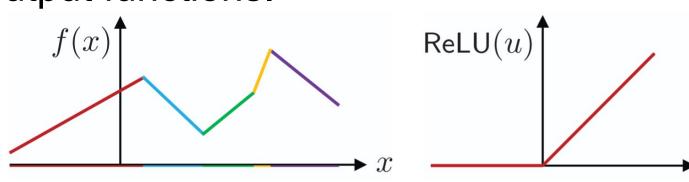
On the geometry of recurrent spiking networks

Josue Casco-Rodriguez

Rice University Electrical and Computer Engineering

Background

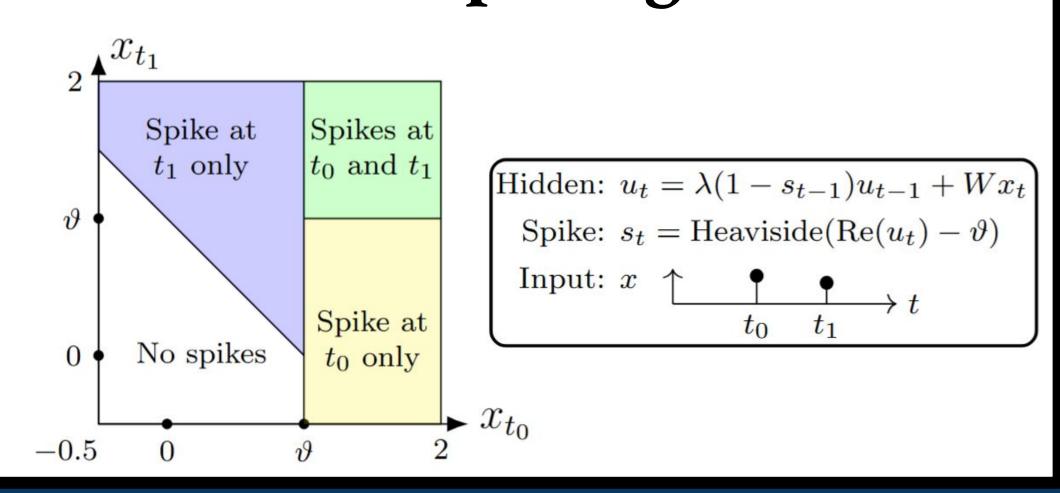
ReLU networks are continuous piecewise-linear (CPWL) input-output functions.



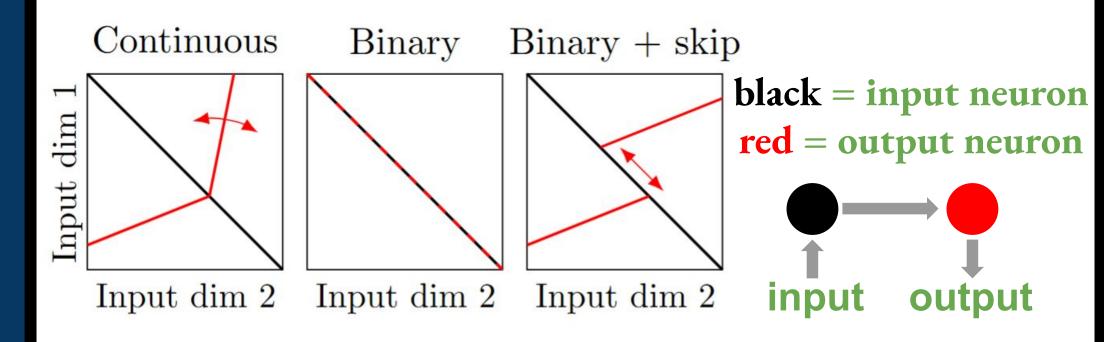
- CPWL theory can explain robustness and normalization.
- Other works have analyzed spiking networks (SNNs) as piecewise functions either:
 - o in hidden space (Machens lab), or
 - in spike-timing space, assuming each neuron spikes exactly once (Kutyniok lab), or
 - o in *input* space (like us), but focusing on theoretical bounds of representational power instead of guiding empirical practice (Nguyen, Araya, Fono, and Kutyniok, 2025).
- SNNs are hard to train because it is unclear how best to apply traditional deep learning theory.

