encoder layer while keeping the pre-trained
transformer encoder backbone frozen during downstream training.
This approach has found applications in transfer learning for im-
age synthesis [44]. Note that the VPT method introduces a large
number of new tokens. It substantially increases the computational
complexity of the self-attention mechanism, as the computational
complexity of self-attention is quadratic to input token size.

2.5 Unique Contributions
In this work, we propose to explore fully online test-time adapta-
tion of transformer models by designing adaptable self-attention
modules. Compared to existing work, the major contributions of
this work can be summarized as follows: (1) We introduce a new
design of the self-attention module in the transformer networks,
which is able to capture the domain-specific characteristics of test
samples in the target domain and is able to clean up the domain shift
perturbations in the test samples. (2) We learn a lightweight neural
network called domain-conditioner generator to generate the do-
main conditioners from the class token at each layer, enabling the
transformer model to better align its self-attention profiles with the
source domain. (3) Our experimental results demonstrate that our
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Figure 2: Size of the attended area by transformer network
depth. Each dot on the figure represents the mean attention
distance calculated across 128 example images, considering
all heads at a specific layer.

proposed domain-conditioned transformer is able to significantly
improve the online domain adaptation performance of transformer
models, outperforming the state-of-the-art method in fully test-time
domain adaptation across multiple popular benchmark datasets and
test conditions.

3 METHOD
In this section, we present our method of Domain-Conditioned
Transformer (DCT) for fully test-time adaptation.

3.1 Method Overview
Suppose we have a model M = 𝑓𝜃𝑠 (𝑦 |𝑋𝑠 ) with parameters 𝜃𝑠 ,
successfully trained on source data {𝑋𝑠 } with corresponding labels
{𝑌𝑠 }. During fully test-time adaptation, we are provided with target
data {𝑋𝑡 } along with unknown labels {𝑌𝑡 }. Our objective is to adapt
the trained model online in an unsupervised manner during testing.
In this scenario, we receive a sequence of input sample batches
{B1,B2, ...,B𝑇 } from the target data {𝑋𝑡 }. It should be noted that,
during each adaptation step 𝑡 , the network model can only rely on
the 𝑡-th batch of test samples, denoted as B𝑡 . Following the wild
test-time adaptation setting outlined in SAR [38], it’s possible that
each mini-batch B𝑡 may contain only one sample, and the samples
within the mini-batch can be imbalanced.

When adapting transformer-based models to new domains, we
observe that their self-attention distance profiles, defined as the
spatial distribution of self-attention between tokens, for image
samples in the target domain deviate significantly from those in
the source domain. Let {Ω𝑙

𝑖
|1 ≤ 𝑖 ≤ 𝑁 } be the set of 𝑁 embedding

tokens at the network layer 𝑙 , and C = [𝑐𝑙
𝑖 𝑗
]𝑁×𝑁 be their self-

attention weight matrix. Let D = [𝑑𝑙
𝑖 𝑗
]𝑁×𝑁 be the distance matrix

for these tokens where 𝑑𝑙
𝑖 𝑗

represents the pixel distance in the
original input image between tokens 𝑖 and 𝑗 . The attention distance
[6, 42] for network layer 𝑙 is then defined as

𝑑 (𝑙) =
∑︁
𝑖, 𝑗

𝑐𝑙𝑖 𝑗 · 𝑑
𝑙
𝑖 𝑗 . (1)
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Figure 3: An overview of the proposed DCT method. During inference in the target domain, the domain conditioners generator
Φ𝑙 and LN layers are updated before making a prediction given each mini-batch testing sample. The domain-conditioned
transformer (Left). The details of the self-attention head in each layer (Right).

