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Abstract

We propose an accelerated first-order method for the optimization of smooth and1

(strongly or not) geodesically-convex functions over a compact and geodesically-2

convex set in Hadamard manifolds, that we access to via a metric-projection oracle.3

It enjoys the same rates of convergence as Nesterov’s accelerated gradient descent,4

up to a multiplicative geometric penalty and log factors. Even without in-manifold5

constraints, all prior fully accelerated works require their iterates to remain in6

some specified compact set (which is needed in worst-case analyses due to a lower7

bound), while only two previous methods are able to enforce this condition and8

these, in contrast, have limited applicability, e.g., to local optimization or to spaces9

of constant curvature. Our results solve an open question in [KY22] and an another10

question related to one posed in [ZS16]. In our solution, we show we can use11

projected Riemannian gradient descent to implement an inexact proximal point12

operator that we use as a subroutine, which is of independent interest.13

1 Introduction14

Riemannian optimization concerns the optimization of a function defined over a Riemannian manifold.15

It is motivated by constrained problems that can be naturally expressed on Riemannian manifolds16

allowing to exploit the geometric structure of the problem and effectively transforming it into an17

unconstrained one. Moreover, there are problems that are not convex in the Euclidean setting, but18

that when posed as problems over a manifold with the right metric, are convex when restricted to19

every geodesic, and this allows for fast optimization [Cru+06; CM12; BFO15; All+18]. That is, they20

are geodesically convex (g-convex) problems, cf. Definition 1.1. Some applications of Riemannian21

optimization in machine learning include low-rank matrix completion [CA16; HS18; MS14; Tan+14;22

Van13], dictionary learning [CS17; SQW17], optimization under orthogonality constraints [EAS98;23

LM19], robust covariance estimation in Gaussian distributions [Wie12], Gaussian mixture models24

[HS15], operator scaling [All+18], and sparse principal component analysis [GHT15; HW19b;25

JTU03].26

Riemannian optimization, whether under g-convexity or not, is an extensive and active area of27

research, for which one aspires to develop Riemannian optimization algorithms that share analogous28

properties to the more broadly studied Euclidean first-order methods, such as the following kinds of29

Riemannian methods: deterministic [BFM17; Wei+16; ZS16], adaptive [KJM19], projection-free30

[WS17; WS19], saddle-point-escaping [CB19; SFF19; ZZS18; ZYF19; CB20], stochastic [HS17;31

0Most of the notations in this work have a link to their definitions. For example, if you click or tap on any
instance of 𝐿, you will jump to the place where it is defined as the smoothness constant of the function we
consider in this work.
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KL17; Tri+18], variance-reduced [SKM17; SKM19; ZRS16], and min-max methods [ZZS22], among32

others.33

Riemannian generalizations to accelerated convex optimization are appealing due to their better34

convergence rates with respect to unaccelerated methods, specially in ill-conditioned problems.35

Acceleration in Euclidean convex optimization is a concept that has been broadly explored and has36

provided many different fast algorithms. A paradigmatic example is Nesterov’s Accelerated Gradient37

Descent (AGD), cf. [Nes83], which can be considered the first general accelerated method, where38

the conjugate gradients method can be seen as an accelerated predecessor in a more limited scope39

[Mar21]. There have been recent efforts to better understand this phenomenon in the Euclidean case40

[AO17; SBC16; DT14; WWJ16; DO19; Jou+20], which have yielded some fruitful techniques for41

the general development of methods and analyses. These techniques have allowed for a considerable42

number of new results going beyond the standard oracle model, convexity, or beyond first-order, in43

a wide variety of settings [Tse08; BT09; WRM16; AO15; All17; All+16; All18b; Car+17; DO18;44

All18a; CDO18; HSS19; CS19; DJ19; Gas+19; Iva+21; DN20; KG20; CMP21], among many others.45

There have been some efforts to achieve acceleration for Riemannian algorithms as generalizations of46

AGD, cf. Section 1.3. These works try to answer the following fundamental question:47

Can a Riemannian first-order method enjoy the same rates of convergence as Euclidean AGD?48

The question is posed under (possibly strongly) geodesic convexity and smoothness of the function to49

be optimized. And we now know, due to the lower bound in [CB21], that the optimization should be50

over a bounded domain and under bounded geodesic curvature of the Riemannian manifold. In this51

work, we study this question in the case of Hadamard manifoldsℳ of bounded sectional curvature,52

where many of the applications lie [HS20]. Given a compact and uniquely geodesic g-convex set 𝒳53

that we access to via a metric-projection oracle, we design first-order algorithms that enjoy the same54

rates as AGD when approximating min𝑥∈𝒳 𝑓(𝑥), up to logarithmic factors and up to a geometric55

penalty factor, where 𝑓 : 𝒩 ⊂ℳ→ R is a differentiable function that is smooth and g-convex (or56

strongly g-convex) in 𝒳 ⊂ 𝒩 . See Section 1.1 for the definitions of these concepts. Importantly,57

our algorithm obtains acceleration without an undesirable assumption that most previous works58

had to made: that the iterates of the algorithm stay inside of a specified compact set without any59

mechanism for enforcing this condition. Only two previous methods are able to deal with some form60

of constraints, and they apply to the limited settings of constant sectional curvature manifolds and61

local optimization, respectively. Techniques in the rest of papers can handle neither constraints nor62

projections, due to fundamental properties of their methods. Removing this condition in general,63

global, and fully accelerated methods was posed as an open question in [KY22], that we solve for the64

case of Hadamard manifolds. The difficulty of constraining problems in order to bound geometric65

penalties as well as the necessity of achieving this goal in order to provide full optimization guarantees66

is something that has also been noted in other kinds of Riemannian algorithms, cf. [HS20]. See67

Table 1 for a succint comparison among algorithms with some degree of acceleration and their rates.68

The question concerning whether there are Riemannian analogs to Nesterov’s algorithm that enjoy69

similar rates is a question that, to the best of our knowledge, was first formulated in [ZS16]. In70

particular, since Nesterov’s AGD uses a proximal operator of a function’s linearization, they ask71

whether there is a Riemannian analog to this operation that could be used to obtain accelerated rates72

in the Riemannian case. The natural candidate results in a non-convex problem which is not amenable73

to optimization. While we do not take this course of action, we show that, instead, a proximal step74

with respect to the whole function can be approximated efficiently in Hadamard manifolds and it75

can be used along with an accelerated outer loop, when implemented and analyzed carefully, in the76

spirit of other Euclidean algorithms like Catalyst [LMH17]. It relies on Riemannian gradient descent77

(RGD) with projections, initialized at a suitable warm-start point that we can find by exploiting the78

structure of the geometry and the metric projection. The Riemannian proximal point subroutine79

we design is of independent interest. To the best of our knowledge, previously known Riemannian80

proximal methods either obtain asymptotic analyses, assume exact proximal computation, or work81

with approximate proximal operators by using different inexactness conditions as ours, and do not82

show how to implement the inexact operators, cf. Section 1.3.83

1.1 Preliminaries84

We provide definitions of Riemannian geometry concepts that we use in this work. The interested85

reader can refer to [Pet06; Bac14] for an in-depth review of this topic, but for this work the following86
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notions will be enough. A Riemannian manifold (ℳ, g) is a real 𝐶∞ manifoldℳ equipped with87

a metric g, which is a smoothly varying, i.e., 𝐶∞, inner product. For 𝑥 ∈ ℳ, denote by 𝑇𝑥ℳ the88

tangent space ofℳ at 𝑥. For vectors 𝑣, 𝑤 ∈ 𝑇𝑥ℳ, we denote the inner product of the metric by89

⟨𝑣, 𝑤⟩𝑥 and the norm it induces by ‖𝑣‖𝑥
def
=
√︀
⟨𝑣, 𝑣⟩𝑥. Most of the time, the point 𝑥 is known from90

context, in which case we write ⟨𝑣, 𝑤⟩ or ‖𝑣‖.91

A geodesic of length ℓ is a curve 𝛾 : [0, ℓ] →ℳ of unit speed that is locally distance minimizing.92

A uniquely geodesic space is a space such that for every two points there is one and only one93

geodesic that joins them. In such a case the exponential map Exp𝑥 : 𝑇𝑥ℳ→ℳ and the inverse94

exponential map Log𝑥 :ℳ→ 𝑇𝑥ℳ are well defined for every pair of points, and are as follows.95

Given 𝑥, 𝑦 ∈ ℳ, 𝑣 ∈ 𝑇𝑥ℳ, and a geodesic 𝛾 of length ‖𝑣‖ such that 𝛾(0) = 𝑥, 𝛾(‖𝑣‖) = 𝑦,96

𝛾′(0) = 𝑣/‖𝑣‖, we have that Exp𝑥(𝑣) = 𝑦 and Log𝑥(𝑦) = 𝑣. We denote by 𝑑(𝑥, 𝑦) the distance97

between 𝑥 and 𝑦, and note that it takes the same value as ‖Log𝑥(𝑦)‖. The manifoldℳ comes with a98

natural parallel transport between vectors in different tangent spaces, that formally is defined from a99

way of identifying nearby tangent spaces, known as the Levi-Civita connection∇ [Lev77]. We use100

this parallel transport throughout this work.101

Given a 2-dimensional subspace 𝑉 ⊆ 𝑇𝑥ℳ of the tangent space of a point 𝑥, the sectional curvature102

at 𝑥 with respect to 𝑉 is defined as the Gauss curvature, for the surface Exp𝑥(𝑉 ) at 𝑥. The Gauss103

curvature at a point 𝑥 can be defined as the product of the maximum and minimum curvatures of104

the curves resulting from intersecting the surface with planes that are normal to the surface at 𝑥. A105

Hadamard manifold is a complete simply connected Riemannian manifold whose sectional curvature106

is non-positive, like the hyperbolic space or the space of 𝑛× 𝑛 symmetric positive definite matrices107

with the metric ⟨𝑋,𝑌 ⟩𝐴
def
= Tr(𝐴−1𝑋𝐴−1𝑌 ) where 𝑋,𝑌 are in the tangent space of 𝐴. Hadamard108

manifolds are uniquely geodesic. Note that in a general manifold Exp𝑥(·) might not be defined for109

each 𝑣 ∈ 𝑇𝑥ℳ, but in a Hadamard manifold of dimension 𝑛, the exponential map at any point is a110

global diffeomorphism between 𝑇𝑥ℳ∼= R𝑛 and the manifold, and so the exponential map is defined111

everywhere. We now proceed to define the main properties that will be assumed on our model for the112

function to be minimized and on the feasible set 𝒳 .113

Definition 1.1 (Geodesic Convexity and Smoothness). Let 𝑓 : 𝒩 ⊂ ℳ → R be a differentiable114

function defined on an open set 𝒩 contained in a Riemannian manifoldℳ. Given 𝐿 ≥ 𝜇 > 0, we115

say that 𝑓 is 𝐿-smooth in 𝒳 if for any two points 𝑥, 𝑦 ∈ 𝒳 , 𝑓 satisfies116

𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥),Log𝑥(𝑦)⟩+
𝐿

2
𝑑(𝑥, 𝑦)2.

Analogously, we say that 𝑓 is 𝜇-strongly g-convex in 𝒳 , if for any two points 𝑥, 𝑦 ∈ 𝒳 , we have117

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥),Log𝑥(𝑦)⟩+
𝜇

2
𝑑(𝑥, 𝑦)2.

If the previous inequality is satisfied with 𝜇 = 0, we say the function is g-convex in 𝒳 .118

Definition 1.2 (Metric projection operator). Letℳ be a Hadamard manifold and let 𝒳 ⊂ ℳ be119

a closed g-convex subset of ℳ. A metric projection operator onto 𝒳 is a map 𝒫𝒳 : ℳ → 𝒳120

satisfying 𝑑(𝑥,𝒫𝒳 (𝑥)) ≤ 𝑑(𝑥, 𝑦) for all 𝑦 ∈ 𝒳 .121

A consequence of the definition is that the projection is single valued and non-expansive, the latter122

meaning 𝑑(𝒫𝒳 (𝑥),𝒫𝒳 (𝑦)) ≤ 𝑑(𝑥, 𝑦), cf. [Bac14, Thm 2.1.12].123

We present the following fact about the squared distance function, when one of the arguments is fixed.124

The constants 𝜁𝐷, 𝛿𝐷 below appear everywhere in Riemannian optimization because, among other125

things, Fact 1.3 yields Riemannian inequalities that are analogous to the equality in the Euclidean126

cosine law of a triangle, cf. Corollary B.3, and these inequalities have wide applicability in the127

analyses of Riemannian methods.128

Fact 1.3 (Local information of the squared distance). Letℳ be a Riemannian manifold of sec-129

tional curvature bounded by [𝜅min, 𝜅max] that contains a uniquely g-convex set 𝒳 ⊂ℳ of diameter130

𝐷 <∞. Then, given 𝑥, 𝑦 ∈ 𝒳 we have the following for the function Φ𝑥 :ℳ→ R, 𝑦 ↦→ 1
2𝑑(𝑥, 𝑦)2:131

∇Φ𝑥(𝑦) = −Log𝑦(𝑥) and 𝛿𝐷‖𝑣‖2 ≤ Hess Φ𝑥(𝑦)[𝑣, 𝑣] ≤ 𝜁𝐷‖𝑣‖2,
where132

𝜁𝐷
def
=

{︂
𝐷
√︀
|𝜅min| coth(𝐷

√︀
|𝜅min|) if 𝜅min ≤ 0

1 if 𝜅min > 0
,
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and133

𝛿𝐷
def
=

{︂
1 if 𝜅max ≤ 0

𝐷
√
𝜅max cot(𝐷

√
𝜅max) if 𝜅max > 0

,

In particular, Φ𝑥 is 𝛿𝐷-strongly g-convex and 𝜁𝐷-smooth in 𝒳 . See [Lez20] for a proof.134

1.2 Notation.135

Letℳ be a uniquely geodesic 𝑛-dimensional Riemannian manifold. Given points 𝑥, 𝑦, 𝑧 ∈ ℳ,136

we abuse the notation and write 𝑦 in non-ambiguous and well-defined contexts in which we should137

write Log𝑥(𝑦). For example, for 𝑣 ∈ 𝑇𝑥ℳ we have ⟨𝑣, 𝑦 − 𝑥⟩ = −⟨𝑣, 𝑥 − 𝑦⟩ = ⟨𝑣,Log𝑥(𝑦) −138

