
Under review as a conference paper at ICLR 2022

A DEFINITIONS

We borrow and adapt existing definitions of Pareto optimality from Marler & Arora (2004).

Strong Pareto Optimal: A point x̃
⇤ is strong Pareto optimal if there does not exist another xj 2 X ,

s.t. fp(xj)  fp(x⇤) for all functions fp and fl(xj) < fl(x⇤) for at least one function fl:

@xj : fp(xj)  fp(x
⇤), for p = 1, 2, . . . , k 9l : fl(xj) < fl(x

⇤) (6)

In other words, no point exists that improves at least one objective without detriment to other
objectives.

Weak Pareto Optimal: A point x̃
⇤ is weak Pareto optimal if no other point exists that improves all

of the objectives simultaneously.

@xj : fp(xj) < fp(x̃
⇤), for p = 1, 2, . . . , k (7)

This is different from strong Pareto, where points might exist which improves at least one objective at
no detriment to others.

Dominated and Non-Dominated Points: Dominated points are defined w.r.t. the objective functions.
The objective function vector F (x⇤) is non-dominated (strong) iff no other vector F (x) exists s.t.
F (x)  F (x⇤) with at least one fp(x) < fp(x⇤). The vector F (x⇤) is considered dominated (weak)
otherwise.

f1

f2
Feasible Set

Pareto Front
Pareto Optimal

(a) Continuous
f1

f2 Feasible Set

Weak Pareto
Strong Pareto

(b) Discontinuous
Figure 7: Pareto optimal set under different
objectives. Note that the red line corresponds to
the min-min strong Pareto optimal front for both
problems and the dashed line corresponds to the
weak Pareto Front for the entire feasible set.

Fig. 7 shows two MOOs for two competing functions.
The feasible set of points are shown as gray shaded
area with the Pareto boundary shown as dashed lines.
For both problems, a joint minimization problem is
considered, resulting in a Pareto optimal set (red curves)
facing the origin. A different Pareto boundary can be
obtained if a joint-maximization or a mixed min-max
problem is considered. For Fig. 7 (a), all marked points
form the strong or non-dominated set. For Fig. 7 (b),
a strong Pareto optimal (non-dominated) solution set
from a non-convex weak or dominated Pareto front can
result in a discontinuous manifold.

B THE NECESSITY OF FRITZ-JOHN CONDITIONS (FJC) AND MISSTATED
INFERENCES ON LINEAR SCALARIZATION

Consider a simple problem with two psuedo-convex, Gaussian functions in a variable domain x 2 Rn:

f1(x1, . . . , xn) = 1 � exp(�[(x1 � 1/

p
(n))2 + . . . + (xn � 1/

p
(n))2])

f2(x1, . . . , xn) = 1 � exp(�[(x1 + 1/

p
(n))2 + . . . + (xn + 1/

p
(n))2])

s.t. g1, . . . , gn : �1/
p

n  gi  1/
p

n, 8i 2 [1, n]

For ease of visualization we consider n = 1 where the inferences can be extended to higher
dimensional variable domain by increasing n. The MOO problem then reads:

min
x

~F (x) = (f1(x), f2(x)) s.t. � 1  x  1, x 2 R

However, the MOO problem is not directly solvable since an optimization approach requires a scalar
objective function as opposed to the vector objective ~F (x). A linear scalarized function composed of
the two original objectives f1(x) and f2(x) weighted by ↵ can then be written as:

S(↵, x) = ↵f1(x) + (1 � ↵)f2(x).

Before we delve into the Pareto manifold, let us take a moment to discuss the surface geometry of this
scalarized function S(↵, X). Fig. 8 (a) shows the surface geometry of S(↵, x) where one can easily
see that the function S(↵, x) has three stationary points w.r.t. to an optimization problem (gradient

13

Under review as a conference paper at ICLR 2022

vector is identically zero): (1) minimum at x = �1 and ↵ = 0, (2) minimum at x = 1 and ↵ = 1,
and (3) a saddle point at x = 0 and ↵ = 0.5.

Now if we solve, min
↵,x

S(↵, x) we can find either of the two minima of S(↵, x) noted above using

different initializations. On the other hand if we solve: min
x

max
↵

S(↵, x) we will arrive at the
aforementioned saddle point of S(↵, x). However, the Pareto manifold is the entire red curve in
shown in Fig. 8 (a) and solving the above two problems can lead us to only three points in the Pareto
optimal solution set. Fig. 8 (b) shows the Pareto optimal solution set (blue curve) in a functional
domain with the red dots on the blue curve indicating the three stationary points of S(↵, x). One can
easily verify that the gradient vector r↵,xS(↵, x) is not identically zero at any other point on the red
curve in Fig. 8 (a) apart from the three aforementioned stationary points.
Remark. Any optimization solver that relies upon gradient of S(↵, x) can only converge to the
stationary points of S(↵, x) where the gradient becomes identically zero or the set of points
{(↵, x)|r↵,xS(↵, x) = 0}. Therefore expecting that a modified optimization over linear scalarized
function S(↵, x) will retrieve the entire Pareto set is not correct.