The attention distance 𝑑𝑙 for all network layers is referred to as the
self-attention profile, denoted as {𝑑 (𝑙)}. In Figure 2, we plot the
attention profile for the clean image, images with different levels
of domain corruptions (Defocus Blur), and the attention profile
recovered by our DCT method. Conceptually, this attention dis-
tance is similar to the receptive field size in Convolutional Neural
Networks (CNNs). It indicates that lower layers of the ViT model
tend to focus on local regions more, as evidenced by a lower mean
attention distance. In contrast, higher layers primarily integrate
global information, leading to a higher attention distance. When
there is a data distribution shift during testing in the target domain,
the attention distance distribution is shifted. As illustrated in Figure
2, as the level of image corruption increases, the corresponding
attention distance becomes large. Once this self-attention profile
has been perturbed by the domain changes or corruptions, the per-
formance of the transformer model will degrade significantly. It
can be seen that, using the DCT method, the attention distance
profiles of the corrupted images can be largely recovered to their
minimum level (Level 1), approaching the attention distance profile
of the clean image. Meanwhile, the Attention Rollout for the target
samples exhibits improved focus compared to the source model, as
illustrated in Figure 6.

In this work, we propose to introduce a new self-attention struc-
ture that is able to capture the domain perturbations and gradually
remove them from the image features. As shown in Figure 3, at
layer 𝑙 of the proposed domain-conditioned transformer (DCT), we
append three domain-conditioning vectors, [𝐶𝑙𝑞,𝐶𝑙𝑘 ,𝐶

𝑙
𝑣], into the

query, key, and value components [𝑄𝑙 , 𝐾𝑙 ,𝑉 𝑙 ] of its self-attention
module. At each transformer network layer, we learn a lightweight
neural network (domain-conditioner generator Φ𝑙 ) to generate
these three domain conditioners [𝐶𝑙𝑞,𝐶𝑙𝑘 ,𝐶

𝑙
𝑣] from the class token

𝐶𝑙 . During fully test-time adaptation, Φ𝑙 is updated during the
inference process. These domain conditioners at each transform
network layer are able to gradually remove the impact of domain
shift and significantly recover the original self-attention profile.
In the following section, we explain the proposed DCT method in
more detail.

3.2 Domain-Conditioned Self-Attention
Self-attention mechanisms have demonstrated remarkable perfor-
mance in various computer vision tasks by capturing correlation
between image patches. The output matrix of self-attention is de-
fined as:

Attention(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾⊤
√
𝑑

)
𝑉 , (2)

where 𝑑 represents the dimensions of the query, key, and value.
For convenience, we consider layer 𝑙 of the network and omit the
superscript 𝑙 here in this section. The self-attention weights are
computed from the correlation between patch embeddings. Cer-
tainly, the self-attention distance profile defined in the previous
section changes when the input image is perturbed by domain shifts.
Write the query 𝑄 ∈ R𝑛×𝑑 , key 𝐾 ∈ R𝑛×𝑑 , and value 𝑉 ∈ R𝑛×𝑑
matrices of the self-attention mechanism for the 𝑛 embedding to-
kens (n = N+1, including class token) as 𝑄 = [q1, q2, · · · , qn]⊤,
𝐾 = [k1, k2, · · · , kn]⊤, 𝑉 = [v1, v2, · · · , vn]⊤. The original correla-
tionmatrix between𝑄 and𝐾 is denoted by𝑄𝐾⊤ = [𝛼𝑖, 𝑗 ]𝑛×𝑛 . In our
proposed DCT method, we introduce three domain conditioning
vectors 𝐶𝑞 ∈ R1×𝑑 , 𝐶𝑘 ∈ R1×𝑑 , and 𝐶𝑣 ∈ R1×𝑑 and append them
to the the query, key, and value matrices, respectively, and obtain
the following augmented query 𝑄 ∈ R(𝑛+1)×𝑑 , key 𝐾 ∈ R(𝑛+1)×𝑑 ,
and value 𝑉 ∈ R(𝑛+1)×𝑑 :

𝑄 =

[
𝑄

𝐶𝑞

]
, 𝐾 =

[
𝐾

𝐶𝑘

]
, 𝑉 =

[
𝑉

𝐶𝑣

]
. (3)

The correlation matrix between𝑄 and 𝐾 with domain conditioners
is:

𝑄̄𝐾̄⊤ =



𝛼1,1 𝛼1,2 · · · 𝛼1,𝑛 q1𝐶⊤
𝑘

𝛼2,1 𝛼2,2 · · ·
.
.
. q2𝐶⊤

𝑘

.

