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ABSTRACT

We consider the problem of source-free unsupervised category-level pose estima-
tion with only images to a target domain without any access to source domain
data or 3D annotations during adaptation. Collecting and annotating real-world
3D data and corresponding images is laborious, expensive, yet unavoidable pro-
cess, since even 3D pose domain adaptation methods require 3D data in the target
domain. We introduce 3DUDA, a method capable of adapting to a nuisance ridden
target domain without 3D or depth data. Our key insight stems from the observa-
tion that specific object subparts remain stable across out-of-domain (OOD) sce-
narios, enabling strategic utilization of these invariant subcomponents for effective
model updates. We represent object categories as simple cuboid meshes, and har-
ness a generative model of neural feature activations modeled at each mesh vertex
learnt using differential rendering. We focus on individual locally robust mesh ver-
tex features and iteratively update them based on their proximity to corresponding
features in the target domain even when the global pose is not correct. Our model
is then trained in an EM fashion, alternating between updating the vertex features
and the feature extractor. We show that our method simulates fine-tuning on a
global pseudo-labeled dataset under mild assumptions, which converges to the
target domain asymptotically. Through extensive empirical validation, including
a complex extreme UDA setup which combines real nuisances, synthetic noise,
and occlusion, we demonstrate the potency of our simple approach in addressing
the domain shift challenge and significantly improving pose estimation accuracy.

1 INTRODUCTION

In recent years, object pose estimation has witnessed remarkable progress, revolutionizing applica-
tions ranging from robotics (Du et al., 2019; Wang et al., 2019a; Wong et al., 2017; Zeng et al., 2017)
and augmented reality (Marchand et al., 2016; Marder-Eppstein, 2016; Runz et al., 2018) to human-
computer interaction. There have been works for 3D and 6D pose estimation that have focused pri-
marily on instance-level (He et al., 2021; 2020; Park et al., 2019; Peng et al., 2019; Tremblay et al.,
2018; Wang et al., 2019a; Xiang et al., 2018) pose estimation methods. However, these methods re-
quire object-specific 3D CAD models or instance-specific depth information and are often unable to
estimate object pose without given instance-specific 3D priors. Category-level methods (Chen et al.,
2020a; Chen & Dou, 2021; Lin et al., 2021; Tian et al., 2020; Wang et al., 2019b; 2021b) are more
efficient, but often still require some 3D information, such as the ground truth depth map (Wang
et al., 2019b; Lin et al., 2021; Lee et al., 2022) or point clouds (Lee et al., 2023). Acquiring such
labeled 3D data across different domains is often a formidable challenge, impeding the performance
of these models when deployed in real-world scenarios. Few recent attempts (Lee et al., 2022; 2023)
to perform category level pose estimation in a semi-supervised manner also require a ground truth
depth map (Lee et al., 2023) or point cloud (Lee et al., 2022) for every instance.

In this paper, we focus on ameliorating the aforementioned drawbacks in UDA for 3D pose estima-
tion. We design a model that is capable of adapting to a target domain in an unsupervised manner
without requiring any kind of 3D data and using only RGB images in the target domain. Our
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Figure 1: Our method utilizes two key observations- (a) Local Pose Ambiguity, i.e. the inherent
pose ambiguity that occurs when we can only see a part of the object. We utilize this ambiguity to
update the local vertex features which roughly correspond to object parts, even when the global pose
of the object may be incorrectly estimated. (b) Local Part Robustness refers to the fact that certain
parts (e.g. headlights in a car) are less affected in OOD data, which is verified by the (azimuth)
polar histogram representing the percentage of robustly detected vertex features per image in target
domain (OOD-CV (Zhao et al., 2023)) using the source model (Before Adaptation). Even before
adaptation, there are a few vertices which can be detected robustly and therefore are leveraged by our
method to adapt to the target domain as seen by the increased robust vertex ratio After Adaptation.

model does not require source data during adaptation and as shown later, is capable to adapt to real
world OOD nuisances (Zhao et al., 2023) without requiring any synthetic data or augmentations.