Log𝑥(𝑥)⟩ = ⟨𝑣,Log𝑥(𝑦)⟩; ‖𝑣 − 𝑦‖ = ‖𝑣 − Log𝑥(𝑦)‖; ‖𝑧 − 𝑦‖𝑥 = ‖Log𝑥(𝑧) − Log𝑥(𝑦)‖; and139

‖𝑦 − 𝑥‖𝑥 = ‖Log𝑥(𝑦)‖ = 𝑑(𝑦, 𝑥). We denote by 𝒳 a compact, uniquely geodesic g-convex set of140

diameter 𝐷 contained in an open set 𝒩 ⊂ℳ and we use 𝐼𝒳 for the indicator function of 𝒳 , which141

is 0 at points in 𝒳 and +∞ otherwise. For a vector 𝑣 ∈ 𝑇𝑦ℳ, we use Γ𝑥
𝑦(𝑣) ∈ 𝑇𝑥ℳ to denote the142

parallel transport of 𝑣 from 𝑇𝑦ℳ to 𝑇𝑥ℳ along the unique geodesic that connects 𝑦 to 𝑥. We call143

𝑓 : 𝒩 ⊂ℳ→ R a differentiable 𝐿-smooth g-convex function we want to optimize over 𝒳 . We use144

𝜀 to denote the approximation accuracy parameter, 𝑥0 ∈ 𝒳 for the initial point of our algorithms, and145

𝑅0
def
= 𝑑(𝑥0, 𝑥

*) for the initial distance to an arbitrary minimizer 𝑥* ∈ arg min𝑥∈𝒳 𝑓(𝑥). The big146

𝑂 notation ̃︀𝑂(·) omits log factors and 𝑂*(·) omits log factors except those with respect to 𝐿𝑅2
0/𝜀.147

The latter will be useful to describe the rates of convergence for the strongly g-convex case, by148

emphasizing that there is no extra dependence on 𝜀. Note that in the setting of Hadamard manifolds,149

the bounds on the sectional curvature are 𝜅min ≤ 𝜅max ≤ 0. Hence for convenience, given that we150

optimize over 𝒳 , we define 𝜁 def
= 𝜁𝐷 = 𝐷

√︀
|𝜅min| coth(𝐷

√︀
|𝜅min|) ≥ 1 and 𝛿 def

= 1. If 𝑣 ∈ 𝑇𝑥ℳ,151

we use Π�̄�(0,𝐷)(𝑣) ∈ 𝑇𝑥ℳ for the projection of 𝑣 onto the closed ball with center at 0 and radius 𝐷.152

1.3 Our results and comparisons with related work153

In this work, we optimize functions defined over Hadamard manifolds ℳ of finite dimension 𝑛154

and of sectional curvature bounded in [𝜅min, 𝜅max]. As all previous related works discussed in the155

sequel, we assume that we can compute the exponential and inverse exponential maps, and parallel156

transport of vectors for our manifold. The differentiable function 𝑓 to be optimized is defined over157

an open set 𝒩 ⊂ ℳ that contains a compact g-convex set 𝒳 of finite diameter 𝐷, that we access158

via a metric-projection oracle. Our function 𝑓 is 𝐿-smooth and g-convex (or 𝜇-strongly g-convex)159

in 𝒳 and we have access to it via a gradient oracle that can be queried at points in 𝒳 . For the160

setting we just described, we show in Theorem 2.2 and Theorem 2.4 that the algorithms we propose161

find a point 𝑦𝑇 ∈ 𝒳 such that 𝑓(𝑦𝑇 )−min𝑥∈𝒳 𝑓(𝑥) ≤ 𝜀 after calling the gradient oracle and the162

metric-projection oracle the following number of times: ̃︀𝑂(𝜁2
√︀
𝐿𝑅2

0/𝜀) for the g-convex case and163

𝑂*(𝜁2
√︀
𝐿/𝜇 log(𝜇𝑅2

0/𝜀)) for the 𝜇-strongly g-convex case, where 𝑅0
def
= 𝑑(𝑥0, 𝑥

*) and 𝑥0 ∈ 𝒳 is164

an initial point. That is, the algorithms enjoy the same rates as AGD in the Euclidean space up to a165

factor of 𝜁2 = 𝐷2𝜅2min coth2(𝐷
√︀
|𝜅min|) (our geometric penalty) and up to universal constants and166

log factors. Note that as the minimum curvature 𝜅min approaches 0 we have 𝜁 → 1.167

We emphasize that our algorithms only need to query the gradient of 𝑓 at points in 𝒳 and the168

𝐿-smoothness and 𝜇-strong g-convexity of 𝑓 only need to hold in 𝒳 . This is relevant because in169

Riemannian manifolds the condition number 𝐿/𝜇 in a set can increase with the size of the set, cf.170

[Mar22, Proposition 27]. Intuitively, although there are twice differentiable functions defined over the171

Euclidean space whose Hessian is constant everywhere, in other Riemannian cases the metric may172

preclude having such global condition and the larger the (compact) set is, the greater the maximum173

eigenvalue of the Hessian over this set (i.e., its smoothness constant) can be with respect to the174

minimum one (i.e., its strongly g-convex constant) for any smooth and strongly g-convex function.175

Compare this, for instance, with the bounds on the Hessian’s eigenvalues of the squared distance176

function in Fact 1.3, which are tight for spaces of constant curvature [Lez20].177

Now we proceed to compare our results with previous works. We have summarized most of the178

following discussion in Table 1. We include Nesterov’s AGD in the table for comparison purposes1.179

1Note that the original method in [Nes83] needed to query the gradient of the function outside of the feasible
set, and this was later improved to only require queries at feasible points [Nes05] as in our work, hence our
choice of citation in the table.
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There are some works on Riemannian acceleration that focus on empirical evaluation or that work180

under strong assumptions [Liu+17; Ali+19; HW19a; Ali+20; Lin+20], see [Mar22] for instance for181

a discussion on these works. We focus the discussion on the most related work with guarantees.182

[ZS18] obtain an algorithm that, up to constants, achieves the same rates as AGD in the Euclidean183

space, for 𝐿-smooth and 𝜇-strongly g-convex functions but only locally, namely when the initial184

point starts in a small neighborhood 𝑁 of the minimizer 𝑥*: a ball of radius 𝑂((𝜇/𝐿)3/4) around it.185

[AS20] generalize the previous algorithm and, by using similar ideas as in [ZS18] for estimating a186

lower bound on 𝑓 , they adapt the algorithm to work globally, proving that it eventually decreases the187

objective as fast as AGD. However, as [Mar22] noted, it takes as many iterations as the ones needed188

by RGD to reach the neighborhood of the previous algorithm. The latter work also noted that in fact189

RGD and the algorithm in [ZS18] can be run in parallel and combined to obtain the same convergence190

rates as in [AS20], which suggested that for this technique, full acceleration with the rates of AGD191

only happens over the small neighborhood 𝑁 in [ZS18]. Note however that [AS20] show that192

their algorithm will decrease the function value faster than RGD, but this is not quantified. [JS21]193

developed a different framework, arising from [AS20] but with the same guarantees for accelerated194

first-order methods. We do not feature it in the table. [CB21] showed that in a ball of center 𝑥 ∈ℳ195

and radius 𝑂((𝜇/𝐿)1/2) containing 𝑥*, the pullback function 𝑓 ∘ Exp𝑥 : 𝑇𝑥ℳ → R is strongly196

convex and smooth with condition number 𝑂(𝐿/𝜇), so they argue that using AGD on the pullback197

over the corresponding pulled-back Euclidean ball in the tangent space results in local acceleration198

as well. In short, acceleration is possible in a small neighborhood because there the manifold is199

almost Euclidean and the geometric deformations are small in comparison to the curvature of the200

objective. These techniques do not work with the g-convex case since the neighborhood becomes a201

point (𝜇/𝐿 = 0).202

Finding fully accelerated algorithms that are global presents a harder challenge. By a fully accelerated203

algorithm we mean one with rates with same dependence as AGD on 𝐿, 𝜀, and if it applies, on 𝜇.204

[Mar22] provided such algorithms for g-convex functions, strongly or not, defined over manifolds of205

constant sectional curvature and constrained to a ball of radius 𝑅. In the convergence rates, there is a206

geometric factor of 𝑐 = cos(𝑅
√
𝐾)−Θ(1) for sectional curvature𝐾 > 0, and 𝑐 = cosh(𝑅

√
−𝐾)Θ(1)207

when 𝐾 < 0, cf. Table 1. When 𝑅
√︀
|𝐾| = 𝑂(1), they recover the same rates as AGD, which for208

those manifolds is more general than the local assumption in the previous set of works. For larger209

values of 𝑅
√︀
|𝐾|, there is also full acceleration, but note that 𝑐 grows rapidly when 𝐾 < 0, since210

there is an exponential dependence on 𝑅. When 𝐾 > 0 the geometric penalty also grows fast, but211

this is more natural since the minimum condition number of a function in a ball of radius 𝑅 grows212

similarly [Mar22]. The geometric penalties are large in some regimes because the algorithm bounds213

uniformly, over the whole domain, the worst-case deformations that can occur. On the other hand, for214

manifolds of bounded sectional curvature, [KY22] design algorithms with the same rates as AGD215

up to universal constants and a factor of 𝜁, their geometric penalty. However, they need to assume216

that the iterates of their algorithm remain in 𝒳 and point out on the necessity of removing such an217

assumption, which they leave as an open question. Our work solves this question for the case of218

Hadamard manifolds. In their technique, they show that they can use the structure of the accelerated219

scheme to move lower bound estimations on 𝑓(𝑥*) from one particular tangent space to another220

without incurring extra errors, when the right Lyapunov function is used. By moving lower bounds221

here we mean finding suitable lower bounds that are simple (a quadratic in their case), if pulled-back222

to one tangent space, if we start with a similar bound that is simple when pulled-back to another223

tangent space.224

Lower bounds. In this paragraph, we omit constants depending on the curvature bounds in the225

big-𝑂 notations for simplicity. [HM21] proved an optimization lower bound showing that acceleration226

in Riemannian manifolds is harder than in the Euclidean space. [CB21] largely generalized their227

results. They essentially show that for a large family of Hadamard manifolds, there is a function228

that is smooth and strongly g-convex in a ball of radius 𝑅 that contains the minimizer 𝑥*, and for229

which finding a point that is 𝑅/5 close to 𝑥* requires ̃︀Ω(𝑅) calls to the gradient oracle. Note that230

these results do not preclude the existence of a fully accelerated algorithm with rates ̃︀𝑂(𝑅)+AGD231

rates, for instance. But they show that even if we want to perform unconstrained optimization, so232

no in-manifold constraints are originally imposed, we need to optimize over a bounded domain in233

order to bound geometric penalties. A similar statement is provided in the case of smooth and only234

g-convex functions.235
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Table 1: Convergence rates of related works with provable guarantees for smooth problems over
uniquely geodesic manifolds, in chronological order with respect to when the works were publicly
available. Column K? refers to the supported values of the sectional curvature, G? to whether the
algorithm is global (any initial distance to a minimizer is allowed). Here L and L′ mean they are local
algorithms that require initial distance 𝑂((𝐿/𝜇)−3/4) and 𝑂((𝐿/𝜇)−1/2), respectively. Column F?
refers to whether there is full acceleration, meaning dependence on 𝐿, 𝜇, and 𝜀 like AGD up to
possibly log factors. Column C? refers to whether the method supports constraints. All methods
require their iterates to be in some specified compact set, but the works with 7 just assume the iterates
will remain within the constraints, while the ones with 3 can force this condition with a projection
oracle. Also, here B is like 3 but with the constraints limited to a ball. See Section 1.3 for the value
𝑐 in [Mar22]. We use𝒲 def

=
√︁

𝐿
𝜇 log(

𝐿𝑅2
0

𝜀 ). *In [CB21], a condition is required on the covariant
derivative of the metric tensor, cf. [CB21, Section 6].

Method g-convex 𝜇-st. g-convex K? G? F? C?

[Nes05, AGD] 𝑂(

√︁
𝐿𝑅2

0

𝜀 ) 𝑂(𝒲) 0 3 3 3

[ZS18, Theorem 11] - 𝑂(𝒲) bounded L 3 7
[AS20, Theorem 3.1] - 𝑂*(𝐿

𝜇 +𝒲) bounded 3 7 7

[Mar22, Remark 30] - 𝑂*(𝐿
𝜇 +𝒲) bounded 3 7 7

[Mar22, Theorems 6 & 8] ̃︀𝑂(𝑐

√︁
𝐿𝑅2

0

𝜀 ) 𝑂*(𝑐 · 𝒲) ctant.̸= 0 3 3 B
[CB21, Section 6] - 𝑂(𝒲) bounded* L′ 3 B

[KY22, Corollaries 1 & 2] 𝑂(𝜁

√︁
𝐿𝑅2

0

𝜀 ) 𝑂(𝜁 · 𝒲) bounded 3 3 7

Theorems 2.2 & 2.4 ̃︀𝑂(𝜁2
√︁

𝐿𝑅2
0

𝜀 ) 𝑂*(𝜁2 · 𝒲) Hadamard 3 3 3

Handling constraints to bound geometric penalties. Due to the lower bounds, it becomes crucial236

for a fully accelerated algorithm to restrict the optimization to a set 𝒳 of finite diameter 𝐷, or237

otherwise a worst-case analysis incurs an arbitrary large geometric penalty in the rates. In our238

algorithm and in all other known fully accelerated algorithms, learning rates depend on this diameter.239

This is natural: estimation errors due to geometric deformations depend on the diameter via the240

constants 𝜁𝐷, 𝛿𝐷, the cosine-law inequalities Corollary B.3, or other analogous inequalities, and the241

algorithms take these errors into account. All other previous works are not able to deal with any242

constraints and hence they simply assume that the iterates of their algorithms stay within one such243

specified set, except for [Mar22] and [CB21] that enforce a ball constraint, as we explained above.244

However, these two works have their applicability limited to spaces of constant curvature and to local245

optimization, respectively. Note that even if one could show in some settings that given a choice of246

learning rate, convergence implies that the iterates will remain in some compact set, then because247

the learning rates depend on the diameter of the set, and the diameter of the set would depend on248

the learning rates, one cannot conclude from this argument that the assumption these works make is249

going to be satisfied. In contrast, in this work, we design the first accelerated algorithm that supports250

metric projections and, consequently, we can handle general constraints to bound geometric penalties251

and accelerate our method without any other extra assumptions, solving an open question in [KY22].252

Some other works study and use Riemannian metric projections in other contexts, see [Wal74;253