What if we partitioned the domain (cone, bins, rays etc.) into sub-domains and searched lo-
cally? Consider the bin ↵ 2 [0.1, 0.4] 8x, with the Pareto optimal solution manifold restricted to
that block in Figs. 8 (a) (red curve) and (b) (blue curve). The issue still remains unchanged: for any
optimization problem on S(↵, x) restricted to the above bin (or chunk) there is no point (↵, x) where
the gradient vector is identically zero (stationary point). Therefore no optimization approach with
S(↵, x) objective can converge to the Pareto manifold in this region. Note that for an optimization
solver to converge to a user-prescribed tolerance the norm of the gradient vector must fall below this
tolerance. So while MTL methods (Sener & Koltun, 2018; Lin et al., 2019b; Mahapatra & Rajan,
2020; Navon et al., 2021) rely upon min-norm solver, the Pareto optimal solution set consists of
points where any norm over gradient vector at these points will not be zero.

So how can we converge at the Pareto optimal solution points that are not the stationary points
of S(↵, x)? The answer is Fritz-John conditions (FJC) written in the determinant form that results in
a different scalar function D(x) = det(LT

L) where the set of points P = {x|D(x) = 0} overlaps
the Pareto optimal set. As mentioned before, the P might still contain dominated points and therefore
a filter might be necessary, subjective to the problem at hand, to obtain the Pareto optimal set.

(a) SOO surface (blue mesh) and weak
Pareto manifold (red curve).

(b) Weak Pareto manifold (blue curve) and
stationary points of the SOO problem.

Figure 8: Pareto surface for the Gaussian benchmark case. (a) MOO saddle point trajectory of the problem
showing strong attractors at x = ±1 for ↵ = 0, 1 respectively. (b) Pareto points produced by Linear Scalarization
collapses to the individual minima for f1, f2 for 10 different runs. While the extreme red points are the solution
of the min

x,↵
S(↵, x), the red point in the middle is the saddle point solution of max

↵
min

x
S(↵, x).

Remark. The claim made in MTL works Lin et al. (2019a) (Section 5: Synthetic Example), Mahapa-
tra & Rajan (2020) (Section 3.2: Limitations of current methods), Navon et al. (2021) (Section 2:
Multi-objective optimization) is: if the Pareto front is non-convex, LS would always fail, wherein a
reference to Boyd et al. (2004) is given for proof. However, it is not clear as to which proof in Boyd
et al. (2004) is being referred to.

Although the two functions are psuedo-convex, the Pareto front in the functional domain is non-
convex. Here, optimization of an LS objective fails to find the complete Pareto set as shown in Fig. 8

14

Under review as a conference paper at ICLR 2022

(a) (red curve). Contrary to the claims made in MTL works that the non-convex nature of the front
is responsible for the failure of LS, we show the stationary points (minima, maxima, saddle points)
of an LS objective are only a subset of the Pareto optimal set. Note that a minimization problem on
the linearly scalarized function: S : ↵f1(x) + (1 � ↵)f2(x) in Fig. 8 (a) can only return the two
minima located at (x = �1, ↵ = 0) and (x = 1, ↵ = 1). Therefore, it is incorrect to state that LS
itself fails if the Pareto front is non-convex as mentioned in Lin et al. (2019a); Mahapatra & Rajan
(2020); Navon et al. (2021). LS is guaranteed to produce an even spread of points only when the
functions and constraints are convex in the variable domain.

(a) ↵ = 0 (b) ↵ = 0.25 (c) ↵ = 0.5
Figure 9: Slices of S(↵, x) surface along ↵. Depending on ↵, the linear scalarized SOO problem always has
two minima either at x = �1, 1 or both. LS works as intended in this scenario converging to these minima. The
non-convexity of the front is not responsible for LS to stick at ⇡ ±1 in Fig. 8.

Fig. 9 presents a different perspective of this linear scalarized SOO problem. Instead of optimizing
S(↵, x) over (↵, x), consider slices of S(↵i, x where i is the slice index along the ↵ dimension. If we
now gather the optima (maxima/minima) along each ↵ slice we can extract the entire Pareto solution
set using LS where the number of Pareto optimal points are equal to the number of slices. Why
do we have stationary points at the Pareto front now? Restricted to an ↵ value, S(↵ = 0.5, x)
becomes a function of x only and now the gradient of the function S(0.5, x) at x = 0 is zero. In
other words, x = 0 is a stationary point (local maximum) of the function S(↵ = 0.5, x).

C ANALYSIS OF HNPF vs. OR AND MTL METHODS

MTL methods rely on LS and domain decomposition to compute the Pareto set, with the utopia/ideal
point to serve as reference point for their respective solver to work. A cone-dividing or ray-tracing
approach will have increasing difficulty in extracting the entire front as: i) the number of functions
increase; and ii) the number of extracted Pareto points increases. HNPF explicitly uses a FJC guided
discriminator to find the Pareto set, without relying upon an ideal/utopia point. The FJC discriminator
identifies all points where at least one gradient of the multiple objectives is zero as a potential Pareto
optimal candidate. HNPF therefore finds all four fronts (max-max, min-max, min-min and max-min),
given they exist within the feasible domain H. Existing OR and MTL methods can only solve for
either one these four sub-problems (max-max, min-max, min-min and max-min) since they need
the domain decomposition and solution trajectory w.r.t. the reference point for each of the four
sub-problems.