.

.
.
.
.

. . .
.
.
.

.

.

.

𝛼𝑛,1 𝛼𝑛,2 · · · 𝛼𝑛,𝑛 qn𝐶⊤
𝑘

𝐶𝑞k1⊤ 𝐶𝑞k2⊤ · · · 𝐶𝑞kn⊤ 𝐶𝑞𝐶
⊤
𝑘


(4)

Now, the new self-attention weight matrix𝑊 = [𝑤𝑖, 𝑗 ] (𝑛+1)×(𝑛+1)
is given by:
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𝑤𝑖,𝑗 = softmax
(
𝑄̄𝐾̄⊤)

=



exp(𝛼𝑖,𝑗 )∑𝑛
𝑗=1 exp(𝛼𝑖,𝑗 )+exp(qi𝐶⊤

𝑘
) , 𝑖 ≠ 𝑛 + 1, 𝑗 ≠ 𝑛 + 1;

𝑒
qi𝐶

⊤
𝑘∑𝑛

𝑗=1 exp(𝛼𝑖,𝑗 )+exp(qi𝐶⊤
𝑘
) , 𝑖 ≠ 𝑛 + 1, 𝑗 = 𝑛 + 1;

exp(𝐶𝑞kj⊤ )∑𝑛
𝑗=1 exp(𝐶𝑞kj⊤ )+exp(𝐶𝑞𝐶

⊤
𝑘
) , 𝑖 = 𝑛 + 1, 𝑗 ≠ 𝑛 + 1;

exp(𝐶𝑞𝐶
⊤
𝑘
)∑𝑛

𝑗=1 exp(𝐶𝑞kj⊤ )+exp(𝐶𝑞𝐶
⊤
𝑘
) , 𝑖 = 𝑛 + 1, 𝑗 = 𝑛 + 1.

(5)

The conditioned self-attention output is:

Attention(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾⊤
√
𝑑

)
𝑉 . (6)

From (5) and (6), we can see that the original self-attention weights
have been modified by the domain conditioner. The introduction
of domain conditioners adds an additional context to the attention
mechanism. The softmax score of 𝛼𝑖, 𝑗 is re-calibrated to consider
both input data and the contextual information of the target domain.
In our proposed DCT method for fully test time adaptation, these
domain conditioners [𝐶𝑞,𝐶𝑘 ,𝐶𝑣] are generated by a network that
is learned online during the test-time adaptation process, which
will be explained in the following section.

3.3 Domain Conditioner Generator Networks
At each transformer network layer, we introduce a dedicated light-
weight network Φ𝑙 , called domain conditioner generator to generate
the three domain conditioners [𝐶𝑙𝑞,𝐶𝑙𝑘 ,𝐶

𝑙
𝑣] from the class token 𝐶𝑙 :

[𝐶𝑙𝑞,𝐶𝑙𝑘 ,𝐶
𝑙
𝑣] = Φ𝑙 (𝐶𝑙 ) . (7)

This domain conditioner generator network is learned during the
test-time adaptation process. Specifically, in the current mini-batch
B𝑡 , when training the network Φ𝑙 , we aim to minimize the loss func-
tion L(𝜃𝑡 ;𝑥) with respect to the learnable weights 𝜃𝑡 of network
Φ𝑙 . The loss function L(𝜃𝑡 ;𝑥) in test-time adaptation is commonly
defined by the entropy of the given batch. In practice, we find such
minimization will cause model collapse. To address this issue, we
use the reliable entropy minimization along with the sharpness-
aware minimization [7, 38]. The reliable entropy minimization fil-
ters out testing samples with relatively large entropy to reduce
the impact of noisy samples on the model’s fine-tuning and makes
it more robust to incomplete or noisy data. The sharpness-aware
entropy minimization encourages the model weights to converge
to a flat minimum, indicating that the model is robust to small per-
turbations in the weights. The overall optimization loss is defined
as:

L(𝜃𝑡 ;𝑥) = I[E(𝜃𝑡 ;𝑥) < 𝐸0] · E(𝜃𝑡 ;B𝑡 ), (8)
where I[E(𝜃𝑡 ;𝑥) < 𝐸0] is the mask to filter out test samples when
entropy is larger than the threshold 𝐸0, and E is the entropy func-
tion.

Figure 4 shows the t-SNE plot visualization of the domain con-
ditioners [𝐶𝑙𝑞,𝐶𝑙𝑘 ,𝐶

𝑙
𝑣] in layer 1 for samples from different target

domains, with different domain corruptions, plotted with three
different colors. We can see that, samples from the same domain,
although from totally different classes, aggregate together. This sug-
gests that the domain conditioners [𝐶𝑙𝑞,𝐶𝑙𝑘 ,𝐶

𝑙
𝑣] generated by the

learned network Φ𝑙 are able to capture the domain characteristics.

Zoom Blur
Defocus Blur
Impulse Noise

Elastic Transform
Brightness
Glass Blur

Fog
Shot Noise
JPEG Compression

Snow
Contrast
Pixelate

Figure 4: Visualization of the domain conditioners for differ-
ent domains in ImageNet-C from the first vision transformer
layers.

We observe that the domain conditioners play a crucial role in
capturing and gradually removing the domain perturbation from
the image features throughout the transformer network layers.
Figure 5 shows the class tokens𝐶𝑙 at different layers of our domain-
conditioned transformer. Specifically, the first 5 plots show the
class token at layers 1, 3, 6, 11, and 12 of the domain-conditioned
transformer. Each plot shows the samples from 5 different target
domains (Gaussian Noise, Frost, Defocus Blur, Contrast, and Fog)
with each domain being plotted with a different color. We can see
that, with the proposed domain conditioning learning and adap-
tation, the domain information is being gradually removed from
the class tokens. In the 5-th plot for layer 12, we can hardly see
any domain difference among these samples. For comparison, in
the 6-th plot, we also show the class token of layer 12 from the
source model without using the proposed DCT method. We can see
that the domain information is clearly seen in the final layer of the
transformer model. This will significantly degrade the performance
of the network in the target domain.

4 EXPERIMENTS
In this section, we conduct experiments onmultiple online test-time
adaptation settings and multiple dataset benchmarks to evaluate
the performance of our proposed DCT method.

4.1 Benchmark Datasets and Baselines.
In our experiments, we select the widely used ImageNet-C bench-
mark dataset [17], consisting of 50, 000 instances distributed across
1, 000 classes. Additionally, we test in ImageNet-R [16], a dataset
containing 30,000 images presenting diverse artistic renditions of
200 classes from the ImageNet dataset. The results also include
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Figure 5: Visualization of output class tokens from different vision transformer layers. The first 5 plots show the features from
various layers of our DCT, and the last plot shows the features of the source model for comparison.

Table 1: Classification Accuracy (%) for each corruption in ImageNet-C under Normal at the highest severity (Level 5). The best
result is shown in bold.