HP13; BHP13; Bac14; ZS16] and references therein. Among them, [ZS16] introduced several, both254

deterministic and stochastic, unaccelerated first-order methods that work with in-manifold constraints255

by using metric-projection oracles. Our Algorithm 1 uses their projected RGD as a subroutine, cf.256

Remark 2.3.257

Finding a global minimizer. In our work, we do not need to assume that the set 𝒳 contains a258

global minimizer, namely a point 𝑥* such that∇𝑓(𝑥*) = 0. We find an 𝜀-minimizer with respect to259

the minimum value of 𝑓 at 𝒳 . All other previous works assume that the set contains the minimizers260

of 𝑓 , with the exception of [Mar22], where the algorithm can forgo this assumption if one has261

access to a bound 𝐿𝑓,ℬ on the Lipschitz constant of 𝑓 when restricted to their ball constraint ℬ, and262

in such a case the rates have a log(𝐿𝑓,ℬ𝐷/𝜀) factor instead of a log(𝐿𝐷2/𝜀) factor. Note this is263

natural since if a global minimizer is in the set, then we have 𝐿𝑓,ℬ = 𝑂(𝐿𝐷). We note that we also264
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obtain a logarithmic dependence that involves the Lipschitz constant 𝐿𝑓,𝒳 of 𝑓 in 𝒳 (the logarithmic265

dependence involves the scale invariant quantity 𝜁𝐶 for 𝐶 = 𝐿𝑓,𝒳 /𝐿, which is 𝑂(𝜁) if 𝑥* ∈ 𝒳 ) but266

in contrast in our case, our method does not require access to the Lipschitz constant of 𝑓 in 𝒳 .267

Riemannian proximal methods There have been some works that study proximal methods in268

Riemannian manifolds, but most of them focus on asymptotic results or assume the proximal operator269

can be computed exactly [Wan+15; BFM17; BCO16; Kha+21; Cha+21]. The rest of these works270

study proximal point methods under different inexact versions of the proximal operator as ours and271

they do not show how to implement their inexact version in applications, like our case of smooth and272

g-convex optimization. [AK14] provide a convergence analysis of an inexact proximal point method273

but when applied to optimization they assume the computation of the proximal operator is exact.274

[TH14] uses a different inexact condition and proves linear convergence, under a growth condition275

on 𝑓 . [Wan+16] obtains linear convergence of an inexact proximal point method under a different276

growth assumption on 𝑓 and under an absolute error condition on the proximal function.277

2 Algorithm and Pseudocode278

In this section, we present our Riemannian accelerated algorithm for constrained g-convex optimiza-279

tion, or Riemacon2. Recall our abuse of notation for points 𝑝 ∈ℳ to mean Log𝑞(𝑝) in contexts in280

which one should place a vector in 𝑇𝑞ℳ and note that in our algorithm 𝑥𝑘 and 𝑦𝑘 are points inℳ281

whereas 𝑧𝑥𝑘

𝑘 ∈ 𝑇𝑥𝑘
ℳ, 𝑧𝑦𝑘

𝑘 , 𝑧𝑦𝑘

𝑘 ∈ 𝑇𝑦𝑘
ℳ.282

Algorithm 1 Riemacon: Riemannian Acceleration - Constrained g-Convex Optimization
Input: Initial point 𝑥0 ∈ 𝒳 ⊂ 𝒩 . Diff. function 𝑓 : 𝒩 ⊂ℳ→ R for a Hadamard manifoldℳ

that is 𝐿-smooth and g-convex in 𝒳 , final iteration 𝑇 (not required to be known in advance).
Parameters:

• Geometric penalty 𝜉 def
= 4𝜁2𝐷 − 3 ≤ 8𝜁 − 3 = 𝑂(𝜁).

• Implicit Gradient Descent learning rate 𝜆 def
= 𝜁2𝐷/𝐿.

• Mirror Descent learning rates 𝜂𝑘
def
= 𝑎𝑘/𝜉.

• Proportionality constant in the proximal subproblem accuracies: ∆𝑘
def
= 1

(𝑘+1)2 .

Definition: (computation of this value is not needed)

• Prox. accuracies: 𝜎𝑘
def
=

Δ𝑘𝑑(𝑥𝑘,𝑦
*
𝑘)

2

78𝜆 where 𝑦*𝑘
def
= arg min𝑦∈𝒳 {𝑓(𝑦) + 1

2𝜆𝑑(𝑥𝑘, 𝑦)2}.

1: 𝑦0 ← 𝑥0; 𝐴0 ← 200𝜆𝜉
2: 𝑧𝑥0

0 ← 0 ∈ 𝑇𝑥0
ℳ; 𝑧𝑦0

0 ← 𝑧𝑦0

0 ← 0 ∈ 𝑇𝑦0
ℳ

3: for 𝑘 = 1 to 𝑇 do
4: 𝑎𝑘 ← 2𝜆𝑘+32𝜉

5

5: 𝐴𝑘 ← 𝑎𝑘/𝜉 +𝐴𝑘−1 =
∑︀𝑘

𝑖=1 𝑎𝑖/𝜉 +𝐴0 = 𝜆
(︁

𝑘(𝑘+1+64𝜉)
5𝜉 + 200𝜉

)︁
6: 𝑥𝑘 ← Exp𝑦𝑘−1

(
𝑎𝑘

𝐴𝑘−1+𝑎𝑘
𝑧
𝑦𝑘−1

𝑘−1 +
𝐴𝑘−1

𝐴𝑘−1+𝑎𝑘
𝑦𝑘−1) = Exp𝑦𝑘−1

(
𝑎𝑘

𝐴𝑘−1+𝑎𝑘
𝑧
𝑦𝑘−1

𝑘−1 ) ◇ Coupling

7: 𝑧𝑥𝑘

𝑘−1 ← Γ
𝑥𝑘
𝑦𝑘−1(𝑧

𝑦𝑘−1

𝑘−1 ) + Log𝑥𝑘
(𝑦𝑘−1) = Log𝑥𝑘

(Exp𝑦𝑘
(𝑧

𝑦𝑘−1

𝑘−1 ))

8: 𝑦𝑘 ← 𝜎𝑘-minimizer of the proximal problem min𝑦∈𝒳 {𝑓(𝑦) + 1
2𝜆𝑑(𝑥𝑘, 𝑦)2} (cf. Remark 2.3).

9: 𝑣𝑥𝑘 ← −Log𝑥𝑘
(𝑦𝑘)/𝜆 ◇ Approximate subgradient

10: 𝑧𝑥𝑘

𝑘 ← 𝑧𝑥𝑘

𝑘−1 − 𝜂𝑘𝑣𝑥𝑘 ◇Mirror Descent step
11: 𝑧𝑦𝑘

𝑘 ← Γ𝑦𝑘
𝑥𝑘

(𝑧𝑥𝑘

𝑘 ) + Log𝑦𝑘
(𝑥𝑘) ◇Moving the dual point to 𝑇𝑦𝑘

ℳ
12: 𝑧𝑦𝑘

𝑘 ← Π�̄�(0,𝐷)(𝑧
𝑦𝑘

𝑘 ) ∈ 𝑇𝑦𝑘
ℳ ◇ Easy projection done so the dual point is not very far

13: end for
14: return 𝑦𝑇 .

We start with an interpretation of our algorithm that helps understanding its high-level ideas. The fol-283

lowing intends to be a qualitative explanation, and we refer to the pseudocode and the supplementary284

material for the exact descriptions and analysis. Euclidean accelerated algorithms can be interpreted,285

cf. [AO17], as a combination of a gradient descent (GD) algorithm and an online learning algorithm286

2Riemacon rhymes with “rima con” in Spanish.

7



with losses being the affine lower bounds 𝑓(𝑥𝑘) + ⟨∇𝑓(𝑥𝑘), · − 𝑥𝑘⟩ we obtain on 𝑓(·) by applying287

convexity at some points 𝑥𝑘. That is, the latter builds a lower bound estimation on 𝑓 . By selecting288

the next query to the gradient oracle as a cleverly picked convex combination of the predictions given289

by these two algorithms, one can show that the instantaneous regret of the online learning algorithm290

can be compensated by the local progress GD makes, which leads to accelerated convergence. In291

Riemannian optimization, there are two main obstacles. Firstly, the first-order approximations of 𝑓292

at points 𝑥𝑘 yield functions that are affine but only with respect to their respective 𝑇𝑥𝑘
ℳ, and so293

combining these lower bounds that are only simple in their tangent spaces makes obtaining good294

global estimations not simple. Secondly, when one obtains such global estimations, then one naturally295

incurs an instantaneous regret that is worse by a factor than is usual in Euclidean acceleration. This296

factor is a geometric constant depending on the diameter 𝐷 of a set 𝒳 where the iterates and a297

(possibly constrained) minimizer lie. As a consequence, the learning rate of GD would need to be298

multiplicatively increased by such a constant with respect to the one of the online learning algorithm299

in order for the regret to still be compensated with the local progress of GD (and the rates worsen by300

this constant). But if we fix some 𝒳 of finite diameter, because GD’s learning rate is now larger, it is301

not clear how to keep the iterates in 𝒳 . And if we do not have the iterates in one such set 𝒳 , then our302

geometric penalties could grow arbitrarily.303

We find the answer in implicit methods. An implicit Euclidean (sub)gradient descent step is one that304

computes, from a point 𝑥𝑘 ∈ 𝒳 , another point 𝑦*𝑘 = 𝑥𝑘 − 𝜆𝑣𝑘 ∈ 𝒳 , where 𝑣𝑘 ∈ 𝜕(𝑓 + 𝐼𝒳 )(𝑦*𝑘), is a305

subgradient of 𝑓 + 𝐼𝒳 at 𝑦*𝑘. Intuitively, if we could implement a Riemannian version of an implicit306

GD step then it should be possible to still compensate the regret of the other algorithm and keep all the307

iterates in the set 𝒳 . Computing such an implicit step is computationally hard in general, but we show308

that approximating the proximal objective ℎ𝑘(𝑦)
def
= 𝑓(𝑦) + 1

2𝜆𝑑(𝑥𝑘, 𝑦)2 with enough accuracy yields309

an approximate subgradient that can be used to obtain an accelerated algorithm as well. In particular,310

we provide an accelerated scheme for which we show that the error incurred by the approximation311

of the subgradient can be bounded by some terms we can control, cf. Lemma A.2, namely a small312

term that appears in our Lyapunov function and also a term proportional to the squared norm of313

the approximated subgradient, which only adds a constant to the final convergence rates. We also314

provide a warm start in Lemma A.4 and an analysis that shows that using the projected Riemannian315

gradient descent in [ZS18] initialized at the warm-started point achieves the desired accuracy of316

the subproblem fast, cf. Remark 2.3. This proximal approach works by exploiting the fact that the317

Riemannian Moreau envelop is convex in Hadamard manifolds [AF05] and that the subproblem ℎ𝑘,318

defined with our 𝜆 = 𝜁2𝐷/𝐿, is strongly g-convex and smooth with a condition number that only319

depends on the geometry. Besides of these steps, we use a coupling of the approximate implicit RGD320

and of a mirror descent (MD) algorithm, along with a technique in [KY22] to move dual points to321

the right tangent spaces without incurring extra geometric penalties, that we adapt to work with dual322

projections, cf. Lemma A.3. Importantly, the MD algorithm keeps the dual point close to the set 𝒳 by323

using the projection in Line 12, which implies that the point 𝑥𝑘 is close to𝒳 as well, and this is crucial324

to keep low geometric penalties. This MD approach is a mix between follow-the-regularized-leader325

algorithms, that do not project the dual variable, and pure mirror descent algorithms that always326

project the dual variable. In the analysis, we note that partial projection also works, meaning that327

defining a new dual point that is closer to all of the points in the feasible set but without being a full328

projection leads to the same guarantees. Because we use the mirror descent lemma over 𝑇𝑦𝑘
ℳ, what329

we described translates to: we can project the dual 𝑧𝑦𝑘

𝑘 onto a ball defined on 𝑇𝑦𝑘
ℳ that contains the330

pulled-back set Log𝑦𝑘
(𝒳 ) and by means of that trick we can keep the iterates 𝑥𝑘 close to 𝒳 . And at331

the same time, the point for which we prove guarantees, namely 𝑦𝑘, is always in 𝒳 .332

We leave the proofs of most of our results to the supplementary material and state our main theorems333

below. Using the insights explained above, we show the following inequality on 𝜓𝑘, defined below,334

that will be used as a Lypapunov function to prove the convergence rates of Algorithm 1.335

Proposition 2.1. [↓] By using the notation of Algorithm 1, let336

𝜓𝑘
def
= 𝐴𝑘(𝑓(𝑦𝑘)− 𝑓(𝑥*)) +

1

2
‖𝑧𝑦𝑘

𝑘 − 𝑥
*‖2𝑦𝑘

+
𝜉 − 1

2
‖𝑦𝑘 − 𝑧𝑦𝑘

𝑘 ‖
2
𝑦𝑘
.