Our source model is based on the idea of generative modeling of neural network features (Ko-
rtylewski et al., 2020; Wang et al., 2021a; 2023; Ma et al., 2022) that have been used to perform
category-level 3D and 6D pose estimation. However, all of these methods are fully supervised
and cannot be trivially adapted to an OOD target. We extend these neural feature-level render-
and-compare methods’ capabilities for source-free unsupervised learning, which can be utilized in
real-world OOD scenarios. Our method, 3DUDA, is based on the observation that certain object
subparts remain stable and invariant across out-of-domain (OOD) scenarios, as seen in Fig-
ure 1, thereby offering a robust foundation for model updates. We utilize this ensemble of less
modified object local subparts and their inherent pose ambiguity in the nuisance-ridden target do-
main images to adapt the source model. This allows us to ignore noise-ridden global object pose
and still obtain relevant information from more robust local sub-components of the object. We focus
on individual mesh vertex features, iteratively updating them based on their proximity to the cor-
responding features in the target domain. Our experiments show that this simple idea allows us to
perform robust pose estimation in OOD scenarios with only images from the target domain.

In summary, we make several important contributions in this paper.

1. We introduce 3DUDA - which is (in our knowledge) the first method to do image only,
source free unsupervised domain adaptation for category level 3D pose estimation.

2. 3DUDA utilizes local pose ambiguity and their relative robustness to adapt to nuisance
ridden domains without access to any 3D or synthetic data. We present theoretical analysis
for this insight, which motivates our method.

3. We evaluate our model on real world nuisances like shape, texture, occlusion, etc. as well
as image corruptions and show that our model is able to adapt robustly in such scenarios.
Our method performs exceedingly well in extreme UDA setups where multiple nuisance
factors such as real-world nuisance, synthetic noise, and partial occlusion are combined.

2 RELATED WORKS

Category-level 3D pose estimation is a task for estimating the 3D pose of unseen instances but
in a known category. Current pose estimation approaches can be divided into keypoint approaches,
which utilize semantic keypoints on 3D objects to predict 3D pose (Pavlakos et al., 2017a; Zhou
et al., 2018) and render and compare methods which predict pose by fitting a 3D rigid transformation
at the image level (Chen et al., 2020b; Wang et al., 2019b) or feature level (Wang et al., 2021a).

Feature-level render-and-compare methods predict 3D pose by minimizing reconstruction error
between predicted and rendered (e.g. from a 3D mesh and a corresponding pose) object repre-
sentations. Such optimization often helps in avoiding complex loss landscapes that arise by doing
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Figure 2: Overview of Our Method (3DUDA)
(a) We extract neural features from source model CNN backbone fi = ϕw(XT ) and render feature maps from
the source mesh model (MS ) (using vertex features Cr) and the pose estimate is optimized using render-and-
compare (b) For this incorrectly estimated global pose, we measure similarity of every individual visible vertex
feature with the corresponding image feature vector in fi independently (Equation 3) and update individual
vertex features using average feature vector values for a batch of images (Equation 4). (c) The mesh model is
then updated using these changed vertices and the backbone is optimized using the optimized neural mesh.

render-and-compare at the image pixel level. (Wang et al., 2019b) predict the pose of the ob-
ject by solving a rigid transformation between the 3D model M and the NOCS maps with the
Umeyama algorithm (Pavlakos et al., 2017b). (Iwase et al., 2021) learned features using differen-
tiable Levenberg-Marquardt optimization, whereas (Wang et al., 2021a; Ma et al., 2022) learned
contrastive features for the 3D model M and utilized a similar render-and-compare setup.

Unsupervised Domain Adaptation for 3D pose estimation Unfortunately, all the methods men-
tioned above are fully supervised. However, there are some semi-supervised methods like (Fu &
Wang, 2022; Peng et al., 2022) that often require labeled target domain image and 3D data to work.
Even methods like (Lee et al., 2022; 2023) require instance depth data, point cloud and segmentation
labels during test-time inference. Other methods like (Yang et al., 2023) create synthetic data and
mix them with some amount of annotated real data in order to do Synthetic to Real semi-supervised
domain adaptation. To the best of our knowledge, there is no previous work on unsupervised 3D
pose estimation which is source-free and requires only images for adaptation. Additionally, there
is also a dearth of work in 3D pose estimation which performs UDA for real-world nuisances like
changes in texture, weather, etc. and in the presence of problems like occlusion.

3 METHODOLOGY

An overview of our unsupervised domain adaptation method, 3DUDA can be found in Figure 2.
After defining the notation and setup, we review our feature-level neural render-and-compare source
model in Section 3.1 before describing our method in detail in Section 3.2.