Figure 10: HNPF’s weak Pareto set.

To illustrate this claim, we consider two functions f1 and f2

and three constraints g1, g2, g3, that jointly define a Pareto front.
Note that although the functions f1, f2 themselves are non-
competing, the non-convex constraint g1 defines the Pareto set,
hence the unique circular front. The feasible set H is defined by
constraints g2, g3 serving as bounding box. Jointly optimize:

f1(x1, x2) = x1, f2(x1, x2) = x2

s.t. g1(x1, x2) : (x1 � 0.0)2 + (x2 � 0.0)2  1.0

g2, g3 : �1  x1, x2  1

Fig. 10 shows the HNPF extracted weak Pareto set where the first, second, third and fourth quadrant
represents the max-max, min-max, min-min and max-min Pareto sets. Note that without any reliance
on the reference point, HNPF has the capacity to optimize the MOO problem and extract the entire

15

Under review as a conference paper at ICLR 2022

weak Pareto front. Now depending on the user requirement, one can apply the Pareto filter to extract
the set corresponding to any one of the sub-problems. Any OR or MTL (if the MTL method can
support constraints) methods can only recover one quadrant of the entire front due to their design and
dependence on the reference point.

D DIFFERENCE BETWEEN HNPF vs. PHN

HNPF (Stage-1) extracts the weak Pareto manifold as an n-dimensional diffusive indicator function
as opposed to a (n� 1)-dimensional manifold itself, where the regressed manifold is not only guided
by the weak Pareto points (indicator value 1) but also the sub-optimal points (indicator value 0) for a
more robust and accurate extraction. Please refer to illustrations in Section 5 and Appendix I.

In comparison, PHN (Navon et al., 2021) uses a neural network to regress over the (n�1)-dimensional
manifold in the variable domain directly, given solution points obtained from EPO or LS. However:

i) Neither EPO nor LS are guaranteed to work for non-convex scenarios. Readers are referred to
Section 5 and Table 2 for correctness and applicability of EPO on different benchmark cases.

Figure 11: PHN Results on
a Hypothetical correct dis-
connected strong Pareto set.

ii) If the non-dominated Pareto set is discontinuous, then PHN will
wrongly identify non-Pareto points as Pareto optimal. Consider Fig.
11 where neither LS or EPO works. Even if we provided the true dis-
continuous strong Pareto set for PHN to regress over the resulting n � 1
dimensional manifold will be smooth wrongly indicating that Pareto
points exist in the regions marked by red circles. Since HNPF learns a
manifold with support on an n-dimensional variable domain as a diffusive
indicator by using both the Pareto and non-Pareto point, followed by a
Pareto Filter, this situation never arises (see Fig. 5.4).

iii) Even when the Pareto optimal set is a continuous manifold, PHN
inherently assumes that the point spread obtained from EPO or LS is
uniformly distributed over the true manifold for the neural regressor to
not overfit. Please refer to Case II (Fig. 5.3) where, for all the regions EPO fails (converges to
sub-optimal points), PHN learns the wrong manifold and generates sub-optimal points.

iv) If the manifold is an implicit surface in the functional domain, a direct regression using a neural
network is not feasible. See Fig. 3 where the weak Pareto front is self intersecting implicit surface.

E ISSUE WITH PARETO FRAMING OF MTL NETWORKS

Sener & Koltun (2018) used LeNet for Multi-MNIST classification. All successive MTL methods
use this setup for demonstrating their ability to find the Pareto points of this MOO problem. However,
there are two issues with this setup from a Pareto framing point of view that have not been justified.

Figure 12: Modified LeNet architecture used in MTL works.

i) Finding Pareto points between spaces with partially shared variable domain: Consider the
scenario in Fig. 13, which is applicable for Fig. 12 or any MTL framework presented in Sener &
Koltun (2018). Let ✓sh 2 Rc be the weights of the shared layer, and ✓t1 2 Rd, ✓t2 2 Rd be the
weights of the task specific layers respectively. Finding Pareto optimality over the shared weights
✓sh results in two competing objectives to trade-off. However, Pareto optimality over (✓sh, ✓t1) and
(✓sh, ✓t2) where ✓t1 and ✓t2 are independent of each other is still equivalent to competing over the
shared variable domain ✓sh only. It is well know that introducing additional weights (✓t1 and ✓t2)
increases the expressive power of a neural network (Csáji et al., 2001). However, this modified
network cannot be compared with the original shared only network since each of the task-specific

16

Under review as a conference paper at ICLR 2022

(independent) weights can now be learned without detrimentally affecting the other (no-competition
or trade-off). Hence the network can achieve better values of objectives (notice the MTL objective
values exceeding that of the individual SOO values in Fig. 14).