Then, for all 𝑘 ≥ 1, we have (1−∆𝑘)𝜓𝑘 ≤ 𝜓𝑘−1.337

Finally, we can state our theorem for the optimization of 𝐿-smooth and g-convex functions.338

Theorem 2.2. [↓] Letℳ be a finite-dimensional Hadamard manifold of bounded sectional curvature,339

let 𝑓 : 𝒩 ⊂ℳ→ R be an 𝐿-smooth and g-convex differentiable function in a compact g-convex340
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set 𝒳 ⊂ 𝒩 of diameter 𝐷, and 𝑥* ∈ arg min𝑥∈𝒳 𝑓(𝑥). For 𝑅0
def
= 𝑑(𝑥0, 𝑥

*), and all 𝑘 ≥ 1,341

the iterates 𝑦𝑘 of Algorithm 1 satisfy 𝑦𝑘 ∈ 𝒳 and 𝑓(𝑦𝑘) − 𝑓(𝑥*) = 𝑂
(︁

𝐿𝑅2
0

𝑘2 · 𝜁2
)︁

. That is, after342

𝑇 = 𝑂(𝜁

√︁
𝐿𝑅2

0

𝜀 ) iterations we find an 𝜀-minimizer. Moreover, the total number of queries to the343

gradient and projection oracles is bounded by ̃︀𝑂(𝜁2
√︁

𝐿𝑅2
0

𝜀 ).344

We note that a straightforward corollary from our results is that if we can compute the exact Rie-345

mannian proximal point operator and we use it as the implicit gradient descent step in Line 8 of346

Algorithm 1, then the method is an accelerated proximal point method. One such Riemannian347

algorithm was previously unknown in the literature as well.348

Now we show that Line 8 can be implemented efficiently. The essential part is being able to have and349

use a point with the guarantees of our warm start, cf. Lemma A.4.350

Remark 2.3 (Solving the subproblems). Let 𝒜 be the unaccelerated Riemannian gradient descent351

algorithm in [ZS16, Theorem 15]. This algorithm takes a function ℎ :ℳ→ R with minimizer at 𝑦*352

when restricted to𝒳 ⊂ℳ that is 𝜇′-strongly g-convex and 𝐿′-smooth in𝒳 , whereℳ is a Hadamard353

manifold of bounded sectional curvature and 𝒳 is a geodesically-convex compact set with diameter354

𝐷 and returns a point 𝑝𝑡 satisfying ℎ𝑘(𝑝𝑡)−ℎ𝑘(𝑦*) ≤ 𝜀′ after querying a gradient oracle for ℎ𝑘 and355

a metric-projection oracle 𝒫𝒳 for 𝒳 for 𝑡 = 𝑂((𝜁 + 𝐿′

𝜇′ ) log( (ℎ𝑘(𝑝0)−ℎ𝑘(𝑦
*))+𝐿′𝑑(𝑝0,𝑦

*)2

𝜀′ )) times3.356

If we apply this algorithm to ℎ ← ℎ𝑘(𝑦)
def
= 𝑓(𝑦) + 1

2𝜆𝑑(𝑥𝑘, 𝑦)2, we have 𝑦* ← 𝑦*𝑘, 𝐿′ ← 2𝐿 and357

𝜇′ ← 𝐿/𝜁2𝐷, so the condition number is 𝐿′/𝜇′ = 𝑂(𝜁2𝐷) = 𝑂(𝜁). This is computed taking into358

account that 𝑓 is 𝐿-smooth and 0-strongly g-convex and using the 𝜁2𝐷/𝜆-smoothness and 1/𝜆-strong359

g-convexity of the second summand, which is given by Fact 1.3 and (1). If we initialize the method with360

𝑝0
def
= 𝒫𝒳 (Exp𝑥′

𝑘
(− 1

𝐿′∇ℎ𝑘(𝑥′𝑘))), where 𝑥′𝑘
def
= 𝒫𝒳 (𝑥𝑘), then using (𝐿/𝜁2𝐷)-strong g-convexity of361

ℎ𝑘 to bound 𝐿′𝑑(𝑝0, 𝑦
*
𝑘)2 ≤ 4𝜁2𝐷(ℎ𝑘(𝑝0)− ℎ(𝑦*𝑘)), using Lemma A.4 with 𝑥 ← 𝑥𝑘, 𝑝 ← 𝑦*𝑘, and362

using the guarantees on𝒜, we have that we find a point 𝑦𝑘 satisfying ℎ𝑘(𝑦𝑘)−ℎ𝑘(𝑦*𝑘) ≤ Δ𝑘𝑑(𝑥𝑘,𝑦
*
𝑘)

2

78𝜆363

in ̃︀𝑂(𝜁) queries to the gradient and projection oracles. See Remark A.5 for the computation of this364

value. We note that any other algorithm with linear convergence rates for constrained strongly365

g-convex, smooth problems that works with a metric-projection oracle can be used as a subroutine to366

obtain an accelerated Riemannian algorithm.367

We introduce the algorithm for 𝜇-strongly g-convex functions via a reduction to Algorithm 1, for368

simplicity. We note that the reverse Riemannian reduction yields extra factors in the rates depending369

on 𝑅0 and the curvature, but this reduction does not yield any extra factors in the rates and in fact,370

it is slightly better than the usual convergence that is obtained when one analyzes these kinds of371

accelerated algorithms directly, by having a 𝜇 factor instead of 𝐿 inside of the logarithm.372

Theorem 2.4. [↓] Under the same assumptions as in Theorem 2.2, let now 𝑓 be 𝜇-strongly g-convex.373

Applying the reduction in [Mar22, Theorem 7], we obtain an algorithm that finds an 𝜀-minimizer of 𝑓374

by querying the gradient oracle and projection oracle 𝑂*(𝜁2
√︁

𝐿
𝜇 log(

𝜇𝑅2
0

𝜀 )) times.375

3 Conclusion and future directions376

In this work, we pursued an approach that, by designing inexact Riemannian proximal methods,377

yielded accelerated optimization algorithms that can work with metric projection oracles. Conse-378

quently we were able to work without an undesirable assumption that most previous methods required,379

whose potential satisfiability is not clear: that the iterates stay in certain specified geodesically-convex380

set without enforcing them to be in the set. A future direction of research is the study of whether there381

are algorithms like ours that incur even lower geometric penalties or that do not incur log(1/𝜀) factors.382

Another interesting direction consists of studying generalizations of our approach to manifolds of383

non-negative or of bounded sectional cuvature manifolds.384

3In their theorem, the authors only stated that 𝑂((𝜁 + 𝐿′

𝜇′ ) log(
𝐿′𝐷2

𝜀′ )) queries to the gradient oracle are
enough, but in their proof they show this more refined statement, that we use.
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A Optimization lemmas and proofs716

We start by noting a property that our parameters satisfy.717

Lemma A.1. For the parameter choices of 𝑎𝑘 and 𝐴𝑘−1 in Algorithm 1 we have, for all 𝑘 ≥ 1:718

8𝜆

9
(𝜉𝐴𝑘−1 + 𝑎𝑘) ≥ 𝑎2𝑘 ≥

3𝜆

4
(𝜉𝐴𝑘−1 + 𝜉𝑎𝑘).

Proof. It is a simple computation to check that 𝑎𝑘 and 𝐴𝑘−1 satisfy such inequality. The inequalities719

are equivalent to the following, which trivially holds:720

8

9
((𝑘2 − 𝑘 + 64𝑘𝜉 − 64𝜉 + 1000𝜉2) + (2𝑘 + 64𝜉)) ≥ 4

5
(𝑘2 + 64𝑘𝜉 + 1024𝜉2)

≥ 3

4
((𝑘2 − 𝑘 + 64𝑘𝜉 − 64𝜉 + 1000𝜉2) + (2𝑘𝜉 + 64𝜉2))

�721

We now prove Proposition 2.1, which will allow us to use 𝜓𝑘 as a Lyapunov function to show the722

final convergence rates. The proof will use Lemma A.2 and Lemma A.3, that we state and prove723

afterwards.724

Proof (Proposition 2.1). Inequality (1−∆𝑘)𝜓𝑘 ≤ 𝜓𝑘−1 is equivalent to725

(1−∆𝑘)

(︂
𝐴𝑘(𝑓(𝑦𝑘)− 𝑓(𝑥*)) +

1

2
‖𝑧𝑦𝑘

𝑘 − 𝑥
*‖2𝑦𝑘

+
𝜉 − 1

2
‖𝑦𝑘 − 𝑧𝑦𝑘

𝑘 ‖
2
𝑦𝑘

)︂
≤ 𝐴𝑘−1(𝑓(𝑦𝑘−1)− 𝑓(𝑥*)) +

(︂
1

2
‖𝑧𝑦𝑘−1

𝑘−1 − 𝑥
*‖2𝑦𝑘−1

+
𝜉 − 1

2
‖𝑦𝑘−1 − 𝑧

𝑦𝑘−1

𝑘−1 ‖
2
𝑦𝑘−1

)︂
which, by bounding (1−∆𝑘)(𝑓(𝑦𝑘)− 𝑓(𝑥*)) ≤ 𝑓(𝑦𝑘)− 𝑓(𝑥*) and reorganizing, is implied by the726

following:727

𝐴𝑘−1(𝑓(𝑦𝑘)− 𝑓(𝑦𝑘−1)) +
𝑎𝑘
𝜉

(𝑓(𝑦𝑘)− 𝑓(𝑥*)) ≤ 1

2
‖𝑧𝑦𝑘−1

𝑘−1 − 𝑥
*‖2𝑦𝑘−1

− 1−∆𝑘

2
‖𝑧𝑦𝑘

𝑘 − 𝑥
*‖2𝑦𝑘

+
𝜉 − 1

2

(︁
‖𝑦𝑘−1 − 𝑧

𝑦𝑘−1

𝑘−1 ‖
2
𝑦𝑘−1
− (1−∆𝑘)‖𝑦𝑘 − 𝑧𝑦𝑘

𝑘 ‖
2
𝑦𝑘

)︁
.

We have that due to the projection in Line 12, then 𝑥𝑘 is not very far from any 𝑝 ∈ 𝒳 :728

𝑑(𝑥𝑘, 𝑝) ≤ ‖𝑥𝑘 − 𝑦𝑘−1‖𝑦𝑘−1
+ 𝑑(𝑦𝑘−1, 𝑝)

1
< ‖𝑧𝑦𝑘−1

𝑘−1 − 𝑦𝑘−1‖𝑦𝑘−1
+𝐷

2
≤ 2𝐷, (1)

where 1 holds by the definition of 𝑥𝑘 and the fact 𝑦𝑘−1, 𝑝 ∈ 𝒳 , and 2 is due to the projection729

defining 𝑧𝑦𝑘−1

𝑘−1 . Now we use the first part of Lemma A.2 with both 𝑥← 𝑦𝑘−1 and 𝑥← 𝑥* and we730

bound the resulting errors 𝜀𝑘(·) by using the second part of Lemma A.2. We also use Lemma A.3, so731

it is enough to prove the following:732

𝐴𝑘−1⟨𝑣𝑥𝑘 , 𝑥𝑘 − 𝑦𝑘−1⟩+ (𝑎𝑘/𝜉)⟨𝑣𝑥𝑘 , 𝑥𝑘 − 𝑧
𝑥𝑘

𝑘−1 + 𝑧𝑥𝑘

𝑘−1 − 𝑥
*⟩ − 4𝜆

9
(𝐴𝑘−1 + 𝑎𝑘/𝜉)‖𝑣𝑥𝑘‖2

≤ 1

2
‖𝑧𝑥𝑘

𝑘−1 − 𝑥
*‖2𝑥𝑘

− 1

2
‖𝑧𝑥𝑘

𝑘 − 𝑥
*‖2𝑥𝑘

+
𝜉 − 1

2

(︁
‖𝑥𝑘 − 𝑧

𝑥𝑘

𝑘−1‖
2
𝑥𝑘
− ‖𝑥𝑘 − 𝑧

𝑥𝑘

𝑘 ‖
2
𝑥𝑘

)︁
,

Note that thanks to Lemma A.3 now we have the potentials on the right hand side as expressions in733

the tangent space of 𝑥𝑘. Also, note that we have canceled some potentials proportional to ∆𝑘 coming734

from the bound on the error 𝜀𝑘(·). Now we use that by definition of 𝑥𝑘 we have, for all 𝑣 ∈ 𝑇𝑥𝑘
ℳ,735

𝐴𝑘−1⟨𝑣, 𝑥𝑘 − 𝑦𝑘−1⟩ = −𝑎𝑘⟨𝑣, 𝑥𝑘 − 𝑧
𝑥𝑘

𝑘−1⟩, so we use this fact for 𝑣 = 𝑣𝑥𝑘 and use the following736

identity, that holds by the definion of 𝑧𝑥𝑘

𝑘
def
= 𝑧𝑥𝑘

𝑘−1 − 𝜂𝑘𝑣𝑥𝑘 :737

𝑎𝑘/𝜉

𝜂𝑘
⟨𝜂𝑘𝑣𝑥𝑘 , 𝑧

𝑥𝑘

𝑘−1 − 𝑥
*⟩ =

𝑎𝑘/𝜉

2𝜂𝑘

(︁
𝜂2𝑘‖𝑣𝑥𝑘‖2𝑥𝑘

+ ‖𝑧𝑥𝑘

𝑘−1 − 𝑥
*‖2𝑥𝑘

− ‖𝑧𝑥𝑘

𝑘 − 𝑥
*‖2𝑥𝑘

)︁
.
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so that, after canceling terms, it is enough to prove:738

𝑎𝑘(1− 1/𝜉)⟨−𝑣𝑥𝑘 , 𝑥𝑘 − 𝑧
𝑥𝑘

𝑘−1⟩ −
𝑎𝑘(1− 1/𝜉)

2𝜂𝑘
𝜂2𝑘‖𝑣𝑥𝑘‖2

+ ‖𝑣𝑥𝑘‖2(−4

9
(𝐴𝑘−1𝜆+ 𝑎𝑘𝜆/𝜉) +

𝑎𝑘𝜂𝑘
2

)

≤ 𝜉 − 1

2

(︁
‖𝑥𝑘 − 𝑧

𝑥𝑘

𝑘−1‖
2
𝑥𝑘
− ‖𝑥𝑘 − 𝑧

𝑥𝑘

𝑘 ‖
2
𝑥𝑘

)︁
,

(2)

Now we show that in the previous inequality (2), the first line cancels with the last line. Note that739

(𝑎𝑘(1− 1/𝜉))/𝜂𝑘 = (1− 1/𝜉)/(1/𝜉) = 𝜉 − 1. Thus, by using again the definition of 𝑧𝑥𝑘

𝑘 , we have:740

𝑎𝑘(1− 1/𝜉)

𝜂𝑘
⟨−𝜂𝑘𝑣𝑥𝑘 , 𝑥𝑘−𝑧

𝑥𝑘

𝑘−1⟩ =
𝑎𝑘(1− 1/𝜉)

2𝜂𝑘

(︁
𝜂2𝑘‖𝑣𝑥𝑘‖2𝑥𝑘

+ ‖𝑥𝑘 − 𝑧
𝑥𝑘

𝑘−1‖
2
𝑥𝑘
− ‖𝑥𝑘 − 𝑧

𝑥𝑘

𝑘 ‖
2
𝑥𝑘

)︁
.