Method gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

Source 46.9 47.6 46.9 42.7 34.2 50.5 44.7 56.9 52.6 56.5 76.1 31.8 46.7 65.5 66.0 51.0
T3A [20] 16.6 11.8 16.4 29.9 24.3 34.5 28.5 15.9 27.0 49.1 56.1 44.8 33.3 45.1 49.4 32.2
CoTTA [53] 40.3 31.8 39.6 35.5 33.1 46.9 37.3 2.9 46.4 59.1 71.7 55.5 46.4 59.4 59.0 44.4
DDA [11] 52.5 54.0 52.1 33.8 40.6 33.3 30.2 29.7 35.0 5.0 48.6 2.7 50.0 60.0 58.8 39.1
MEMO [58] 58.1 59.1 58.5 51.6 41.2 57.1 52.4 64.1 59.0 62.7 80.3 44.6 52.8 72.2 72.1 59.1
AdaContrast [3] 54.4 55.8 55.8 52.5 42.2 58.7 54.3 64.6 60.1 66.4 76.8 53.7 61.7 71.9 69.6 59.9
CFA [23] 56.9 58.0 58.1 54.4 48.9 59.9 56.6 66.4 64.1 67.7 79.0 58.8 64.3 71.7 70.2 62.4
TENT [51] 57.6 58.9 58.9 57.6 54.3 61.0 57.5 65.7 54.1 69.1 78.7 62.4 62.5 72.5 70.6 62.8
DePT-G [12] 53.7 55.7 55.8 58.2 56.0 61.8 57.1 69.2 66.6 72.2 76.3 63.2 67.9 71.8 68.2 63.6
SAR [38] 58.0 59.2 59.0 58.0 54.7 61.2 57.9 66.1 64.4 68.6 78.7 62.4 62.9 72.5 70.5 63.6
Ours 58.8 60.2 60.1 58.7 58.9 63.2 62.9 69.4 68.1 73.2 79.6 65.1 69.0 74.4 72.3 66.3

±0.2 ±0.1 ±0.1 ±0.1 ±0.3 ±0.1 ±0.2 ±0.2 ±0.3 ±0.0 ±0.1 ±0.2 ±0.1 ±0.1 ±0.2 ±0.0

VisDA-2021 [2], a dataset designed to assess models’ ability to
adapt to novel test distributions and effectively handle distributional
shifts. Additionally, we utilize theOffice-Home [50] dataset, which
has a total of 15, 500 images spanning 65 object categories across
four distinct domains. We compare our proposed DCT method
against the following fully online test-time adaptation methods: no
adaptation which is the source model, T3A, CoTTA, DDA, MEMO,
TENT, AdaContrast, CFA, DePT-G, and SAR.

4.2 Implementation Details
Following the official implementations of SAR, we use the ViT-B/16
backbone for all experiments unless explicitly stated otherwise.
The pre-trained model weights are obtained from the timm repos-
itory [54]. Specifically, for the Office-Home dataset, we fine-tune
the ViT-B/16 model by replacing the original classifier head with a
new classifier head. To ensure fair performance comparisons, all
methods within each experimental condition share identical archi-
tecture and pre-trained model parameters. We employ the SGD
optimizer with Sharpness Aware Minimization [8]. The batch size
is set to 64 for all experiments, except for the condition Batch size
= 1. Our reported experimental results are the mean and standard
deviation values obtained from three runs, each with random seeds
chosen from the set {2021, 2022, 2023}. It should be noted that we use
the matched normalization setting for the pre-trained timm model
(mean = [0.5, 0.5, 0.5], std = [0.5, 0.5, 0.5]), which is different from

the code of the original SAR paper [38]. All models are tested on a
single NVIDIA RTX3090 GPU. The source code will be released.

4.3 Performance Results
We evaluate the performance of our DCT method under three dif-
ferent test conditions on the ImageNet-C dataset. We report the
reproduced top-1 accuracy using the official codes for all methods
under comparison. Specifically, (1) we first evaluate our approach
under the Normal i.i.d assumption and compared it with other
TTA methods. The results of this experiment are shown in Table 1.
Our method outperforms other baseline methods for almost all 15
corruptions. On average, our method outperforms the second-best
method by 2.7%. (2) Then, we evaluate our approach under the
Imbalanced label shifts test condition with the same imbalanced
sample sequence. The results of this experiment are shown in Table
2. We can see that our method improves the average classification
accuracy of all 15 corruption types by 1.1%. (3) We evaluate our ap-
proach under the challenging Batch size = 1 test condition, which
is known to be particularly difficult for TTA methods. As shown
in Table 3, our method improves the average classification accu-
racy of all 15 corruption types by 1.6%, demonstrating its superior
robustness and adaptability with small batch sizes.