Figure 13: MTL Framework containing a shared weights ✓sh and task-specific weights ✓t1 and ✓t2.

ii) MOO value exceeding individual SOO value: We elaborate on the incompleteness and often
wrong inferences, violating Pareto definitions on practical datasets for MTL methods. Fig. 14 shows
obtained results (figures borrowed from Navon et al. (2021) and Lin et al. (2019a)) from MTL
methods on Multi-Mnist (Deng, 2012) and Multi-FashionMnist (Xiao et al., 2017) datasets. Given
two functions f1, f2 and user trade-off ↵, the scalarized SOO problem is: S = ↵f1 + (1 � ↵)f2.
LS would simply try to solve this optimization problem for different prescribed ↵’s using gradient
descent and converge to some global/local optima. Nonetheless, it is still solving F , the extremum of
which are bounded in turn by the best achievable f1 and f2 respectively.

(a) Results reported in Navon et al. (2021) (b) Results reported in Lin et al. (2019a)
Figure 14: Inference of MTL methods on practical datasets. For all four graphs, even in a competing setting,
MTL methods are able to find solution points that exceed the best possible single objective results obtained.

Remark. Under a competing setting, all solutions of the SOO problem S : ↵f1 + (1 � ↵)f2 for
values of ↵ 2 (0, 1) is bounded by f1(↵ = 1) and f2(↵ = 0) respectively. If any solution exceeds f1

or f2, the only implication is that the functions are not competing, rather helping each other in the
joint setting, which is not the Pareto problem.

For Fig. 14 (a), the vertical and horizontal dashed lines represent the best obtained single objective
value (i.e. solving for f1 and f2 independently, corresponding to the MOO setting for ↵ = 0/1).
Similarly, for Fig. 14 (b) the vertical and horizontal turquoise lines represent the best obtained single
objective value. While Fig. 14 (a) considers minimizing the classification loss value, Fig. 14 (b)
considers maximizing the classification accuracy on the Multi-Mnist and Multi-FashionMnist datasets
respectively. The reader is directed to the Pareto solution points for MTL approaches, where in a
competing setting due to the alteration of the LeNet network itself, their MOO solution achieves
better functional value than the respective single objective optima.

Furthermore, all the MTL solvers are claimed to be correct. An inference of correctness of two Pareto
solver is that the front produced by both would be the same irrespective of the density of Pareto points
produced by each. Fig. 14 violates the proposed correctness claims by producing multiple fronts for
a given dataset and objectives. A practitioner’s tendency is to solve their practical problem, if tools do
exists in literature. As such it is the duty of the tool developer to necessitate caution if such tool was
developed under a convex setting, but being applied to a practical non-convex problem. Deviation
from convexity will result in spurious results and any inferences made on them will be erroneous.
When these problems are of significant societal consequence, extreme caution is warranted.

F ERROR BOUND

For a user-specified relaxation margin 0  ✏  1, the approximation error between the network
extracted manifold M̃(X̃) and the true solution M(X⇤) is bounded below by kM̃(X̃)�M(X⇤)k2 

✏. Assuming the L matrix from Eq. 4 is square, we have det(L) = 0 (see Appendix G for
equivalence). From Leibnitz formula for determinants:

det(L) = det

⇣
rF rG

0 G

�⌘
= det(rF)det(G) = 0

17

Under review as a conference paper at ICLR 2022

Further assume that,
|det(L(x̃))|  ✏, x̃ 6= x

⇤ (8)
where ✏ > 0, and x

⇤ and x̃ are the optimal points and the network generated approximate solution
points, respectively. The Fritz John necessary conditions in Eq. 2 for weak Pareto optimality is:

det(L(x⇤)) = 0 (9)
Combining the assumption in Eq. 8 and Eq. 9, we have

|det(L(x̃)) � det(L(x⇤))|  ✏ (10)
The weak Pareto optimal solution manifold is given by M(X) = det(L(X)) = 0. Assume an
approximate manifold M(X̃) such that:

kM(X̃) � M(X⇤)k2  ✏ (11)

When the network converges, Eq. 11 will hold for the network approximated M̃(X̃). Here, x̃ 2 X̃ =
{x|M̃(X̃)  ✏} and X

⇤ is the set of true optimal points such that M(x⇤) = 0, 8x 2 X
⇤. Since we

explicitly specify ✏ in our loss, we know that the network generated solution is ✏ close to M(X̃) if:

kM(X̃) � M̃(X̃)k2  C✏, 0  C  1 (12)
Eq. 12 implies that if we are able to find such a C, then we implicitly satisfy Eq. 11. Hence,

kM̃(X̃) � M(X⇤)k2  ✏ (13)

G EQUIVALENCE OF det(L) = 0 AND det(LTL) = 0

The det(L) matrix defined in Eq. 4 is given by:

L =


rF rG

0 G

�

To achieve det(L) = 0 requires that either:

1. rF (x) = 0: atleast one objective function has reached its optimum (local/global minima/maxima
under a min/max setting); and / or

2. G(x) = 0: at least one constraint is satisfied.

This criteria is only applicable for square systems. However, for practical problems, the system might
become non-square, hence we need to satisfy det(LT

L) = 0 following Eq. 5. One might think that
it’s a different optimization problem. However mathematically satisfying det(L) = 0 is equivalent to
satisfying det(LT