Notation For each object category y, we define three sets of parameters: a CNN backbone Φw, a
neural mesh M, and a clutter model B. We denote the neural feature representation of an input image
X as Φw(X ) = F a ∈ RH×W×d. Where a is the output of layer a of a deep convolutional neural
network backbone Φw, with d being the number of channels in layer a. fai ∈ Rd is a feature vector
in F a at position i on the 2D lattice P of the feature map. We drop the superscript a in subsequent
sections for notational simplicity. We represent our supervised source domain model with subscript
S and our unsupervised target domain model with subscript T . For more details, see A.1.

3.1 SOURCE MODEL: POSE-DEPENDENT FEATURE LEVEL RENDER AND COMPARE

Our source model is similar to previous work like Wang et al. (2021a; 2023); Ma et al. (2022)
on category-level pose estimation using neural feature level render and compare. These methods
themselves are 3D extensions of feature generative models such as Kortylewski et al. (2020). Our
source model defines a probabilistic generative model of normalized real-valued feature activations
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F conditioned on a 3D neural mesh representation M. The neural mesh model aims to capture the
3D information of the foreground objects. For each object category y, the source model defines
a neural mesh MS as {V, C}, where V = {Vr ∈ R3}Rr=1 is the set of vertices of the mesh and
C = {Cr ∈ Rc}Rr=1 is the set of learnable features, i.e. neural features. r denotes the index of the
vertices. R is the total number of vertices. We also define a clutter model B = {βn}Nn=1 to describe
the backgrounds. N is a prefixed hyperparameter. For a given object pose or camera viewpoint
g, we can render the neural mesh model MS into a feature map using (differentiable) rasterization
(Kato et al., 2020). We can compute the object likelihood of a target feature map F ∈ RH×W×D as

p(F |M, g,B) =
∏

i∈FG
p(fi|M, g)

∏
i′∈BG

p(fi′ |B), (1)

where FG and BG denote the foreground and background pixels, respectively. FG is set of all the
positions in the 2D lattice P covered by the mesh M and BG are the positions that are not. We define
P (fi|M(Vr, Cr), g) = Z[κr] exp{κr,cfi ·nr,c} as a von Mises Fisher (vMF) distribution with mean
Cr and concentration parameter κr. For more details, please refer to the Appendix A.7.1.

3.2 3DUDA: UNSUPERVISED LEARNING OF 3D POSE USING NEURAL FEATURE SYNTHESIS
AND SELECTIVE VERTEX FEATURE UPDATE

Given only the source model S (and no source data XS ) and some non-annotated target domain
RGB images, we adapt S to be able to perform well on the target domain. Figure 3 (NeMo column)
shows examples of the performance of the source model in an OOD scenario. As expected, the
estimated pose has diverged significantly from the ground truth pose in the target domain, indicating
that the feature generative model parameterized by the neural mesh model MS is no longer an
adequate representative of the same object as a whole.

However, a crucial observation, as seen in Figure 1, is that although the neural mesh model may not
be a good global model for an object y, there is still a subset of robust vertices that corresponds to
parts of objects that have undergone less changes in the new domain. Intuitively, this can be under-
stood as some parts of an object changing less across domains. The number of such vertices and
the threshold within which their shift is contained are functions of the domain nuisance variables
and the object itself. This property is intuitively leveraged by humans regularly to adapt their pre-
vious knowledge to understand new, unseen objects. For example, a car that may undergo changes
involving shape, context, and texture will still have parts such as wheels, headlights, and windshield
that change less or none at all across these domain shifts. We leverage this observation to adapt the
source model in an unsupervised manner.

NEURAL FEATURE SYNTHESIS WITH MULTI POSE INITIALIZATION

A fundamental benefit of Neural Mesh Models like our source model is that they are generative at the
level of neural feature activations. This makes the overall reconstruction loss very smooth compared
to related works that are generative on the pixel level (Wang et al., 2021a; 2023). Therefore, the
source model can be optimized w.r.t. the pose parameters with standard stochastic gradient descent
and contains one clear loss global optimum. This is no longer true in an OOD scenario.