We also conduct experiments on the ImageNet-R and VisDA-
2021 datasets to verify the effectiveness of ourmethod. For ImageNet-
R, we use the same pre-trained ViT-B/16 backbone and set the out-
put size to 200 following the procedure in [16]. From Table 5 and



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Domain-Conditioned Transformer for Fully Test-time Adaptation ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Classification Accuracy (%) for each corruption in ImageNet-C under Imbalanced label shifts at the highest severity.

Method gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

Source 46.9 47.7 47.0 42.8 34.2 50.7 44.8 56.9 52.6 56.5 76.1 31.9 46.7 65.5 66.1 51.1
DDA [11] 52.6 54.0 52.2 33.7 40.8 33.6 30.2 29.8 35.0 5.0 48.8 2.7 50.2 60.2 58.9 39.2
MEMO [58] 58.1 59.1 58.5 51.6 41.2 57.1 52.4 64.1 59.0 62.7 80.3 44.6 52.8 72.2 72.1 59.1
TENT [51] 58.5 59.9 59.9 58.6 57.2 62.5 59.3 67.0 28.9 71.0 79.3 62.9 65.5 73.8 71.9 62.4
SAR [38] 59.0 60.2 60.1 59.0 57.6 62.7 59.7 67.5 66.2 70.6 79.4 63.1 66.3 73.7 71.9 65.1
Ours 58.8 60.5 60.2 58.9 58.6 63.6 62.6 69.1 68.3 72.8 79.5 63.9 69.1 74.3 72.5 66.2

±0.1 ±0.1 ±0.2 ±0.1 ±0.3 ±0.1 ±0.5 ±0.2 ±0.3 ±0.2 ±0.1 ±0.8 ±0.4 ±0.4 ±0.1 ±0.1

Table 3: Classification Accuracy (%) for each corruption in ImageNet-C under Batch size = 1 at the highest severity.

Method gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

Source 46.9 47.6 46.9 42.7 34.2 50.5 44.7 56.9 52.6 56.5 76.1 31.8 46.7 65.5 66.0 51.0
DDA [11] 52.5 54.0 52.1 33.8 40.6 33.3 30.2 29.7 35.0 5.0 48.6 2.7 50.0 60.0 58.8 39.1
MEMO [58] 58.1 59.1 58.5 51.6 41.2 57.1 52.4 64.1 59.0 62.7 80.3 44.6 52.8 72.2 72.1 59.1
TENT [51] 58.6 60.1 60.0 59.0 57.4 62.7 59.7 67.3 45.5 71.4 79.2 63.9 66.1 73.9 71.9 63.8
SAR [38] 59.1 60.2 60.1 58.5 55.9 62.4 59.2 67.5 66.0 70.2 78.8 62.7 65.6 73.9 71.9 64.8
Ours 59.5 61.0 60.7 59.2 59.1 63.8 62.0 69.6 68.5 73.5 78.8 64.7 68.8 74.2 72.4 66.4

±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.2 ±0.4 ±0.3 ±0.3 ±0.2 ±0.4 ±0.1 ±0.5 ±0.3 ±0.0

Table 4: Classification Accuracy (%) for test-time adaptation in Office-Home dataset.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

Source 63.4 81.9 86.3 76.2 80.6 83.8 75.0 57.9 87.2 78.7 61.0 88.0 76.7
TENT [51] 69.1 81.8 86.5 76.5 81.9 83.2 76.8 65.0 86.7 81.1 69.7 88.2 78.9
SAR [38] 67.3 80.7 85.6 77.5 79.8 84.1 74.7 60.3 87.6 78.9 63.1 87.7 77.3
Ours 69.2 82.6 87.2 78.4 83.6 85.2 76.8 65.3 87.9 80.2 67.0 88.1 79.3

±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.7 ±0.0 ±0.1 ±0.0 ±0.1 ±0.1 ±0.2 ±0.1

Table 5: Classification Accuracy (%) in ImageNet-R under
Normal and Batch size=1 settings.