L) = 0 and we provide the derivation of it.

det(LT
L) =


rF

T
0

rG
T

G
T

� 
rF rG

0 G

�

=


rF

T
rF rF

T
rG

rG
T
rF rG

T
rG + G

T
G

�
(14)

We now observe Eq. 14 for the two cases prescribed above and see if det(LT
L) evaluates to zero or

not. For Case 1, where rF = 0, Eq. 14 reduces to:

det(LT
L) =


0 0rG

rG
T
0 rG

T
rG + G

T
G

�

which is low-rank since row 1 equates to 0. For Case 2, where G = 0, Eq. 14 reduces to:

det(LT
L) =


rF

T
rF rF

T
rG

rG
T
rF rG

T
rG + 0

�

= rF
T
rG

T


rF rG

rF rG

�

which is low-rank again because row 1 and row 2 are equal. Hence proven that satisfying det(L) = 0
is equivalent to satisfying det(LT

L) = 0.

18

Under review as a conference paper at ICLR 2022

H MODELER INTERPRETABILITY

Motivated by Lipton (2018)’s definitions of model interpretability and trust, we adopt the persona of a
modeler in assessing the interpretability of our model. In all of the problems above, the approximate
manifold M̃ is described by the user specified loss function. If a domain specific analytical solution
(M(X⇤) = 0) is known, then the approximate network generated solution set (M̃(X̃)  ✏) can
be verified by comparing X̃ and X

⇤. Additionally, a domain-specific modeler can also compare
the approximate manifold M̃ (Fig. 15 for Case III), at the last layer of the network, against the
true manifold M known from the analytical form. If the modeler is able to verify that the network
classifies the correct (truly Pareto optimal) data points in the variable space as being Pareto optimal
(high probability value), the trust in the network’s working is established.

Figure 15: Classification boundary of weak Pareto points for Case III. The final layer assigns a
probability score to each point in the variable space as being Pareto optimal or not. A modeler needs
to examine the produced points/manifold against the known analytical form in the variable domain to
verify the correctness of the network’s working.

I ADDITIONAL BENCHMARKS

I.1 CASE I: (n = 2, k = 2, m = 2)

Fig. 16 shows the HNPF extracted Pareto front in both functional and variable domain.

(a) HNPF Function Space (b) HNPF Variable Space
Figure 16: Pareto Front for Case I. Since the functions and constraints are convex, all OR and MTL
methods work here, producing Pareto points with varying density.

I.2 CASE V: CONVEX OBJECTIVES, NON-CONVEX CONSTRAINT (n = 3, k = 3, m = 4)

This problem was proposed in Ghane-Kanafi & Khorram (2015). Jointly minimize

f1(x1, x2, x3) = x1, f2(x1, x2, x3) = x2, f3(x1, x2, x3) = x3

s.t. g1(x1, x2, x3) : (x1 � 1)2 + (x2 � 1)2 + (x3 � 1)2  1.0

g2, g3, g4 : x1, x2, x3 � 0

This form is convex in f1, f2, f3 but the non-convex constraint in g1 forces the Pareto front to be
non-convex. The result using our HNPF method, as shown in Fig. 17, is in good agreement with
mCHIM method but with a significantly higher point density.

19

Under review as a conference paper at ICLR 2022

(a) HNPF Function Space (b) mCHIM
Figure 17: Pareto Front for Case V. The axis orientation in anti-clockwise order are a) HNPF
f3, f2, f1, and (b) mCHIM f3, f1, f2 respectively.

I.3 CASE VI: N=2, K=2, M=5

This form is an extension of Case III, with an additional max boundary constraint g3. PK computes
the true Pareto front with limited density n = 40 points. Fig. 18 (a) shows the weak Pareto front with
dominated points. As before, after post-processing with the proposed Pareto filter we arrive at the
Pareto set with non-dominated points shown in Fig. 18 (b).

This problem was proposed in Dutta & Kaya (2011). Jointly minimize
f1(x1, x2) = x1

f2(x1, x2) = x2

s.t. g1(x1, x2) = (x1 � 0.5)2 + (x2 � 0.5)2  0.5

g2(x1, x2) = x
2
1 + x

2
2 � 1 � 0.1 cos(16 arctan(

x1

x2
)) � 0

g3(x1, x2) = max(|x1 � 0.6|, |x2 � 0.7|) � 0.2 � 0

g4, g5 : 0  x1, x2  ⇡

(a) Dominated (b) Non-Dominated (c) PK
Figure 18: Pareto Front for Case VI. (a) HNPF weak front in function space. (b) All dominated points are
removed from the set after application of Pareto filter. PK generates points with low density. Note that PK is not
able to remove some of the dominated points on the weak front (red circled).

I.4 CASE VII: N=30, K=2, M=30

This problem was proposed in Pirouz & Khorram (2016), albeit with a discrepancy3. Jointly minimize
f1(x) = x1

f2(x) = f(x)

1 �

✓
f1(x)

f(x)

◆0.5

�
f1(x)

f(x)
sin(10⇡x1)

!

s.t. f(x) = 1 +
9

m � 1

nX

i=2

x
2
i

g1, . . . , g30 : x1 2 [0, 1], xi 2 [�1, 1], 8i = 2, . . . , m

3Although the normalization term proposed in f(x) is m � 1, it does not generate the curve reported in
Pirouz & Khorram (2016). We were able to replicate the shown curve, in our experiments, by choosing a
normalizing constant of 10000.