Finally, it only remains to prove:741

‖𝑣𝑥𝑘‖2

2𝜉
·
(︂
−8

9
(𝜉𝐴𝑘−1𝜆+ 𝑎𝑘𝜆) + 𝑎2𝑘

)︂
≤ 0, (3)

which holds by Lemma A.1. �742

We now show the two auxiliary lemmas that we used in the previous proof.743

Lemma A.2. Let ℎ𝑘(𝑥)
def
= 𝑓(𝑥) + 1

2𝜆𝑑(𝑥𝑘, 𝑥)2 be the strongly g-convex function used at step 𝑘, and744

let 𝑦*𝑘 = arg min𝑦∈𝒳 ℎ𝑘(𝑦). Then, for 𝑦𝑘 ∈ 𝒳 , if we let 𝑣𝑥𝑘
def
= −Log𝑥𝑘

(𝑦𝑘)/𝜆, then the following745

holds, for all 𝑥 ∈ 𝒳 :746

𝑓(𝑥) ≥ 𝑓(𝑦𝑘) + ⟨𝑣𝑥𝑘 , 𝑥− 𝑥𝑘⟩𝑥𝑘
+
𝜆

2
‖𝑣𝑥𝑘‖2 − 𝜀𝑘(𝑥)

where 𝜀𝑘(𝑥)
def
= − 1

𝜆 ⟨𝑦𝑘 − 𝑦
*
𝑘, 𝑥− 𝑥𝑘⟩𝑥𝑘

+ (ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘)). Moreover, if 𝑦𝑘 satisfies747

ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘) ≤ ∆𝑘𝑑(𝑥𝑘, 𝑦
*
𝑘)2

78𝜆
,

then we have748

−𝜆
2
‖𝑣𝑥𝑘‖2(𝐴𝑘−1 + 𝑎𝑘/𝜉) + 𝑎𝑘𝜀𝑘(𝑥*)/𝜉 +𝐴𝑘−1𝜀𝑘(𝑦𝑘−1)

≤ −4𝜆‖𝑣𝑥𝑘‖2

9
(𝐴𝑘−1 + 𝑎𝑘/𝜉) +

∆𝑘

2

(︁
‖𝑥* − 𝑧𝑥𝑘

𝑘−1‖
2
𝑥𝑘

+ (𝜉 − 1)‖𝑥𝑘 − 𝑧
𝑥𝑘

𝑘−1‖
2
𝑥𝑘

)︁
.

Proof. The function ℎ𝑘 is 1
𝜆 -strongly g-convex because by Fact 1.3 the function 1

2𝑑(𝑥𝑘, 𝑥)2 is 1-749

strongly g-convex in a Hadamard manifold. By the first-order optimality condition of ℎ𝑘 at 𝑦*𝑘 we750

have that 𝑣𝑦𝑘
def
= 𝜆−1 Log𝑦*

𝑘
(𝑥𝑘) ∈ 𝜕(𝑓 + 𝐼𝒳 )(𝑦*𝑘) is a subgradient of 𝑓 + 𝐼𝒳 at 𝑦*𝑘. Thus, we have,751

for all 𝑥 ∈ 𝒳 and for 𝑣𝑥𝑘
def
= Γ

𝑥𝑘

𝑦*
𝑘
(𝑣𝑦𝑘):752

𝑓(𝑥)
1
≥ 𝑓(𝑦*𝑘) + ⟨𝑣𝑦𝑘 , 𝑥− 𝑦

*
𝑘⟩𝑦*

𝑘

2
≥ 𝑓(𝑦*𝑘) + ⟨𝑣𝑥𝑘 , 𝑥− 𝑥𝑘⟩𝑥𝑘

+ 𝜆‖𝑣𝑥𝑘‖2

3
= 𝑓(𝑦𝑘) + ⟨𝑣𝑥𝑘 , 𝑥− 𝑥𝑘⟩𝑥𝑘

+
𝜆

2
‖𝑣𝑥𝑘‖2 +

𝜆

2
‖𝑣𝑥𝑘‖2

+ ⟨𝑣𝑥𝑘 − 𝑣𝑥𝑘 , 𝑥− 𝑥𝑘⟩𝑥𝑘
+

(︂
(𝑓(𝑦*𝑘) +

𝜆

2
‖𝑣𝑥𝑘‖2)− (𝑓(𝑦𝑘) +

𝜆

2
‖𝑣𝑥𝑘‖2)

)︂
4
≥ 𝑓(𝑦𝑘) + ⟨𝑣𝑥𝑘 , 𝑥− 𝑥𝑘⟩𝑥𝑘

+
𝜆

2
‖𝑣𝑥𝑘‖2 +

1

𝜆
⟨𝑦𝑘 − 𝑦*𝑘, 𝑥− 𝑥𝑘⟩𝑥𝑘

− (ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘))
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where 1 holds because 𝑣𝑦𝑘 ∈ 𝜕(𝑓 + 𝐼𝒳 )(𝑦*𝑘) and 𝑥, 𝑦*𝑘 ∈ 𝒳 . In 2 , we used the first part of753

Lemma B.5 along with 𝛿 = 1. We just added and subtracted some terms in 3 , and in 4 , we dropped754
𝜆
2 ‖𝑣

𝑥
𝑘‖2, and we used the definitions of ℎ𝑘, 𝑣𝑥𝑘 , and 𝑣𝑥𝑘 = −Log𝑥𝑘

(𝑦𝑘)/𝜆.755

Now we proceed to prove the second part. The following holds:756

−𝑎𝑘
𝜆𝜉
⟨𝑦𝑘 − 𝑦*𝑘, 𝑥* − 𝑥𝑘⟩𝑥𝑘

−𝐴𝑘−1

1

𝜆
⟨𝑦𝑘 − 𝑦*𝑘, 𝑦𝑘−1 − 𝑥𝑘⟩𝑥𝑘

1
≤ 1

𝜆
‖𝑦𝑘 − 𝑦*𝑘‖𝑥𝑘

· ‖𝑎𝑘
𝜉
𝑥* +𝐴𝑘−1𝑦𝑘−1 − (

𝑎𝑘
𝜉

+𝐴𝑘−1)𝑥𝑘‖𝑥𝑘

2
≤ 1

𝜆
𝑑(𝑦𝑘, 𝑦

*
𝑘) · 𝑎𝑘

𝜉
‖𝑥* − 𝑧𝑥𝑘

𝑘−1 + (𝜉 − 1)(𝑥𝑘 − 𝑧
𝑥𝑘

𝑘−1)‖𝑥𝑘

3
≤ 1

𝜆

√︁
2𝜆(ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘)) · 𝑎𝑘

𝜉

√︀
𝜉
√︁
‖𝑥* − 𝑧𝑥𝑘

𝑘−1‖2𝑥𝑘
+ (𝜉 − 1)‖(𝑥𝑘 − 𝑧

𝑥𝑘

𝑘−1)‖2𝑥𝑘

=

√︃
2𝑎2𝑘(ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘))

∆𝑘𝜆𝜉
·
√︀

∆𝑘

√︁
‖𝑥* − 𝑧𝑥𝑘

𝑘−1‖2𝑥𝑘
+ (𝜉 − 1)‖(𝑥𝑘 − 𝑧

𝑥𝑘

𝑘−1)‖2𝑥𝑘

4
≤ 𝑎2𝑘(ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘))

∆𝑘𝜆𝜉
+

∆𝑘

2
(‖𝑥* − 𝑧𝑥𝑘

𝑘−1‖
2
𝑥𝑘

+ (𝜉 − 1)‖(𝑥𝑘 − 𝑧
𝑥𝑘

𝑘−1)‖2𝑥𝑘
),

(4)

where 1 groups some terms and uses Cauchy-Schwartz. In inequality 2 , for the first term we757

bounded the distance between 𝑦*𝑘 and 𝑦𝑘 estimated from 𝑇𝑥𝑘
ℳ by the actual distance, which is a758

property that holds in Hadamard manifolds and it holds by the first part of Corollary B.2 with 𝛿 = 1,759

𝑝 ← 𝑦*𝑘, 𝑦 ← 𝑦𝑘, 𝑥 ← 𝑥𝑘, 𝑧𝑦 ← 0. The second term is substituted by a term of equal value by760

using Euclidean trigonometry in 𝑇𝑥𝑘
ℳ, as in the following. Let 𝑤 def

= 1
𝑎𝑘/𝜉+𝐴𝑘−1

(
𝑎𝑘

𝜉 Log𝑥𝑘
(𝑥*) +761

𝐴𝑘−1 Log𝑥𝑘
(𝑦𝑘−1)) and let 𝑢 ∈ 𝑇𝑥𝑘

be the point in the line containing Log𝑥𝑘
(𝑦𝑘−1) and 0 =762

Log𝑥𝑘
(𝑥𝑘) ∈ 𝑇𝑥𝑘

such that the triangle with vertices 0, Log𝑥𝑘
(𝑦𝑘−1) and 𝑤 and the triangle with763

vertices 𝑢, Log𝑥𝑘
(𝑦𝑘−1) and Log𝑥𝑘

(𝑥*) are similar triangles, and so764

‖Log𝑥𝑘
(𝑥*)− 𝑢‖

‖𝑤 − Log𝑥𝑘
(𝑥𝑘)‖

5
=
‖Log𝑥𝑘

(𝑥*)− Log𝑥𝑘
(𝑦𝑘−1)‖

‖𝑤 − Log𝑥𝑘
(𝑦𝑘−1)‖

6
=

𝐴𝑘−1 + 𝑎𝑘/𝜉

𝑎𝑘/𝜉
. (5)

We used the triangle similarity in 5 and in 6 we used the definition of 𝑤 as a convex combination765

of Log𝑥𝑘
(𝑥*) and Log𝑥𝑘

(𝑦𝑘−1). It is enough to show 𝑢 = 𝜉𝑧𝑥𝑘

𝑘−1 as in such a case what we applied766

in 2 is equivalent to the equality (5) above. By the definition of 𝑥𝑘, we have 7 below and by767

triangle similarity we have 8 below:768

𝑧𝑥𝑘

𝑘−1

7
= −

𝐴𝑘−1

𝑎𝑘
Log𝑥𝑘

(𝑦𝑘−1)
8
=

𝐴𝑘−1

𝑎𝑘
· 𝑎𝑘/𝜉
𝐴𝑘−1

𝑢 =
1

𝜉
𝑢,

as desired. In the next inequality 3 , we used that by (1/𝜆)-strong g-convexity of ℎ𝑘 and by optimality769

of 𝑦*𝑘, we have 1
2𝜆𝑑(·, 𝑦*𝑘)2 ≤ ℎ𝑘(·)−ℎ𝑘(𝑦*𝑘). For the second term, we used that for vectors 𝑏, 𝑐 ∈ R𝑛770

and 𝜔 ∈ R≥0, we have, by Young’s inequality, ‖𝑏 + 𝑤𝑐‖ =
√︀
‖𝑏‖2 + 𝜔2‖𝑐‖2 + 2⟨

√
𝜔𝑏,
√
𝜔𝑐⟩ ≤771 √︀

(1 + 𝜔)(‖𝑏‖2 + 𝜔‖𝑐‖2). In 4 we used Young’s inequality.772

Before we conclude, we note that773

𝑑(𝑥𝑘, 𝑦
*
𝑘) ≤

√
2𝑑(𝑥𝑘, 𝑦𝑘), (6)

which is implied by the following, where we use the same as in 3 above, the assumption on 𝑦𝑘 and774

∆𝑘 ≤ 1:775

𝑑(𝑥𝑘, 𝑦
*
𝑘) ≤ 𝑑(𝑥𝑘, 𝑦𝑘) + 𝑑(𝑦𝑘, 𝑦

*
𝑘) ≤ 𝑑(𝑥𝑘, 𝑦𝑘) +

√︁
2𝜆(ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘))

≤ 𝑑(𝑥𝑘, 𝑦𝑘) +
√︁

∆𝑘/34 · 𝑑(𝑥𝑘, 𝑦
*
𝑘) ≤ 𝑑(𝑥𝑘, 𝑦𝑘) + 𝑑(𝑥𝑘, 𝑦

*
𝑘)/4.
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Finally, we can make use of (4) and (6) to obtain the claim in the second part of the lemma:776

−𝜆
2
‖𝑣𝑥𝑘‖2(𝐴𝑘−1 + 𝑎𝑘/𝜉) + 𝑎𝑘𝜀𝑘(𝑥*)/𝜉 +𝐴𝑘−1𝜀𝑘(𝑦𝑘−1)− ∆𝑘

2
‖𝑥* − 𝑧𝑥𝑘

𝑘−1‖
2
𝑥𝑘

−∆𝑘

𝜉 − 1

2
‖(𝑥𝑘 − 𝑧

𝑥𝑘

𝑘−1)‖2𝑥𝑘

≤ −𝜆
2
‖𝑣𝑥𝑘‖2(𝐴𝑘−1 + 𝑎𝑘/𝜉) +

(︂
𝐴𝑘−1 + 𝑎𝑘/𝜉 +

𝑎2𝑘
∆𝑘𝜆𝜉

)︂
(ℎ𝑘(𝑦𝑘)− ℎ𝑘(𝑦*𝑘))

1
≤ −𝜆

2
‖𝑣𝑥𝑘‖2(𝐴𝑘−1 + 𝑎𝑘/𝜉) + (𝐴𝑘−1 + 𝑎𝑘/𝜉)

(︂
1 +

𝑎2𝑘
(𝜉𝐴𝑘−1 + 𝑎𝑘)𝜆

)︂
𝑑(𝑥𝑘, 𝑦𝑘)2

34𝜆

2
≤ −𝜆

2
‖𝑣𝑥𝑘‖2(𝐴𝑘−1 + 𝑎𝑘/𝜉) +

𝑑(𝑥𝑘, 𝑦𝑘)2

18𝜆
(𝐴𝑘−1 + 𝑎𝑘/𝜉)

3
= −4𝜆‖𝑣𝑥𝑘‖2

9
(𝐴𝑘−1 + 𝑎𝑘/𝜉),

where 1 holds by the assumption on 𝑦𝑘, ∆𝑘 ≤ 1, and (6). Inequality 2 uses the upper bound on 𝑎2𝑘777

in Lemma A.1, and 3 uses the definition 𝑣𝑥𝑘
def
= −Log𝑥𝑘

(𝑦𝑘)/𝜆.778

�779

The following lemma allows to move the regularized lower bounds on the objective without incurring780

extra geometric penalties.781

Lemma A.3 (Translating Potentials with no Geometric Penalty). Using the variables in Algo-782

rithm 1, for any ∆𝑘 ∈ [0, 1), we have783

‖𝑧𝑥𝑘

𝑘−1 − 𝑥
*‖2𝑥𝑘

− (1−∆𝑘)‖𝑧𝑥𝑘

𝑘 − 𝑥
*‖2𝑥𝑘

+ (𝜉 − 1)
(︁
‖𝑥𝑘 − 𝑧

𝑥𝑘

𝑘−1‖
2
𝑥𝑘
− (1−∆𝑘)‖𝑥𝑘 − 𝑧

𝑥𝑘

𝑘 ‖
2
𝑥𝑘

)︁
≤ ‖𝑧𝑦𝑘−1

𝑘−1 − 𝑥
*‖2𝑦𝑘−1

− (1−∆𝑘)‖𝑧𝑦𝑘

𝑘 − 𝑥
*‖2𝑦𝑘

+ (𝜉 − 1)
(︁
‖𝑦𝑘−1 − 𝑧

𝑦𝑘−1

𝑘−1 ‖
2
𝑦𝑘−1
− (1−∆𝑘)‖𝑦𝑘 − 𝑧𝑦𝑘

𝑘 ‖
2
𝑦𝑘

)︁
.