Method Normal Batch size = 1

Source 57.2 57.2
TENT [51] 61.3 61.5
SAR [38] 62.0 61.8
Ours 64.5 65.0

±0.2 ±0.4

Table 6, we can see that the overall results are consistent with those
on ImageNet-C. Our approach outperforms the previous state-of-
the-art methods in both experimental settings, namely Normal and
Batch size = 1. It demonstrates that the proposed DCT method is
effective in different domains. We extend our experimentation to
Office-Home. The results are presented in Table 4. The proposed
DCT method outperforms the SAR method by 2.0%. This further

Table 6: Classification Accuracy (%) in VisDA-2021 under
Normal and Batch size=1 settings.

Method Normal Batch size = 1

Source 57.7 57.7
TENT [51] 60.1 60.1
SAR [38] 60.1 60.9
Ours 62.2 62.7

±0.2 ±0.5

underscores the efficacy of our proposed DCT method across a
diverse range of datasets.

Overall, our experimental results demonstrate the effectiveness
and robustness of our proposed DCT approach in handling complex
test conditions and outperforming state-of-the-art TTA methods
across multiple evaluation metrics. More experimental results are
provided in the Supplementary Materials.
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Figure 6: Representative examples of Attention Rollout [1] for the source model (3-rd row) and our adapted model (last row).

4.4 Visualization and Discussion

Table 7: Ablation study under Normal at the highest severity.
DC-generator represents the domain conditioner generator.

Methods Avg.

Baseline Method 63.6
+ Domain-conditioner w/o DC-generator 63.9

Our DCT Method 66.3

To explore the explainability of the domain-conditioned trans-
former, we visualize the attention map by Attention Rollout [1]
following ViT [6]. As shown in Figure 6, given the corruption im-
age, we can see that the adapted transformer attention focuses
more on the object than the source model. This demonstrates that
our Domain-Conditioned Transformer (DCT) method significantly
enhances the attention in the target domain.

Additionally, we performed an ablation study on the domain-
conditioner generator shown in Table 7. When solely integrating
learnable domain-conditioners into query, key, and value without
the domain-conditioner generator’s conditional generation based
on the class token, the average accuracy improved by 0.3%. In con-
trast, when adapting the domain-conditioner generator to generate
domain conditioners conditioned by the class token, we observed a
substantial improvement of 2.7%. It demonstrates the significant
contribution of the class token conditioned domain-conditioner
generator in enhancing the model’s performance.

We conduct parameter sensitivity analysis on the learning rates
for the domain-conditioner generator with the Normal setting in
ImageNet-C with ViT-B/16. As shown in Figure 7, we can see that
the performance is best when the learning rate of the domain-
conditioner generator is set to 0.01.

0.001 0.003 0.005 0.01 0.05
Learning Rate

60
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Figure 7: Sensitivity analyses for the learning rates of the
domain-conditioner generator.

5 CONCLUSION
Fully test-time adaptation is a challenging problem in computer
vision, particularly in the presence of complex corruptions and
shifts in the test data distribution. In this work, we have tackled the
critical challenge of adapting transformer-based models to new do-
mains, focusing on the significant deviation in self-attention profiles
encountered in the target domain compared to the source domain.
Specifically, we have introduced three domain-conditioning vectors,
called domain conditioners into the self-attention module. By inte-
grating these domain conditioners into the query, key, and value
components of the self-attention module, we have effectively miti-
gated the impact of domain shift observed during inference. The
dynamic generation of these domain conditioners at each trans-
former network layer, derived from the class token, allowed for
a gradual removal of domain shift effects, thereby enabling the
recovery of the original self-attention profile in the target domain.
Our experimental results demonstrated that our proposed DCT
method is able to significantly improve fully test-time adaptation
performance.
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