Neural Feature Rendering For inference with the source model, we can infer the 3D pose g of
the object y by minimizing the negative log likelihood of the model. Specifically, we first extract
the neural features of the image F = Φw(X ) from the source CNN backbone. We define an initial
pose ginit using random initialization or by pre-rendering and comparing some pose samples. Using
the initial pose, we render the neural mesh M into a feature map F ′ ∈ RH×W×D. The projected
feature map is divided into FG and BG, depending on which pixels in the feature map are covered
by the projected mesh features. We compare the rendered feature map and the image feature map
position-wise. Given that the feature vectors are normalized and considering a constant κ, the loss
can be refactored as a simple reconstruction loss. The dot products are normalized accordingly.

Lrec = 1− ln p(F |M, g,B) = 1− (
∑

i∈FGfi ∗ f
′
i +

∑
j∈BGfj ∗ β) (2)

The pose ginit is optimized by minimizing Equation 2 using stochastic gradient descent.
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Multi-Pose Initialization Figure 6 shows different render-and-compare optimized pose estimates
by the source model that are optimized from different initial 3D pose in the target domain. This hap-
pens because optimization is stuck in different local optima in the OOD loss landscape. Therefore,
instead of random pose initialization, we pre-render a uniform sampling of poses from the neural
mesh model and compare them with the image features. 1 − 5 initial poses are chosen dependent
how similar they are to the feature map and how far away they are from each other. We then optimize
these initial poses using Equation 2, and may end up with multiple final rendered feature maps and
estimated poses as shown in Figure 6. Even though the estimated object poses may be incorrect, we
can still utilize these rendered maps for our Selective Vertex Feature Adaptation.

3.2.1 PROGRESSIVE SELECTIVE LOCAL VERTEX FEATURE ADAPTATION

Local Vertex-Feature Similarity We define the similarity between an individual rendered neural
mesh M vertex feature Cr and its corresponding CNN feature f (shown as fi→r) for a pose g given
a renderer R as a function of the parametric vMF score/likelihood (Du et al., 2022);

Lsim(fi→r, Cr) = Z[κr] exp (κrf
T
i→rCr), ∀i ∈ FG, Cr = R(M, g) (3)

Similar similarity measures have been shown to be robust OOD detectors in earlier works like (Du
et al., 2022). We define a rejection criteria dependent on a threshold δ such that all individual feature
vectors from multiple data samples that correspond to a specific vertex feature Cr considered OOD
if Lsim(fi→r, Cr) < δr and are not used to update these features. We can choose the threshold δr st.
majority (90-95%) of source domain features lie within the likelihood score.

Selective Vertex Adaptation (SVA) from Rendered Neural Features For a batch (size n) of
target domain images XT ,i, we obtain their neural features from the finetuned CNN backbone ϕw
and we render neural feature maps Fi from our mesh model MS using differentiable render and
compare from initial pose estimates ginit. We then spatially match the similarity of every rendered
vertex feature with its corresponding image feature independently. For every vertex feature Cr,
we average the corresponding image features fai at position a in the 2D lattice which are above a
threshold hyperparameter δ using Equation 3, we update a neural vertex feature Cr as follows:

Ct+1
r ← αCt

r + (1− α) 1
n

∑
nf

a
i→r, ∀fai ∋ Lsim(Cr, f

a
i→r) > δr (4)

where Ct
r is the current vertex feature at timestep t and Ct+1

r is the updated vertex feature. α is a
moving average hyperparameter. This can be done for the entire target domain adaptation data or in
a batched manner. Subsequently, the estimated pose g′ is recalculated with the updated neural mesh
model, and the CNN backbone is updated by gradient descent iteratively with the following loss;

L =
∑
r∈Rv

log
Z[κr]e

κfi→rCr∑
l∈R,l/∈Nr

Z[κl]eκfi→lCl +
∑N

n=1 Z[κ
′
n]e

κ′fi→nβn

, (5)

where Rv denotes all visible vertices for the input image X . Nr denotes the vertices near r. We
iteratively update subsets of vertex features and finetune the CNN backbone till convergence in a EM
type manner. In practice, to avoid false positives and encourage better convergence, we establish a
few conditions on our selective vertex feature adaptation process. To save computational overhead,
we can fix κ for the loss calculation . We fix a hyperparameter ψn that controls the least number of
local vertices detected to be similar (5 − 10% of visible vertices). We also drop samples with low
global similarity values during the backbone update. κr can also be recalculated in each time step t
using the updated Ct

r for a more robust measurement of similarity.