Proof. Firstly, by the projection step in Line 12, we have784

‖𝑧𝑦𝑘−1

𝑘−1 − 𝑥
*‖2𝑦𝑘

≥ ‖𝑧𝑦𝑘−1

𝑘−1 − 𝑥
*‖2𝑦𝑘

and (𝜉 − 1)‖𝑧𝑦𝑘−1

𝑘−1 ‖
2
𝑦𝑘
≥ (𝜉 − 1)‖𝑧𝑦𝑘−1

𝑘−1 ‖
2
𝑦𝑘

(7)

since the operation is a simple Euclidean projection onto the closed ball �̄�(0, 𝐷) in 𝑇𝑦𝑘
ℳ . By the785

second part of Corollary B.2, 𝑦 = 𝑥𝑘 and 𝑥 = 𝑦𝑘−1 and by (1), we have 1 below786

‖𝑧𝑦𝑘−1

𝑘−1 − 𝑥
*‖2𝑦𝑘−1

+ (𝜉 − 1)‖𝑧𝑦𝑘−1

𝑘−1 ‖
2
𝑦𝑘−1

1
≥ ‖𝑧𝑥𝑘

𝑘−1 − 𝑥
*‖2𝑥𝑘

+ (𝜁2𝐷 − 1)‖𝑧𝑥𝑘

𝑘−1‖
2
𝑥𝑘

+ (𝜉 − 𝜁2𝐷)‖𝑧𝑦𝑘−1

𝑘−1 ‖
2
𝑦𝑘−1

2
≥ ‖𝑧𝑥𝑘

𝑘−1 − 𝑥
*‖2𝑥𝑘

+ (𝜉 − 1)‖𝑧𝑥𝑘

𝑘−1‖
2
𝑥𝑘

+ (𝜉 − 𝜁2𝐷)

(︃(︂
𝐴𝑘−1 + 𝑎𝑘
𝐴𝑘−1

)︂2

− 1

)︃
‖𝑧𝑥𝑘

𝑘−1‖
2
𝑥𝑘

3
≥ ‖𝑧𝑥𝑘

𝑘−1 − 𝑥
*‖2𝑥𝑘

+ (𝜉 − 1)‖𝑧𝑥𝑘

𝑘−1‖
2
𝑥𝑘

+
3(𝜉 − 1)

2

(︂
1

1− 𝜏𝑘
− 1

)︂
‖𝑧𝑥𝑘

𝑘−1‖
2
𝑥𝑘
,

(8)

and 2 uses the definition of 𝑥𝑘. In 3 , we used the definition of 𝜉 = 4𝜁2𝐷−3 that implies 𝜉−𝜁2𝐷 ≥787

3
4 (𝜉 − 1) and for 𝜏𝑘

def
= 𝑎𝑘/(𝑎𝑘 + 𝐴𝑘−1) we have that (1 +

𝑎𝑘

𝐴𝑘−1
)2 − 1 ≥ 2𝑎𝑘

𝐴𝑘−1
= 2( 1

1−𝜏𝑘
− 1).788

Now, using the second part of Lemma B.1 with 𝑦 = 𝑦𝑘, 𝑥 = 𝑥𝑘 𝑧
𝑥 = −𝜂𝑘𝑣𝑥𝑘 , 𝑎𝑥 = 𝑧𝑥𝑘

𝑘−1, so that789

𝑧𝑥 + 𝑎𝑥 = 𝑧𝑥𝑘

𝑘 and 𝑧𝑦 + 𝑎𝑦 = 𝑧𝑦𝑘

𝑘 and790

𝑟 =
‖Log𝑥𝑘

(𝑦𝑘)‖
‖𝑧𝑥‖

=
𝜆‖𝑣𝑥𝑘‖
𝜂𝑘‖𝑣𝑥𝑘‖

=
𝜉𝜆

𝑎𝑘
=

5𝜉

2𝑘 + 64𝜉
< 5/6 < 1. (9)

19



Note that by the choice of parameters and the fact that 𝑟 < 1, the assumptions in Lemma B.1 are791

satisfied. Thus, the following holds792

‖𝑧𝑥𝑘

𝑘 − 𝑥
*‖2𝑥𝑘

+ (𝜉 − 1)‖𝑧𝑥𝑘

𝑘 ‖
2
𝑥𝑘

+
𝜉 − 1

2

(︂
𝑟

1− 𝑟

)︂
‖𝑧𝑥𝑘

𝑘−1‖
2 ≥ ‖𝑧𝑦𝑘

𝑘 − 𝑥
*‖2𝑦𝑘

+ (𝜉 − 1)‖𝑧𝑦𝑘

𝑘 ‖
2
𝑦𝑘
.

(10)

Hence, combining (7), (8) and (10) we obtain that it is enough to prove793

−(1−∆𝑘)

(︂
𝑟

1− 𝑟

)︂
+ 3

(︂
1

1− 𝜏𝑘
− 1

)︂
≥ 0,

The proof will be finished if we prove the result for ∆𝑘 = 0. If we use this last inequality, and the794

fact that for 𝑟 ≤ 5/6, we have 𝑟
1−𝑟 ≤ 3

(︁
1

1−3𝑟/4 − 1
)︁

, we deduce that it suffices to show 𝜏𝑘 ≥ 3
4𝑟 to795

conclude796
𝑟

1− 𝑟
≤ 3

(︂
1

1− 3𝑟/4
− 1

)︂
≤ 3

(︂
1

1− 𝜏𝑘
− 1

)︂
.

Such inequality, namely 𝜏𝑘 ≥ 3
4𝑟, is equivalent to 𝑎2

𝑘

𝜆 ≥
3𝜉
4 (𝑎𝑘 +𝐴𝑘−1) and it holds by Lemma A.1.797

�798

Algorithm 1 employs a linearly convergent RGD as a subroutine in order to compute Line 8. Below,799

we show how this is done and we note that any other linearly convergent algorithm can be used to800

solve this step. We first describe a warm start that we will use for RGD. The warm start allows to801

know when to stop the subroutine at the same time that it will guarantee fast convergence. One should802

think about this lemma as being applied to ℎ𝑘(·) def
= 𝑓(·) + 1

2𝜆𝑑(·, 𝑥𝑘)2. Also, note that in that case803

we can compute the gradient of ℎ at any point 𝑦 ∈ 𝒳 as ∇ℎ(𝑦) = ∇𝑓(𝑦) + 1
𝜆 Log𝑦(𝑥𝑘).804

Lemma A.4 (Warm start). Letℳ be a Hadamard manifold, let 𝑥 ∈ ℳ, 𝒳 ⊂ ℳ be a uniquely805

geodesic convex set of diameter 𝐷 and ℎ :ℳ→ R a geodesically convex and 𝐿′-smooth function.806

Assume access to a projection operator 𝒫𝒳 on 𝒳 . Let 𝑥′ = 𝒫𝒳 (𝑥) and 𝑥+ def
= Exp𝑥′(− 1

𝐿′∇ℎ(𝑥′))807

and 𝑝0
def
= 𝒫𝒳 (𝑥+) and 𝐷′ def

= 𝑑(𝑥+, 𝑥′) = ‖∇ℎ(𝑥′)‖/𝐿′. We have that, for all 𝑝 ∈ 𝒳 :808

ℎ(𝑝0)− ℎ(𝑝) ≤ 𝜁𝐷′𝐿′

2
𝑑(𝑥′, 𝑝)2 ≤ 𝜁𝐷′𝐿′

2
𝑑(𝑥, 𝑝)2.

Proof. With the notation of the lemma, we have, by smoothness of ℎ, that the following quadratic809

𝑄 : 𝑇𝑥′ℳ→ R, 𝑣 ↦→ ℎ(𝑥′) + 𝐿′

2 ‖𝑥
+ − 𝑣‖2𝑥′ − 𝐿′

2 ‖𝑥
+ − 𝑥′‖2𝑥′ induces an upper bound on ℎ in 𝒳 ,810

via Exp𝑥′(·). Thus, we have811

−𝜁𝐷
′𝐿′

2
𝑑(𝑥, 𝑝)2 + ℎ(𝑝0)

1
≤ −𝜁𝐷

′𝐿′

2
𝑑(𝑥′, 𝑝)2 + ℎ(𝑝0)

2
≤ −𝜁𝐷

′𝐿′

2
𝑑(𝑥′, 𝑝)2 +𝑄(Log𝑥′(𝑝0))

3
≤ −𝜁𝐷

′𝐿′

2
𝑑(𝑥′, 𝑝)2 +

(︂
ℎ(𝑥′) +

𝐿′

2
𝑑(𝑥+, 𝑝0)2 − 𝐿′

2
𝑑(𝑥+, 𝑥′)2

)︂
4
≤ −𝜁𝐷

′𝐿′

2
𝑑(𝑥′, 𝑝)2 +

(︂
ℎ(𝑥′) +

𝐿′

2
𝑑(𝑥+, 𝑝)2 − 𝐿′

2
𝑑(𝑥+, 𝑥′)2

)︂
5
≤ −𝐿′⟨Log𝑥′(𝑝),Log𝑥′(𝑥+)⟩+ ℎ(𝑥′)

6
= −𝐿′⟨Log𝑥′(𝑝),−

1

𝐿′∇ℎ(𝑥′)⟩+ ℎ(𝑥′)

7
≤ ℎ(𝑝).

We used the projection property of 𝑥′ = 𝒫𝒳 (𝑥) in 1 . We used smoothness in 2 . In 3 , we812

used the first part of Corollary B.2 with 𝛿𝐷′ = 1, 𝑟 = 1, 𝑥 ← 𝑥′, 𝑦 ← 𝑥+, 𝑝 ← 𝑝0 to bound the813
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estimated distance ‖𝑥+ − 𝑝0‖𝑥′ by the actual distance 𝑑(𝑥+, 𝑝0). We used the projection property814

of 𝑝0 = 𝒫𝒳 (𝑥+) in 4 . In 5 , we used the version of Corollary B.3 in Remark B.4. We used the815

definition of 𝑥+ in 6 , and we conclude in 7 by using g-convexity of ℎ. �816

Here we finish the computations of the reasoning in Remark 2.3.817

Remark A.5. Let 𝐷′′ def
= (𝐿𝑓,𝒳 + 2𝐿𝐷/𝜁2𝐷)/𝐿′, where 𝐿𝑓,𝒳 is the Lipschitz constant of818

𝑓 in 𝒳 . If we initialize the projected RGD method in [ZS16, Theorem 15] with 𝑝0
def
=819

𝒫𝒳 (Exp𝑥′
𝑘
(− 1

𝐿′∇ℎ𝑘(𝑥′𝑘))), where 𝑥′𝑘
def
= 𝒫𝒳 (𝑥𝑘), then using (𝐿/𝜁2𝐷)-strong g-convexity of ℎ𝑘 to820

bound 𝐿′𝑑(𝑝0, 𝑦
*
𝑘)2 ≤ 4𝜁2𝐷(ℎ𝑘(𝑝0)− ℎ(𝑦*𝑘)), using Lemma A.4 with 𝑥← 𝑥𝑘, 𝑝← 𝑦*𝑘,821

𝐷′ ← ‖∇ℎ𝑘(𝑥′)‖/𝐿′ ≤ (‖∇𝑓(𝑥′)‖+ 𝐿‖Log𝑥𝑘
(𝑥′)‖/𝜁2𝐷)/𝐿′ ≤ (𝐿𝑓,𝒳 + 2𝐿𝐷/𝜁2𝐷)/𝐿′ = 𝐷′′,

and using the guarantees on 𝒜, we have that we find a point 𝑦𝑘 satisfying ℎ𝑘(𝑦𝑘) − ℎ𝑘(𝑦*𝑘) ≤822

Δ𝑘𝑑(𝑥𝑘,𝑦
*
𝑘)

2

78𝜆 in ̃︀𝑂(𝜁) queries to the gradient and projection oracles. Indeed, the number of queries is823

given by824

𝑂

(︂
𝜁2𝐷 log

(ℎ𝑘(𝑝0)− ℎ𝑘(𝑦*𝑘)) + 𝐿′𝑑(𝑝0, 𝑦
*
𝑘)2

∆𝑘𝑑(𝑥𝑘, 𝑦
*
𝑘)2/(78𝜁2𝐷/𝐿)

)︂
= 𝑂

(︂
𝜁 log

78𝜁 · (1 + 4𝜁2𝐷)(𝜁𝐷′𝐿′/2)𝑑(𝑥𝑘, 𝑦
*
𝑘)2

𝐿∆𝑘𝑑(𝑥𝑘, 𝑦
*
𝑘)2

)︂
= 𝑂

(︂
𝜁 log

(︂
𝜁 · 𝜁𝐷′

∆𝑘

)︂)︂
= 𝑂

(︂
𝜁 log

(︂
𝜁 · 𝜁𝐷′′

∆𝑘

)︂)︂
.

Note we know that on the one hand we can stop the algorithm after 𝑂(𝜁 log( 𝜁·𝜁𝐷′
Δ𝑘

)) iterations which825

is a value we can compute, including constants, since we can compute 𝐷′. On the other hand the826

worst-case complexity can be expressed as 𝑂(𝜁 log( 𝜁·𝜁𝐷′′
Δ𝑘

)) but we do not need to have access to827

𝐿𝑓,𝒳 /𝐿
′. Note that if there is a point 𝑥* ∈ 𝒳 such that ∇𝑓(𝑥*) = 0, then we have by smoothness828

that 𝐿𝑓,𝒳 = 𝑂(𝐿𝐷) and therefore 𝐷′′ = 𝑂(𝐷).829

Finally, we use Proposition 2.1 and Remark 2.3 to show the final convergence rates for g-convex830

functions.831

Proof (Theorem 2.2). Given the inequality (1 − ∆𝑘)𝜓𝑘 ≤ 𝜓𝑘−1, proven in Proposition 2.1, we832

can use 𝜓𝑘 as a Lyapunov function in order to prove convergence rates of Algorithm 1. It follows833

straightforwardly by definition of 𝜓𝑘, in the following way834

𝑓(𝑦𝑘)− 𝑓(𝑥*) ≤ 𝜓𝑘

𝐴𝑘

≤
𝑘∏︁

𝑖=1

(1−∆𝑖)
−1 𝜓0

𝐴𝑘

1
≤ 2𝜓0

𝐴𝑘

2
≤ 2𝐿𝑅2

0

(︂
𝐴0

𝐴𝑘

+
1

4𝐿𝐴𝑘

)︂

= 𝑂

⎛⎝𝐿𝑅2
0

⎛⎝ 𝜆𝜉

𝜆
(︁

𝑘2+𝜉𝑘
𝜉 + 𝜉

)︁ +
1

𝜆𝐿
(︁

𝑘2+𝜉𝑘
𝜉 + 𝜉

)︁
⎞⎠⎞⎠

= 𝑂

(︂
𝐿𝑅2

0

(︂
𝜉2

𝑘2 + 𝜉𝑘 + 𝜉2

)︂)︂
3
= 𝑂

(︂
𝐿𝑅2

0

𝑘2
· 𝜁2
)︂
.