How do SNN design parameters affect unrolled input-output CPWL geometry?

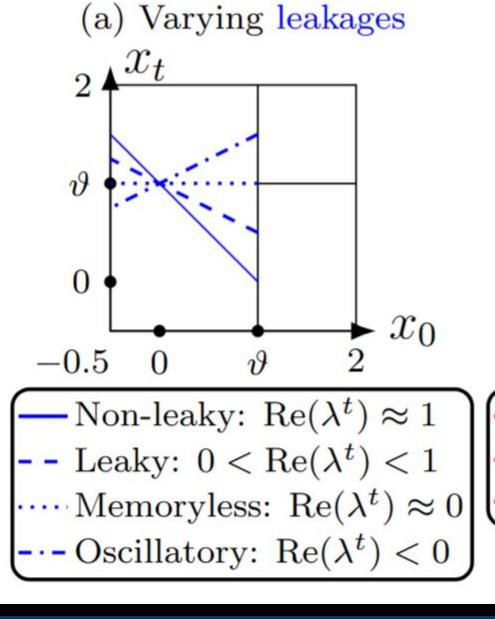
Piecewise spiking neuron

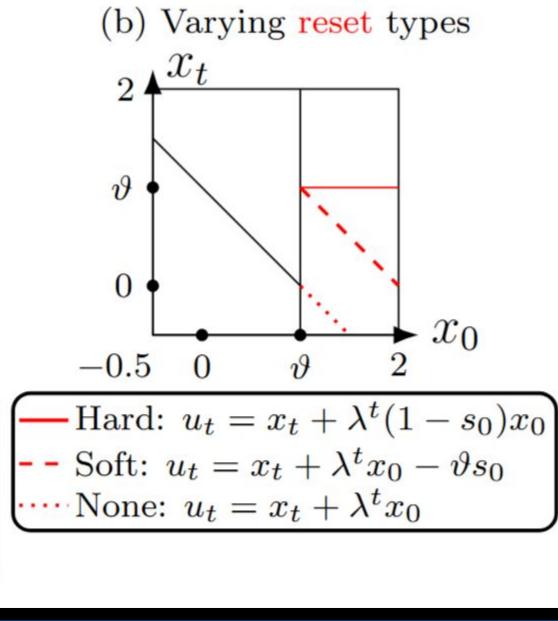


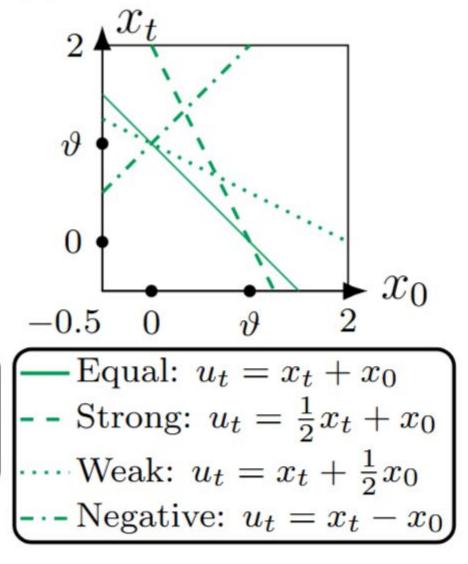
Skip connections are crucial for spiking networks



