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In this Supplementary Materials, we provide more details and exper-
imental results for further understanding of the proposed Domain-
Conditioned Transformer method.

A SMOOTH OPTIMIZATION FOR
DOMAIN-CONDITIONED GENERATOR

We follow the baseline SAR method to perform the Sharpness-
Aware Minimization (SAM) for the Domain-Conditioned Trans-
former to get better robustness. From the perspective of generaliza-
tion and optimization, SAM not only minimizes individual points
within the loss landscape criterion but also consistently reduces
the loss in their surrounding neighborhoods. Contrary to the con-
ventional approach of exclusively optimizing the model weights
with low loss values, SAM seeks to identify smoother minima in
the weight space. These minima are characterized by uniformly
low loss L in the neighborhoods 𝜖 of model weights 𝜃 :

min
𝜃

max
| |𝜖 | | ≤𝜌

L(𝜃 + 𝜖 ;𝑥), (1)

where 𝜌 ≥ 0 is a hyper-parameter to define the scope of the neigh-
borhoods. To address thisminimax problem, SAM initially addresses
the maximization problem by seeking the maximum perturbation
𝜖𝑡 at training step 𝑡 . This inner maximization problem can be ap-
proximated using the first-order Taylor expansion of L(𝜃 + 𝜖;𝑥)
with respect to 𝜖 → 0 as follows:

𝜖𝑡 (𝜃 ) = argmax
| |𝜖 | | ≤𝜌

L(𝜃 + 𝜖 ;𝑥)

= argmax
| |𝜖 | | ≤𝜌

L(𝜃 ;𝑥) + 𝜖T∇𝜃L(𝜃 ;𝑥) + o(𝜖)

≈ argmax
| |𝜖 | | ≤𝜌

𝜖T∇𝜃L(𝜃 ;𝑥) .

(2)

The value 𝜖𝑡 (𝜃 ) that solves this approximation is given by the
solution to a classical dual norm problem:

𝜖𝑡 (𝜃 ) = 𝜌 · 𝑠𝑖𝑔𝑛(∇𝜃L(𝜃 ;𝑥)) |∇𝜃L(𝜃 ;𝑥) |𝑞−1

∥∇𝜃L(𝜃 ;𝑥)∥𝑞/𝑝𝑞

, (3)

where 1
𝑝 + 1

𝑞 = 1. It is empirically confirmed that the optimization
yields the best performance when 𝑝 = 2, resulting in 𝜖𝑡 formulated
as:

𝜖𝑡 (𝜃 ) = 𝜌
∇𝜃L(𝜃 ;𝑥)

| |∇𝜃L(𝜃 ;𝑥) | |2
. (4)

Then the gradient update for the model weights 𝜃𝑡 is computed as:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃L(𝜃 ;𝑥) |𝜃𝑡+𝜖𝑡 . (5)

Finally, SAM converges the model weights 𝜃 to a smooth minimum
with respect to the loss function L by iteratively updating equation
4 and equation 5.

B RUNNING TIME COMPARISONS
We provide a comprehensive comparison of running time costs
in Table 1. Our proposed DCT model introduces a slightly higher
computational overhead, approximately 13% slower than the SAR
method, but much faster than MEMO and DDA. This extra over-
head is mainly caused by the learning of the domain conditioner
generator. In the original SAR method, it only updates the layer
normalization parameters.

Table 1: Testing time cost comparison for Gaussian corrup-
tion of ImageNet-C under the single GPU NVIDIA RTX 3090.

Method Time Cost

TENT ∼ 5 min
SAR ∼ 7 min
MEMO ∼ 14 hours
DDA ∼ 5 days
Ours ∼ 8 min

C ADDITIONAL RESULTS ON IMAGENET-C
WITH SEVERITY LEVEL 3

We provide additional performance comparison results for corrup-
tion severity Level 3 with the Normal, Imbalanced label shifts, and
Batch size = 1 settings in Table 2, 3, and 4, respectively. The results
are consistent with those in the main paper for severity level 5.
We can see that our DCT method outperforms existing methods in
almost all 15 corruption types.