20

Under review as a conference paper at ICLR 2022

(a) Non Dominated (b) PK
Figure 19: Pareto Front for Case VII. (b) Non-dominated point set where all the dominated points are removed
from the set after application of Pareto filter. Also note the low density of points in PK.

This form is convex in f1 and non-convex in f2. The dimension of the design variable space is
m = 30. The corresponding Pareto front is non-convex. The results using our method, as shown in
Fig. 19, are in good agreement with PK methos. Even in this high-dimensional setting, we obtain a
weak Pareto front with high point density as shown in Fig. 19 (a). The distribution of the objective
space in this setting is such that the entire space is the front itself. Hence, we cannot see the cyan
points in Fig. 19 (a). As before, after post-processing with the proposed Pareto filter we arrive at the
Pareto set with non-dominated points shown in Fig. 19 (b).

J IMPLEMENTATION DETAILS

J.1 SETUP

Experiments use a Nvidia 2060 RTX Super 8GB GPU, Intel Core i7-9700F 3.0GHz 8-core CPU
and 16GB DDR4 memory. We use the Keras (Chollet, 2015) library on a Tensorflow 2.0 backend
with Python 3.7 to train the networks in this paper. For optimization, we use AdaMax (Kingma &
Ba, 2014) with parameters (lr=0.001) and 1000 steps per epoch. Stage-1 of HNPF is a feed-forward
dense neural network: three layers of dense connections with eight neurons each and tanh activation.

J.2 ERROR TOLERANCE

A strength of HNPF is that all network weights can be initialized randomly, yet it would arrive at the
same solution every run. Since the data domain is discrete, an exact zero might not be achievable. We
therefore use a slightly relaxed criterion of ✏ = 0.0005 as the classification margin. Any point below
this value will be classified as weak Pareto. For all results, the extracted Pareto set M̃(X̃) (shaded
red) overlaps the true Pareto set M(X⇤) with an ✏ spread.

Due to stochastic variation, neural network studies often report variance across several runs. However,
the only approximation errors with HNPF lie in the extracted manifold over runs. Since the true
manifold M(X⇤) remains constant across runs, the loss itself is the approximation error of the
deviation of the extracted manifold M̃(X̃) with a minimum achievable value of 0 at machine
precision. We therefore do not report mean-variance across runs. Additional ablation studies on
nature of the extracted front w.r.t. network size, choice of ✏ and training density are elaborated in
Appendix K. Please refer to Appendix L for the training and validation loss profiles.

K ABLATION STUDY

K.1 EFFECT OF RELAXATION PARAMETER ✏

As mentioned before, since the data domain is discrete, as ✏ ! 0 in Eq. 5, the number of solution
points decreases, as expected. Fig. 20 shows the variation in the density of front w.r.t. the user chosen
✏. Higher the value of ✏, more relaxed is the weak Pareto classification margin, hence the density of
points within that margin increases linearly with increasing ✏. This effect corroborates our presented
error bounds between the true Pareto manifold M(X⇤) (0  x1  1, x2 = 0 in this case) vs. the
neural network approximated manifold M̃(X̃).

21

Under review as a conference paper at ICLR 2022

(a) ✏ = 0 (b) ✏ = 0.00005 (c) ✏ = 0.005
Figure 20: Pareto Front for Case II under different choice of ✏. As the value of ✏ increases, we get an
increase in the point density along the true Pareto manifold within an ✏ margin.

K.2 EFFECT OF TRAINING DATA DENSITY

Since the input data is discrete, a sufficient point density is necessary to find a good approximation
M̃(X̃) to the true Pareto manifold M(X⇤). In Fig. 21 we illustrate this variation. As long as HNPF
approximates a form M̃(X̃), which is close to the true manifold M(X⇤) : 0  x1  1, x2 = 0, the
generated front will always be within ✏ margin.

(a) Size: 2.5k (b) Size: 5k (c) Size: 10k
Figure 21: Pareto Front for Case II for different choices of training data density. The manifold
approximation improves as the point density is increased in (a) thru (c).

L LOSS PROFILE

We now briefly discuss the training process for the cases shown above. On an average, the network
takes around 10/20/30 epochs for the simple/moderate/hard cases as visualized in Fig. 22. Since the
last layer of the network is classifying points as being weak Pareto or not, the runtime is dictated by
the complexity of the curve in the design variable space. The more non-linear the solution manifold,
the more training time is required to approximate it.

(a) Case II/IV (b) Case III (c) Case IV
Figure 22: Training (blue) and validation (orange) curves for 4 cases. An increase in the dimensions of the
design variable space results in increased costs for constructing the L matrix. Consequently, the network takes
more epochs to converge.