In 1 , we used
∏︀𝑘

𝑖=1(1 − ∆𝑘) =
∏︀𝑘

𝑖=1
𝑖(𝑖+2)
(𝑖+1)2 = 𝑘+2

2(𝑘+1) ≥
1
2 . We used smoothness in 2 . Note835

𝜉−1
2 ‖𝑦0−𝑧

𝑦0

0 ‖𝑦0
= 0 and ‖𝑧𝑦0

0 −𝑥*‖2𝑦0
= 𝑅2

0. In 3 , we used 𝜉 = 𝑂(𝜁) and we dropped some terms836

in the denominator. Secondly, since the computation of the approximate proximal operator takes837 ̃︀𝑂(𝜁) queries to the gradient and projection oracle, cf. Remark 2.3, and ∆−1
𝑘 ≤ ∆−1

𝑇 = (𝑇 + 1)2,838

then the total number of queries made to these oracles to obtain an 𝜀-minimizer is bounded by839 ̃︀𝑂(︂𝜁2√︁𝐿𝑅2
0

𝜀

)︂
. �840

We present now the proof that yields an accelerated algorithm for strongly g-convex and smooth841

functions.842

Proof (Theorem 2.4). The statement of the reduction in [Mar22, Theorem 7] assumes a function843

𝑓 :ℳ→ R to be optimized has a global minimizer in an unconstrained problem, but the same proof844

of this theorem works if we have a 𝜇-strongly g-convex and 𝐿-smooth function 𝑓 defined over an open845
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set containing a closed geodesically convex set 𝒳 and a minimizer 𝑥* of this function restricted to846

𝒳 . The reduction provides an algorithm for optimizing 𝑓 by using 𝑂(Timens(𝐿, 𝜇,𝑅) log(𝜇𝑅2/𝜀))847

queries to the oracle, where Timens(𝐿, 𝜇,𝑅) is the number of times the oracle is queried by the848

non-strongly g-convex algorithm if the initial distance is upper bounded by 𝑅 and if we require849

accuracy 𝜇𝑅2/4. In our case, it is Timens(𝐿, 𝜇,𝑅) = 𝑂(𝜁2 log(𝜁2
√︀
𝐿/𝜇)

√︁
𝐿
𝜇 ) = 𝑂*(𝜁2

√︁
𝐿
𝜇 ), so850

the result follows. We note that the reverse reduction yields extra geometric penalties but this one851

does not. �852

B Geometric lemmas853

In this section, we state and prove Lemma B.5, which is used in the proof of Theorem 2.2 to show854

that the lower bound given by 𝑓(𝑦*𝑘) + ⟨𝑣𝑦𝑘 , 𝑥 − 𝑦*𝑘⟩ that is affine if pulled-back to 𝑇𝑦*
𝑘

can be855

bounded by another function, that is affine if pulled back to 𝑥𝑘. We also include and prove, with856

some generalizations, some known Riemannian inequalities that are used in Riemannian optimization857

methods and that we also use. The second part of the following lemma appeared in [KY22]. Similarly858

with the second part of the corollary that follows.859

In this section, unless otherwise specified,ℳ is an 𝑛-dimensional Riemannian manifold of bounded860

sectional curvature.861

Lemma B.1. Let 𝑥, 𝑦, 𝑝 ∈ℳ be the vertices of a uniquely geodesic triangle 𝒯 of diameter 𝐷, and862

let 𝑧𝑥 ∈ 𝑇𝑥ℳ, 𝑧𝑦 def
= Γ𝑦

𝑥(𝑧𝑥) + Log𝑦(𝑥), such that 𝑦 = Exp𝑥(𝑟𝑧𝑥) for some 𝑟 ∈ [0, 1). If we take863

vectors 𝑎𝑦 ∈ 𝑇𝑦ℳ, 𝑎𝑥 def
= Γ𝑥

𝑦(𝑎𝑦) ∈ 𝑇𝑥ℳ, then we have the following, for all 𝜉 ≥ 𝜁𝐷:864

‖𝑧𝑦 + 𝑎𝑦 − Log𝑦(𝑝)‖2𝑦 + (𝛿𝐷 − 1)‖𝑧𝑦 + 𝑎𝑦‖2𝑦

≥ ‖𝑧𝑥 + 𝑎𝑥 − Log𝑥(𝑝)‖2𝑥 + (𝛿𝐷 − 1)‖𝑧𝑥 + 𝑎𝑥‖2𝑥 −
𝜉 − 𝛿𝐷

2

(︂
𝑟

1− 𝑟

)︂
‖𝑎𝑥‖2𝑥,

and865

‖𝑧𝑦 + 𝑎𝑦 − Log𝑦(𝑝)‖2𝑦 + (𝜉 − 1)‖𝑧𝑦 + 𝑎𝑦‖2𝑦

≤ ‖𝑧𝑥 + 𝑎𝑥 − Log𝑥(𝑝)‖2𝑥 + (𝜉 − 1)‖𝑧𝑥 + 𝑎𝑥‖2𝑥 +
𝜉 − 𝛿𝐷

2

(︂
𝑟

1− 𝑟

)︂
‖𝑎𝑥‖2𝑥.

Proof. Let 𝛾 be the unique geodesic in 𝒯 such that 𝛾(0) = 𝑥 and 𝛾(𝑟) = 𝑦. We have 𝛾′(0) = 𝑧𝑥.866

Along 𝛾, we define the vector field 𝑉 (𝑡) = Γ𝑡
0(𝛾)(𝑧𝑥 − 𝑡𝛾′(0)). Then, it is 𝑉 ′(𝑡) = −𝛾′(𝑡),867

and ‖𝑉 (𝑡)‖ = ‖𝑎 + (1 − 𝑡)𝑧𝑥‖. We will make use of the potential 𝑤 : [0, 𝑟] → R defined as868

𝑤(𝑡) = ‖Log𝛾(𝑡)(𝑥)− 𝑉 (𝑡)‖2. We can compute869

𝑑

𝑑𝑡
𝑤(𝑡) = 2⟨𝐷𝑡(Log𝛾(𝑡)(𝑥)− 𝑉 (𝑡)),Log𝛾(𝑡)(𝑥)− 𝑉 (𝑡)⟩

= 2⟨𝐷𝑡 Log𝛾(𝑡)(𝑥),Log𝛾(𝑡)(𝑥)⟩ − 2⟨𝐷𝑡 Log𝛾(𝑡)(𝑥), 𝑉 (𝑡)⟩
− 2⟨𝐷𝑡𝑉 (𝑡),Log𝛾(𝑡)(𝑥)⟩+ 2⟨𝐷𝑡𝑉 (𝑡), 𝑉 (𝑡)⟩

= −2⟨𝐷𝑡(Log𝛾(𝑡)(𝑥), 𝑉 (𝑡)⟩+ 2⟨𝐷𝑡𝑉 (𝑡), 𝑉 (𝑡)⟩.

(11)

Now, we bound the first summand. We use that for the function Φ𝑝(𝑥) = 1
2𝑑(𝑥, 𝑝)2 it holds, for870

every 𝜉 ≥ 𝜁𝐷:871

−𝜉 − 𝛿𝐷
2
‖𝑣‖2 ≤ ⟨Hess Φ𝑝(𝛾(𝑡))[𝑣]− 𝜉 + 𝛿𝐷

2
𝑣, 𝑣⟩ ≤ 𝜉 − 𝛿𝐷

2
‖𝑣‖2,
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due to Fact 1.3. So for 𝛽 ∈ {−1, 1} we obtain the following bound:872

−2𝛽⟨𝐷𝑡 Log𝛾(𝑡)(𝑥), 𝑉 (𝑡)⟩ = 2𝛽⟨Hess Φ𝑝(𝛾(𝑡))[𝛾′(𝑡)], 𝑉 (𝑡)⟩

= 2𝛽⟨( Hess Φ𝑝(𝛾(𝑡))− 𝜉 + 𝛿𝐷
2

𝐼 )[𝛾′(𝑡)], 𝑉 (𝑡)⟩+ 𝛽⟨(𝜉 + 𝛿𝐷)𝛾′(𝑡), 𝑉 (𝑡)⟩

≤ 2‖Hess Φ𝑝(𝛾(𝑡))− 𝜉 + 𝛿𝐷
2

𝐼‖ · ‖𝛾′(𝑡)‖ · ‖𝑉 (𝑡)‖+ 𝛽⟨(𝜉 + 𝛿𝐷)𝛾′(𝑡), 𝑉 (𝑡)⟩

≤ 2
𝜉 − 𝛿𝐷

2
‖𝛾′(𝑡)‖ · ‖𝑉 (𝑡)‖+ 𝛽⟨(𝜉 + 𝛿𝐷)𝛾′(𝑡), 𝑉 (𝑡)⟩

1
= 2

𝜉 − 𝛿𝐷
2
‖𝑧𝑥‖ · ‖𝑎+ (1− 𝑡)𝑧𝑥‖+ 𝛽(𝜉 + 𝛿𝐷)⟨𝑧𝑥, 𝑎+ (1− 𝑡)𝑧𝑥⟩

Gauss lemma is used in the last summand of 1 . Now, if 𝛽 = −1, we have873

−2⟨𝐷𝑡 Log𝛾(𝑡)(𝑥), 𝑉 (𝑡)⟩ ≥ −2
𝜉 − 𝛿𝐷

2
‖𝑧𝑥‖ · ‖𝑎+ (1− 𝑡)𝑧𝑥‖+ (𝜉 + 𝛿𝐷)⟨𝑧𝑥, 𝑎+ (1− 𝑡)𝑧𝑥⟩

1
≥ − 𝜉 − 𝛿𝐷

2(1− 𝑡)
(‖(1− 𝑡)𝑧𝑥‖2 + ‖𝑎+ (1− 𝑡)𝑧𝑥‖2) + (𝜉 − 𝛿𝐷)⟨𝑧𝑥, 𝑎+ (1− 𝑡)𝑧𝑥⟩ − 2𝛿𝐷⟨−𝑧𝑥, 𝑎+ (1− 𝑡)𝑏⟩

≥ − 𝜉 − 𝛿𝐷
2(1− 𝑡)

(‖𝑎‖2 + 2⟨𝑎+ (1− 𝑡)𝑧𝑥⟩) + (𝜉 − 𝛿𝐷)⟨𝑧𝑥, 𝑎⟩ − 2𝛿𝐷⟨−𝑧𝑥, 𝑎+ (1− 𝑡)𝑏⟩

≥ − 𝜉 − 𝛿𝐷
2(1− 𝑡)

‖𝑎‖2 − 2𝛿𝐷⟨𝐷𝑡𝑉 (𝑡), 𝑉 (𝑡)⟩.

(12)

On the other hand, analogously, if 𝛽 = 1, we have874

−2⟨𝐷𝑡 Log𝛾(𝑡)(𝑥), 𝑉 (𝑡)⟩ ≤ 2
𝜉 − 𝛿𝐷

2
‖𝑧𝑥‖ · ‖𝑎+ (1− 𝑡)𝑧𝑥‖+ (𝜉 + 𝛿𝐷)⟨𝑧𝑥, 𝑎+ (1− 𝑡)𝑧𝑥⟩

1
≤ 𝜉 − 𝛿𝐷

2(1− 𝑡)
(‖(1− 𝑡)𝑧𝑥‖2 + ‖𝑎+ (1− 𝑡)𝑧𝑥‖2)− (𝜉 − 𝛿𝐷)⟨𝑧𝑥, 𝑎+ (1− 𝑡)𝑧𝑥⟩ − 2𝜉⟨−𝑧𝑥, 𝑎+ (1− 𝑡)𝑏⟩

≤ 𝜉 − 𝛿𝐷
2(1− 𝑡)

(‖𝑎‖2 + 2⟨𝑎+ (1− 𝑡)𝑧𝑥⟩)− (𝜉 − 𝛿𝐷)⟨𝑧𝑥, 𝑎⟩ − 2𝜉⟨−𝑧𝑥, 𝑎+ (1− 𝑡)𝑏⟩

≤ 𝜉 − 𝛿𝐷
2(1− 𝑡)

‖𝑎‖2 − 2𝜉⟨𝐷𝑡𝑉 (𝑡), 𝑉 (𝑡)⟩,

(13)

where 1 is Young’s inequality 2𝑐𝑑 ≤ 𝑐2 + 𝑑2. Combining (11), (12), (13), we obtain875

− 𝜉 − 𝛿𝐷
2(1− 𝑡)

‖𝑎‖2−2(𝛿𝐷−1)⟨𝐷𝑡𝑉 (𝑡), 𝑉 (𝑡)⟩ ≤ 𝑑

𝑑𝑡
𝑤(𝑡) ≤ 𝜉 − 𝛿𝐷

2(1− 𝑡)
‖𝑎‖2−2(𝜉−1)⟨𝐷𝑡𝑉 (𝑡), 𝑉 (𝑡)⟩.

Integrating between 0 and 𝑟 < 1, it results in876

𝜉 − 𝛿𝐷
2

log(1− 𝑟)‖𝑎‖2 − (𝛿𝐷 − 1)(‖𝑉 (𝑟)‖2 − ‖𝑉 (0)‖2) ≤ 𝑤(𝑟)− 𝑤(0)

≤ −𝜉 − 𝛿𝐷
2

log(1− 𝑟)‖𝑎‖2 − (𝜉 − 1)(‖𝑉 (𝑟)‖2 − ‖𝑉 (0)‖2).