D ADDITIONAL RESULTS ON IMAGENET-C
WITH VIT-L/16 BACKBONE

We extend our experimentation to encompass a larger ViT-L/16
backbone, operating within the contexts of both Normal and Batch
size = 1 settings. For the Normal setting, the batch size is set to 32
due to limited memory. The learning rate of the domain-conditioner
generator is set to 0.001 and 0.0001 respectively. The results, as il-
lustrated in Table 5 and 6, consistently showcase the superiority of
our proposed DCT method over the baseline SAR in both config-
urations. This robust performance demonstrates the efficiency of
our proposed DCT method across diverse transformer backbones.

E ADDITIONAL RESULTS ON
DOMAINNET-126 DATASET

Additionally, we conducted experiments onDomainNet-126, awidely
used dataset in domain adaptation and domain generalization tasks.
Utilizing the same ViT-B/16 pre-trained model provided by timm,
we replace the classifier head and fine-tuned it for 100 epochs in
each domain as the source model. The results are summarized in
Table 7. Notably, our method surpasses the second-best approach
by 0.7% on average.
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Table 2: Classification Accuracy (%) for each corruption in ImageNet-C under Normal at the severity Level 3. The best result is
shown in bold.

Method gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

Source 72.1 71.5 71.3 62.3 51.1 69.1 59.1 69.0 60.0 70.1 80.1 74.0 75.1 77.6 75.2 69.2
DDA 62.6 63.1 62.3 50.2 54.2 50.9 43.3 41.0 41.9 14.8 60.6 26.0 62.2 62.6 62.8 50.6
TENT 74.3 73.9 73.6 70.8 66.6 73.7 66.9 73.2 68.7 76.0 81.6 78.9 78.5 79.7 77.1 74.2
SAR 74.3 73.9 73.7 70.9 66.5 73.8 66.9 73.1 68.7 75.8 81.8 78.9 78.5 79.8 77.1 74.2
Ours 74.7 74.6 74.4 71.3 69.6 74.4 70.1 74.8 71.6 78.1 81.9 79.6 79.3 80.1 78.7 75.5

±0.1 ±0.0 ±0.1 ±0.0 ±0.1 ±0.1 ±0.2 ±0.0 ±0.1 ±0.1 ±0.1 ±0.2 ±0.1 ±0.0 ±0.2 ±0.0

Table 3: Classification Accuracy (%) for each corruption in ImageNet-C under Imbalanced label shifts at the severity Level 3.

Method gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

Source 51.5 46.8 50.4 48.7 37.1 54.7 41.6 35.1 33.3 68.0 69.3 74.9 65.9 66.0 63.6 53.8
DDA 62.6 63.1 62.3 50.2 54.2 50.9 43.3 41.0 41.9 14.8 60.6 26.0 62.2 62.6 62.8 50.6
TENT 74.6 74.3 74.0 71.4 68.4 74.6 68.3 73.7 69.8 77.0 81.9 79.2 79.2 80.0 78.1 75.0
SAR 74.7 74.4 74.2 71.5 68.7 74.8 68.6 74.0 70.2 77.0 82.1 79.4 79.3 80.2 78.2 75.1
Ours 74.6 74.5 74.3 71.5 69.5 74.7 69.8 75.0 71.4 77.9 81.9 79.6 79.2 80.2 78.9 75.5

±0.2 ±0.1 ±0.1 ±0.1 ±0.2 ±0.0 ±0.2 ±0.1 ±0.1 ±0.3 ±0.1 ±0.1 ±0.2 ±0.1 ±0.1 ±0.1

Table 4: Classification Accuracy (%) for each corruption in ImageNet-C under Batch size=1 at the severity Level 3.