Case II and V both converge within 10 epochs although they lie in 2D and 3D space, respectively. Per
Fig. 4 and 17 (b), the design variable space is convex and so the solution manifold is less complicated.
Although in 2D variable space, Case III takes 20 epochs owing to the sinusoidal solution manifold.
Case IV converges in 30 epochs, the design space is 30 dimensional, hence the compute complexity
increases due to the construction of a larger L matrix. The validation loss curve lies below the training
loss (but strictly at scale), suggesting that our low-weight network did not over/underfit.

22

Under review as a conference paper at ICLR 2022

M RUNTIME COMPARISON

Figure 23: Runtime of HNPF vs. mCHIM and PK,
as the variable dimension increases. All methods
have a linear increase in runtime with dimension,
but HNPF scales much better.

Using numerical experiments, we previously
verified that mCHIM, PK and HNPF approaches
arrive at the correct results for all the considered
cases. We now perform a compute time anal-
ysis against mCHIM and PK, to demonstrate
improved performance using our proposed ap-
proach. The trajectories in Fig. 23 show the
compute times for the high dimensional Case
VII. Note that for mCHIM and PK, the timings
are reported for dimensions n=30 and n=4, re-
spectively. For our method, the runtimes are
reported for Case V with the variable space di-
mension ranging from [2 � 30]. Note that all MTL methods crash here and are therefore not reported.

The reported runtime with two dimensional variable space might give the false notion that mCHIM
and PK are more efficient than HNPF. However, as the variable dimension increases, both mCHIM
and PK become far more expensive, as shown in Fig. 23. These methods also produce a low density
of Pareto points (⇠ 40), while HNPF yields high density (⇠ 1k). Since both mCHIM and PK are
based on enhanced scalarization, solving the resulting problem to extract Pareto points suffers from
scaling issues.

N WORKING OF PARETO FILTER

The algorithm starts with the set of all weak Pareto points p 2 P , which will be refined through the
iterative process. The loop (line 4) iterates over all the functions fi. It checks for set of dominating
and non-dominating points for all discretization levels (line 6) and appends them to a temporary list
(line 10). If multiple points do exist (line 11) for a given level (cardinality > 1), then there certainly
are dominated points. The non-dominated point is one which has the lowest function value for the
next function fq, q = i + 1. This (line 12) states that a point which seems non-dominated for a given
function fi might be dominated for other functions fr, r 2 k, r 6= i, but will be taken care of when
iterating through function fr. Once the non-dominated point has been found, it implies that all the
other points are in fact dominated, hence should not be considered for further evaluation. They are
rejected (line 13) from the active set P = P\(temp\xp). The output is the set of strong Pareto points
which were all non-dominated for every function fi, and are essentially the points in the weak Pareto
set P that survived the filtering process (line 13) for every fi.

f1

f2

A
B

C

F

D
E

(a) Weak Pareto Set
f1

f2

A C
D

F

B

(b) First pass
f1

f2

A C
D

F

(c) Second pass
Figure 24: Illustration of the proposed Pareto Filter on a two-function min-min setting for visualization.

It is easy to visualize the working of the proposed Pareto filter in Fig. 24. We start with the weak
Pareto set P (Fig. 24 (a)) for a non-convex form. The first pass over f1 removes a set (segment DEF)
of dominated Pareto points (Fig. 24 (b)). The leftover points in P are then filtered again based on f2

(Fig. 24 (c)), where the dominated points (segment ABC) as per f2 are removed. Points surviving the
filtering process belong to the strong/non-dominated Pareto set.

O DETAILED LITERATURE SURVEY

Since a Pareto solution set reflects optimal trade-off between competing objectives and constraints,
the user choice depends on the preferred trade-off value. Prior works can be categorized into four
classes of user preferences: 1) No preference (Zeleny, 1973): user preference criteria are not explicitly
specified; 2) a priori (Gal, 1980): preference criteria are explicitly specified before computation; 3) a
posteriori (Das & Dennis, 1998): preference criteria are explicitly specified after computation; and 4)
Interactive methods (Miettinen, 2012): preference criteria are continuously consulted to isolate one
of the optimal solutions.

23

Under review as a conference paper at ICLR 2022

O.1 GENERIC AND ENHANCED SCALARIZATION

One common approach is to convert an MOO problem into a Single Objective Optimization (SOO)
problem via scalarization. However, generic scalarization methods (Balashankar et al., 2019; Lin
et al., 2019a; Martinez et al., 2020; Valdivia et al., 2021; Wei & Niethammer, 2020) suffer from
various limitations. Firstly, these approaches can only extract one solution point at a time given that
the minimization problem converges to the global optimum. However for practical applications, with
non-convex objectives and constraints, ensuring global optimality is non-trivial. Secondly, multiple
runs with different trade-off parameters must be performed in order to extract the weak Pareto solution
set, resulting in substantial computational overhead (Wei & Niethammer, 2020). Finally, the Pareto
solution set can still form a non-convex manifold even when the objectives are convex (Ghane-Kanafi
& Khorram, 2015) due to the presence of non-convex constraints (Case III in Section 5). These
challenges prove to be major obstacles in the deployment of scalarization approaches as a practical
tool for Pareto set extraction.