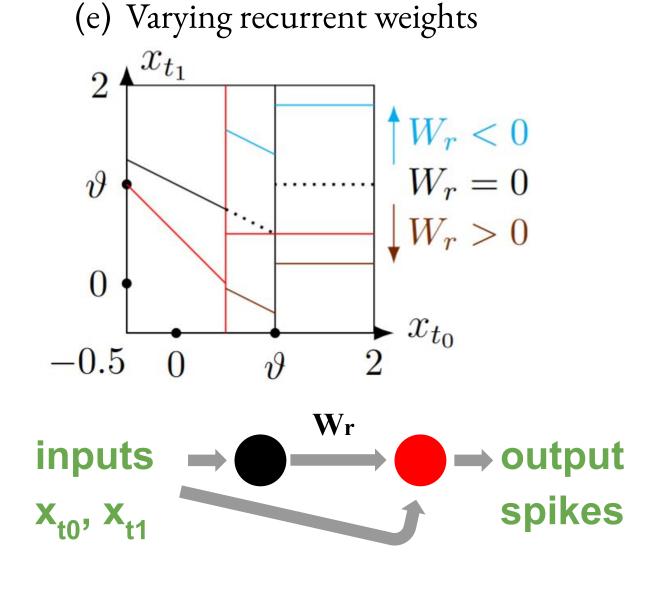
Many params define boundaries, recurrent weights shift them



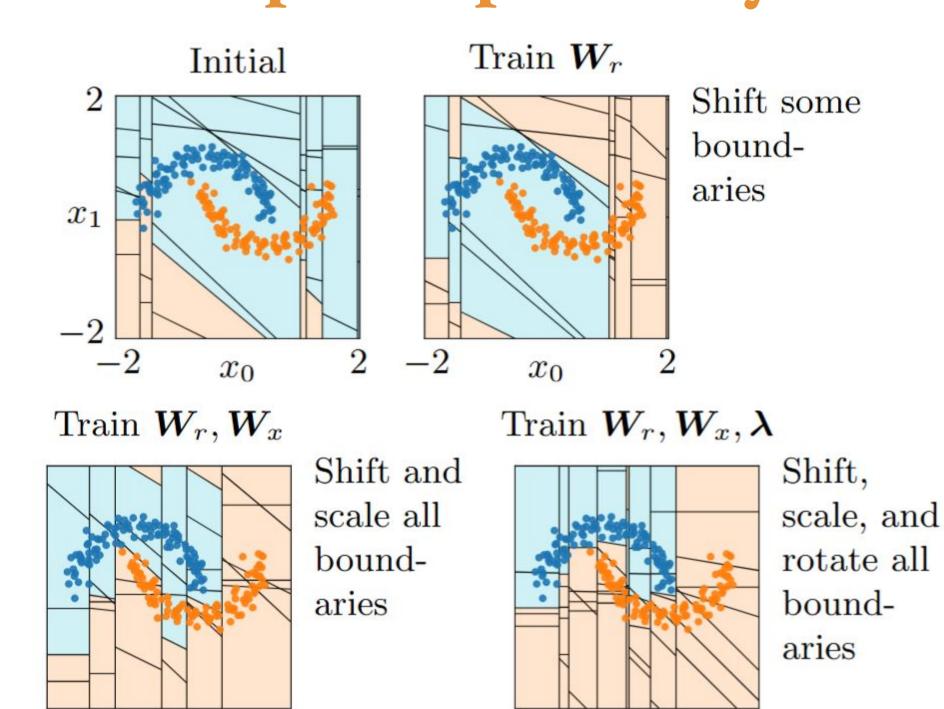




(c) Varying delay strengths



Exact geometry visualization to probe plasticity



 x_0

Summary + Future Work

We study SNNs as piecewise input-output functions, and devise a new algorithm to visualize them as such. We show that skip connections, delays, and leakages majorly influence their geometry, suggesting future plasticity methods should focus on them.

Future Work:

- Expand visualization algorithm to incorporate complex leakages (resonators) and skip connections
- Quantify input-output geometry complexity vs plasticity:
 - Normalization should align geometry around inputs
 - Membrane regularization may also align geometry around inputs, like normalization
 - STDP may reduce geometric complexity around inputs, inducing robustness / generalization
- ??? (your name here!)