Method gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

Source 51.6 46.9 50.5 48.7 37.2 54.7 41.6 35.1 33.5 67.8 69.3 74.8 65.8 66.0 63.7 53.8
DDA 62.6 63.1 62.3 50.2 54.2 50.9 43.3 41.0 41.9 14.8 60.6 26.0 62.2 62.6 62.8 50.6
TENT 74.4 73.9 73.6 70.9 66.6 73.7 67.0 73.1 68.7 76.0 81.6 79.0 78.5 79.8 77.1 74.3
SAR 74.9 74.6 74.0 71.4 68.2 74.5 68.2 73.9 70.0 76.3 81.2 78.9 78.4 79.3 77.1 74.7
Ours 74.6 74.4 74.1 71.5 69.6 74.4 69.1 73.4 71.7 77.4 81.1 79.0 77.9 79.2 78.1 75.0

±0.1 ±0.3 ±0.2 ±0.2 ±0.2 ±0.3 ±0.3 ±0.2 ±0.1 ±0.5 ±0.2 ±0.2 ±0.3 ±0.1 ±0.2 ±0.0

Table 5: Classification Accuracy (%) in ImageNet-C with ViT-L/16 under Normal at the highest severity (Level 5).

Method gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

Source 62.1 61.4 62.3 52.7 45.1 60.6 55.1 66.2 62.4 62.5 80.2 39.8 56.2 74.3 72.7 60.9
TENT 65.6 68.3 67.6 63.4 59.9 66.8 60.7 69.0 68.5 67.4 81.0 28.9 64.7 77.2 74.7 65.6
SAR 66.0 66.6 66.2 61.3 55.1 66.1 58.3 68.4 65.7 66.3 81.0 26.8 63.7 74.5 73.6 64.0
Ours 67.1 68.2 66.9 64.0 62.4 66.7 64.1 71.1 69.1 70.4 81.3 65.3 69.7 77.6 75.5 69.3

±0.7 ±0.4 ±0.9 ±1.0 ±1.3 ±0.5 ±0.5 ±0.9 ±0.5 ±0.7 ±0.1 ±0.6 ±1.9 ±0.1 ±0.5 ±0.3

Table 6: Classification Accuracy (%) in ImageNet-C with ViT-L/16 under Batch size = 1 at the highest severity (Level 5).

Method gaus shot impul defcs gls mtn zm snw frst fg brt cnt els px jpg Avg.

Source 62.1 61.4 62.3 52.7 45.1 60.6 55.1 66.2 62.4 62.5 80.2 39.8 56.2 74.3 72.7 60.9
TENT 55.2 67.8 67.8 43.5 59.6 66.9 62.8 69.9 67.4 68.3 81.4 31.4 64.7 77.4 73.0 63.8
SAR 67.9 64.5 67.7 63.0 61.6 63.7 62.4 70.4 67.6 68.7 75.7 60.2 55.5 76.4 74.7 66.7
Ours 67.5 69.2 67.9 64.6 64.5 68.5 65.7 71.0 68.8 71.6 80.6 65.0 71.2 76.5 75.3 69.9

±0.3 ±0.2 ±0.0 ±0.6 ±0.9 ±0.1 ±1.6 ±0.5 ±0.7 ±0.0 ±0.1 ±0.4 ±1.7 ±0.2 ±0.7 ±0.3
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Table 7: Classification Accuracy (%) for test-time adaptation of all transfer tasks in DomainNet-126 dataset.

Method C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Avg.

Source 71.7 84.0 69.2 72.0 85.6 61.0 60.5 65.1 48.4 72.6 72.7 82.9 70.5
TENT 71.9 83.8 69.1 72.3 85.4 52.0 60.7 65.3 47.2 74.5 69.2 82.3 69.5
SAR 71.7 83.5 69.2 72.1 85.2 60.2 60.9 65.8 49.3 74.6 72.4 82.5 70.6
Ours 72.6 82.8 71.5 74.4 85.7 49.5 70.9 72.3 57.0 72.3 65.1 81.1 71.3

±0.6 ±0.3 ±0.1 ±0.3 ±0.7 ±1.7 ±0.5 ±0.2 ±0.5 ±0.7 ±1.0 ±0.2 ±0.3
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