Generic scalarization should not be confused with enhanced scalarization approaches (Das & Dennis,
1998; Ghane-Kanafi & Khorram, 2015; Pirouz & Khorram, 2016), whose strength lies in the localiza-
tion of the objective space that allows treatment of non-convex functions and constraints. Although
accurate and complete, enhanced scalarization approaches suffer from low computational scalability
and low density of Pareto points on the solution manifold. For example, the 30 dimensional bench-
mark (Case V in Section 5) shows enhanced scalarization methods (mCHIM and PK) generating a
Pareto set in approximately 18 hours.

Enhanced scalarization methods fall under category (3) of a posteriori methods. One such enhanced
approach to solve an MOO involves constructing a local linear or epsilon scalarization based SOO.
These methods include Normal Boundary Intersection (NBI) (Das & Dennis, 1998), Normal Con-
straint (NC) (Messac et al., 2003), Successive Pareto Optimization (Mueller-Gritschneder et al.,
2009), modified Convex Hull of Individual Minimum (mCHIM) (Ghane-Kanafi & Khorram, 2015)
and Pirouz-Khorram (PK) (Pirouz & Khorram, 2016). NBI (Das & Dennis, 1998) produces an evenly
distributed set of Pareto points given an evenly distributed set of weights. Furthermore, NBI produces
Pareto points in the non-convex parts of the Pareto curve while being independent of the relative
scales of the objective functions. It uses the concept of Convex Hull of Individual Minima (CHIM) to
break down the boundary/hull into evenly spaced segments and then trace the weak Pareto points.

As an improvement over the NBI method, mCHIM uses a quasi-normal procedure to update the
aforementioned CHIM set iteratively, to obtain a strong Pareto set. PK (Pirouz & Khorram, 2016),
on the other hand, uses a local ✏-scalarization based strategy that searches for the Pareto front using
controllable step-lengths in a restricted search region, thereby accounting for non-convexity. Gobbi
et al. (2015) proposed a framework using Fritz-John conditions (Levi & Gobbi, 2006) to obtain
analytical solutions for convex functions and constraints with high point density. Note that, all of
these aforementioned enhanced methods are guaranteed to converge to the Pareto front under their
respective assumptions on the function property each method can handle.

O.2 BAYESIAN AND GENETIC APPROACHES

Methods that are a priori (2) require a prior distribution or initial seed parameters to be specified.
Examples include Bayesian (Khan et al., 2002; Calandra et al., 2014; Hernández-Lobato et al.,
2016) and Evolutionary (Srinivas & Deb, 1994; Deb et al., 2002; Miriam et al., 2020) methods.
Khan et al. (2002)’s Bayesian method showed convergence to the Pareto front, but only under a
linear setting, which is the strictest form of convexity. In recent Bayesian methods (Calandra et al.,
2014; Hernández-Lobato et al., 2016), not only was convexity assumed, but even in actual convex
cases significant error was still incurred. Deb et al. (2002) introduced the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) that involves recombination, mutation and selection of a population
representing the set of solutions points considered to be Pareto, each having one or more assigned
objective values. The population is maintained to consist of diverse solutions, resulting in a set of
non-dominated individuals that are expected to be near (not on) the real Pareto front. Other variants
include NSGA-I (Srinivas & Deb, 1994) and NSGA-III (Miriam et al., 2020). However, convergence
and reproducibility are not guaranteed with Genetic Algorithms, and significant hyper-parameter
tuning is required.

24

	Introduction
	Problem Statement
	Fritz John Conditions (FJC)

	Related Works
	HNPF Framework
	Stage 1: Neural Net for Weak Pareto Front
	Stage 2: Pareto filter for Strong Pareto Set
	Comparison between HNPF and PHN

	Results
	Challenges in Pareto Optimality & the Need for a Pareto Filter (n=2,k=1,m=0)
	Case I: Convex objectives, linear constraints (n=2, k=2, m=2)
	Case II: Non-convex objectives, linear constraints (n=2, k=2, m=2)
	Case III: Convex Objectives, Non-Convex Constraints (n=2, k=2, m=4)
	Case IV: Non-Convex Objectives, linear constraints (n=30,k=2,m=30)
	Discussion of Methods
	Numerical Correctness of HNPF

	Conclusion and Future Work
	Definitions
	The necessity of Fritz-John Conditions (FJC) and misstated inferences on Linear Scalarization
	Analysis of HNPF vs. OR and MTL methods
	Difference between HNPF vs. PHN
	Issue with Pareto framing of MTL networks
	Error Bound
	Equivalence of det(L)=0 and det(LTL)=0
	Modeler Interpretability
	Additional Benchmarks
	Case I: (n=2, k=2, m=2)
	Case V: Convex Objectives, Non-Convex Constraint (n=3, k=3, m=4)
	Case VI: n=2, k=2, m=5
	Case VII: n=30, k=2, m=30

	Implementation Details
	Setup
	Error Tolerance

	Ablation Study
	Effect of Relaxation Parameter
	Effect of Training Data Density

	Loss Profile
	Runtime Comparison
	Working of Pareto filter
	Detailed Literature Survey
	Generic and Enhanced Scalarization
	Bayesian and Genetic Approaches