Using the bound − log(1− 𝑟) ≤ 𝑟
1−𝑟 for 𝑟 ∈ [0, 1) and using the values of 𝑤(·) and 𝑉 (·), we obtain877

the result. �878

Corollary B.2. Let 𝑥, 𝑦, 𝑝 ∈ℳ be the vertices of a uniquely geodesic triangle of diameter 𝐷, and879

let 𝑧𝑥 ∈ 𝑇𝑥ℳ, 𝑧𝑦 def
= Γ𝑦

𝑥(𝑧𝑥) + Log𝑦(𝑥), such that 𝑦 = Exp𝑥(𝑟𝑧𝑥) for some 𝑟 ∈ [0, 1). Then, the880

following holds881

‖𝑧𝑦 − Log𝑦(𝑝)‖2 + (𝛿𝐷 − 1)‖𝑧𝑦‖2 ≥ ‖𝑧𝑥 − Log𝑥(𝑝)‖2 + (𝛿𝐷 − 1)‖𝑧𝑥‖2,

and882

‖𝑧𝑦 − Log𝑦(𝑝)‖2 + (𝜁𝐷 − 1)‖𝑧𝑦‖2 ≤ ‖𝑧𝑥 − Log𝑥(𝑝)‖2 + (𝜁𝐷 − 1)‖𝑧𝑥‖2.
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Proof. Use Lemma B.1 with 𝑎𝑦 = 0. Note that this corollary allows 𝑟 = 1 as well. We obtain this883

result, by continuity, by taking a limit when 𝑟 → 1. �884

The following is a lemma that is already known and is used extensively in Riemannian first-order885

optimization. It turns out it is a special case of Corollary B.2.886

Corollary B.3 (Cosine-Law Inequalities). For the vertices 𝑥, 𝑦, 𝑝 ∈ ℳ of a uniquely geodesic887

triangle of diameter 𝐷, we have888

⟨Log𝑥(𝑦),Log𝑥(𝑝)⟩ ≥ 𝛿𝐷
2
𝑑(𝑥, 𝑦)2 +

1

2
𝑑(𝑝, 𝑥)2 − 1

2
𝑑(𝑝, 𝑦)2.

and889

⟨Log𝑥(𝑦),Log𝑥(𝑝)⟩ ≤ 𝜁𝐷
2
𝑑(𝑥, 𝑦)2 +

1

2
𝑑(𝑝, 𝑥)2 − 1

2
𝑑(𝑝, 𝑦)2

Proof. This is Corollary B.2 for 𝑟 = 1. Indeed, given 𝑦 ∈ 𝒯 we can use Corollary B.2 with 𝑧𝑥 =890

Log𝑥(𝑦). Note that in such a case we have ‖𝑧𝑥‖ = 𝑑(𝑥, 𝑦) and 𝑧𝑦 = 0. Using ‖Log𝑦(𝑝)‖ = 𝑑(𝑦, 𝑝)891

and892

‖𝑧𝑥 − Log𝑥(𝑝)‖ = ‖𝑧𝑥‖2 − ⟨𝑧𝑥,Log𝑥(𝑝)⟩+ ‖Log𝑥(𝑝)‖2

= 𝑑(𝑥, 𝑦)2 − 2⟨Log𝑥(𝑦),Log𝑥(𝑝)⟩+ 𝑑(𝑝, 𝑥)2,

we obtain the result. �893

Remark B.4. Actually, in Hadamard manifolds, if we substitute the constants 𝛿𝐷 and 𝜁𝐷 in the894

previous Corollary B.3 by the tighter constants 𝛿𝑑(𝑝,𝑥) and 𝜁𝑑(𝑝,𝑥), the result also holds. See [ZS16].895

We now proceed to prove a lemma that intuitively says that solving the exact proximal point problem896

can be used to lower bound 𝑓 . One should think about the following lemma as being applied897

to 𝑦 ← 𝑦*𝑘, 𝑥 ← 𝑥𝑘. Compare the result of the following lemma with the Euclidean equality898

⟨𝑔, 𝑝− 𝑦⟩ = ⟨𝑔, 𝑝− 𝑥⟩+ ‖𝑔‖2, for 𝑔 = 𝑥− 𝑦 and 𝑥, 𝑦, 𝑝 ∈ R𝑛.899

Lemma B.5. Let 𝑥, 𝑦, 𝑝 ∈ℳ be the vertices of a uniquely geodesic triangle 𝒯 of diameter𝐷. Define900

the vectors 𝑔 def
= Log𝑦(𝑥) ∈ 𝑇𝑦ℳ and 𝑔𝑥 = Γ𝑥

𝑦(𝑔) = −Log𝑥(𝑦) ∈ 𝑇𝑥ℳ. Then we have901

⟨𝑔,Log𝑦(𝑝)⟩ ≥ ⟨𝑔𝑥,Log𝑥(𝑝)⟩+ 𝛿𝐷‖𝑔‖2,

and902

⟨𝑔,Log𝑦(𝑝)⟩ ≤ ⟨𝑔𝑥,Log𝑥(𝑝)⟩+ 𝜁𝐷‖𝑔‖2.

Proof (Lemma B.5). Using the definition of 𝑔, we have 1 below, by the first part of Corollary B.3:903

⟨𝑔,Log𝑦(𝑝)⟩
1
≥ 𝛿𝐷

2
‖𝑔‖2 +

𝑑(𝑦, 𝑝)2

2
− 𝑑(𝑥, 𝑝)2

2

2
≥ ⟨𝑔𝑥,Log𝑥(𝑝)⟩+ 𝛿𝐷‖𝑔𝑥‖2,

and in 2 we used Corollary B.3 again but with a different choice of vertices so we have 𝑑(𝑦,𝑝)2

2 ≥904

𝛿𝐷
2 ‖𝑔

𝑥‖2 + 𝑑(𝑥,𝑝)2

2 + ⟨𝑔𝑥,Log𝑥(𝑝)⟩.905

The proof of the second part is analogous: using the definition of 𝑔, we have 1 below, by the second906

part of Corollary B.3:907

⟨𝑔,Log𝑦(𝑝)⟩
1
≤ 𝜁𝐷

2
‖𝑔‖2 +

𝑑(𝑦, 𝑝)2

2
− 𝑑(𝑥, 𝑝)2

2

2
≤ ⟨𝑔𝑥,Log𝑥(𝑝)⟩+ 𝜁𝐷‖𝑔𝑥‖2,

and in 2 we used Corollary B.3 again but with a different choice of vertices so we have 𝑑(𝑦,𝑝)2

2 ≤908

𝜁𝐷
2 ‖𝑔

𝑥‖2 + 𝑑(𝑥,𝑝)2

2 + ⟨𝑔𝑥,Log𝑥(𝑝)⟩. �909
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C Other subroutines910

We provide two other subroutines that optimize functions that are 𝜇-strongly g-convex and 𝐿-smooth911

with linear rates and thus they can be used as subroutines for Line 8 in Algorithm 1. This yields912

accelerated algorithms for each of them.913

For the first subroutine, we change the analysis but use the same algorithm as ZS16: Projected914

Riemannian Gradient descent 𝑥𝑡+1 ← 𝑃𝑋(Exp𝑥𝑡
(−𝜂∇𝑓(𝑥𝑡))) but we set learning rate 𝜂 def

= (2−915

𝜁𝐷)/𝐿. Let �̃�𝑡+1
def
= Exp𝑥𝑡

(−𝜂∇𝑓(𝑥𝑡)). First we show the following inequality that results from916

applying smoothness to the first part and strong g-convexity to the second one.917

0 ≤ 𝑓(�̃�𝑡+1)− 𝑓(𝑥*) = 𝑓(�̃�𝑡+1)− 𝑓(𝑥𝑡) + 𝑓(𝑥𝑡)− 𝑓(𝑥*)

≤ ⟨∇𝑓(𝑥𝑡), �̃�𝑡+1 − 𝑥𝑡⟩+
𝐿

2
‖�̃�𝑡+1 − 𝑥𝑡‖2𝑥𝑡

+ ⟨∇𝑓(𝑥𝑡), 𝑥𝑡 − 𝑥*⟩ −
𝜇

2
‖𝑥𝑡 − 𝑥*‖2𝑥𝑡

= ⟨∇𝑓(𝑥𝑡), �̃�𝑡+1 − 𝑥*⟩+
𝐿𝜂2

2
‖∇𝑓(𝑥𝑡)‖2 −

𝜇

2
‖𝑥𝑡 − 𝑥*‖2𝑥𝑡

= ⟨∇𝑓(𝑥𝑡), 𝑥𝑡 − 𝑥*⟩+ (
𝐿𝜂2

2
− 𝜂)‖∇𝑓(𝑥𝑡)‖2 −

𝜇

2
‖𝑥𝑡 − 𝑥*‖2𝑥𝑡

.

(14)

Now, we have the following bound, bounding the distance to the minimizer, from which we will918

derive convergence rates for projected RGD:919

𝑑(�̃�𝑡+1, 𝑥
*)2

1
≤ (𝜁 − 1)𝜂2‖∇𝑓(𝑥𝑡)‖2 + ‖𝑥* − �̃�𝑡+1‖2𝑥𝑡

2
≤ ‖𝑥* − 𝑥𝑡‖2𝑥𝑡

+ 2𝜂⟨∇𝑓(𝑥𝑡), 𝑥
* − 𝑥𝑡⟩+ 𝜁𝜂2‖∇𝑓(𝑥𝑡)‖2

3
≤

(︃
2𝜂 − 𝜁𝜂

1− 𝐿𝜂
2

)︃
⟨∇𝑓(𝑥𝑡), 𝑥

* − 𝑥𝑡⟩+

(︃
1− 𝜇𝜁𝜂

1− 𝐿𝜂
2

)︃
‖𝑥* − 𝑥𝑡‖2𝑥𝑡

.

(15)

where in 1 we used the Euclidean cosine theorem along with Corollary B.3. Inequality 2 develops920

the square ‖𝑥* − �̃�𝑡+1‖2𝑥𝑡
= ‖𝑥* − 𝑥𝑘 − 𝜂∇𝑓(𝑥𝑡)‖2𝑥𝑡

and 3 uses (14), where the inequality has921

been multiplied by −𝜁𝜂2(𝐿𝜂2/2− 𝜂)−1 = 𝜁𝜂

1−𝐿𝜂
2

(≥ 0, since we assume 𝜂 ∈ [0, 2/𝐿]) in both sides.922

Now, since ⟨∇𝑓(𝑥𝑡), 𝑥
* − 𝑥𝑡⟩ ≤ 0, we want to make the factor alongside it be ≥ 0 in order to drop923

it. That means, it should be 2𝜂 − 𝜁𝜂

1−𝐿𝜂
2

≥ 0 which is equivalent to 𝜂 ≤ 2−𝜁
𝐿 . By setting 𝜂 exactly to924

the value 2−𝜁
𝐿 and assuming 𝜁 < 2, we have 𝜁𝜂

1−𝐿𝜂
2

= 2(2− 𝜁)/𝐿 and so we can conclude:925

𝑑(𝑥𝑡+1, 𝑥
*)2 ≤ 𝑑(�̃�𝑡+1, 𝑥

*)2 ≤
(︂

1− 2𝜇(2− 𝜁)

𝐿

)︂
𝑑(𝑥𝑡, 𝑥

*)2.

which is linear convergence, as desired.926

For the second subroutine, we assume access to the operation927

𝑥𝑡+1 = arg min
𝑦∈𝒳

{⟨∇𝑓(𝑥𝑡), 𝑦 − 𝑥𝑡⟩𝑥𝑡
+
𝐿

2
𝑑(𝑥𝑡, 𝑦)2},

and define the algorithm as the sequential application of it. This subproblem, in the Euclidean case,928

is equivalent to the projection operator of �̃�𝑡+1 = Exp𝑥𝑡
(−𝜂∇𝑓(𝑥𝑡)). However, in the Riemannian929

case, this and the metric-projection operator 𝑃𝒳 (𝑥𝑡+1) are two different things in general. Define the930

notation 𝜑(𝑥)
def
= (𝑓 + 𝐼𝒳 )(𝑥). Then, we have931
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𝜑(𝑥𝑡+1)
1
≤ 𝑚𝐿(𝑥𝑡, 𝑥𝑡+1)

= min
𝑥∈ℳ

{︂
𝑓(𝑥𝑡) + ⟨∇𝑓(𝑥𝑡), 𝑥− 𝑥𝑡⟩𝑥𝑡

+
𝐿

2
𝑑(𝑥, 𝑥𝑡)

2 + 𝐼𝒳 (𝑥)

}︂
2
≤ min

𝑥∈ℳ

{︂
𝑓(𝑥) +

𝐿

2
𝑑(𝑥, 𝑥𝑡)

2 + 𝐼𝒳 (𝑥)

}︂
= min

𝑥∈ℳ

{︂
𝜑(𝑥) +

𝐿

2
𝑑(𝑥, 𝑥𝑡)

2

}︂
3
≤ min

𝛼∈[0,1]

{︂
𝛼𝜑(𝑥*) + (1− 𝛼)𝜑(𝑥𝑡) +

𝐿𝛼2

2
𝑑(𝑥*, 𝑥𝑡)

2

}︂
4
≤ min

𝛼∈[0,1]

{︂
𝜑(𝑥𝑡)− 𝛼

(︂
1− 𝛼𝐿

𝜇

)︂
(𝜑(𝑥𝑡)− 𝜑(𝑥*))

}︂
5
= 𝜑(𝑥𝑡)−

𝜇

2𝐿
(𝜑(𝑥𝑡)− 𝜑(𝑥*)).

Above, 1 holds by smoothness and 2 holds by g-convexity of 𝑓 (I thought maybe using strong932

convexity one can improve but it is not by much, it results in convergence rates of𝑂((𝐿
𝜇 −1) log(1/𝜀)933

instead of 𝑂(𝐿
𝜇 log(1/𝜀). So I am not using it). Inequality 3 results from restricting the minimum to934

the geodesic segment between 𝑥* and 𝑥𝑡 and uses g-convexity of 𝜓. In 4 , we used strong convexity935

of 𝜑 to bound 𝜇
2 𝑑(𝑥*, 𝑦𝑘)2 ≤ 𝜑(𝑥𝑡) − 𝜑(𝑥*). Finally, in 5 we substituted 𝛼 by the value that936

minimizes the expression, which is 𝜇/2𝐿.937

Subtracting 𝜑(𝑥*) to the inequality above, we obtain 𝜑(𝑥𝑡+1)− 𝜑(𝑥*) ≤
(︀
1− 𝜇

2𝐿

)︀
(𝜑(𝑥𝑡)− 𝜑(𝑥*)).938

As we wanted to prove, there is linear convergence.939
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