Unsupervised 3D pose estimation using SVA Figure 2 gives an intuition for our method,
3DUDA. It works as follows: (1) Extract neural features from source model CNN backbone
fi = ϕw(XT ) (2) Pre-render feature maps from the source mesh (MS ) (using vertex features Cr)
and compare with image features (3) Choose top-3 similar rendered feature maps and calculate the
optimized pose using gradient descent with reconstruction loss w.r.t fi (Equation 2). (4) For an opti-
mized pose, measure the similarity of every individual visible vertex feature with the corresponding
vector in fi independently (Equation 3). (5) Update individual vertex features using average fea-
ture vector values for a batch of images (Equation 4). (6) Finetune CNN backbone using rendered
feature maps obtained from Steps 1-3 using the updated vertex features (7) Continue steps 5 and 6
iteratively until convergence. (8) Post adaptation, evaluate 3D object pose of target test data using
steps 1-3.
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3.3 THEORETICAL RESULTS

Prior UDA works attempt to adapt in the target domain using a global pseudo-labeling setup. In
global pseudo-labeling, a subset of images from the target domain are identified for which a majority
(typically > RΩ for some Ω ∈ [0, 1]. We use Ω = 1 for analysis.) of the visible vertex features
satisfy Lsim(fi→r, Cr) > δr. These images are used to fine-tune the model. However, depending on
how different the target domain is from the source domain, a very small fraction of the target domain
images (even none sometimes) usually satisfies this property in real datasets. This leads to negligible
domain adaptation. However, upon careful inspection, we observed a robust subset of vertices in the
neural meshes produced by the source-trained model. And as the features corresponding to these
robust vertices are assumed independent, they can be used to fine-tune the model. In this section, we
present conditions under which SVA simulates fine-tuning on a global pseudo-labeled dataset. This
also reveals that the standard global pseudo-labeling setup is a special case of this formulation.

Let the distribution of a rendered vertex feature Cr be denoted by P r. Let the joint distributions
of these rendered vertex features in the source and target domain be denoted by PS =

∏
r P

r
S

and PT =
∏

r P
r
T respectively. They are written as products of the individual marginal distributions

because of the standard independence assumption between the vertices. Note that the distribution PS

is an approximation of the true underlying distribution P ∗
S . This approximate distribution is achieved

by training the source model S on a finite i.i.d. sample XS from P ∗
S and their corresponding labels

(ground-truth poses) YS . Similarly, the i.i.d. sample XT elicits an approximate distribution PT of
the true P ∗

T . Adapting for PT is challenging because we do not have the corresponding YT .

Definition 3.1 (Vertex K-partition) A vertex K-partition is defined as a partition of the set of
vertices (indexed by r ∈ {1, 2, ..., R}) into K non-empty mutually disjoint subsets (indexed by
k ∈ {1, 2, ...,K}). Let the set of vertices in each partitioned subset be denoted by Ik.

A given vertex K-partition would split the joint distribution PS into K independent joint distribu-
tions (denoted by P Ik

S =
∏

r∈Ik
P r
S) such that PS =

∏
k P

Ik
S . The same extends for the correspond-

ing target domain distributions.

Definition 3.2 (kδ-subset) For a given sample X and vertex K-partition, a kδ-subset is defined as
X kδ ⊆ X such that, Lsim(fi→r, Cr) > δr ∀ r ∈ Ik. The corresponding approximation of P Ik under
X kδ is denoted by P Ikδ .

Assumption 3.3 (Piece-wise Support Overlap) There exists a vertex K-partition such that the kδ-
subset of the target sample XT satisfies,

|XT
kδ| ≠ 0 ∀k ∈ {1, 2, ...,K}

and as |XT
kδ| → ∞,

∏
k

P Ikδ
T → P ∗

T

This assumption requires the joint distribution of partitioned vertex subsets under X kδ to asymptot-
ically approximate the corresponding true distributions. Intuitively, this translates to having enough
support in the target domain such that samples satisfying the similarity constraint (Equation 3) in
each kδ-subsets approximates the true target distribution of that vertex partition set.

Theorem 3.4 A target domain XT satisfying assumption 3.3, elicits another target domain XT
e

such that each sample in XT
e satisfies the global-pseudo labelling constraint (Lsim(fi→r, Cr) >

δr ∀ r ∈ {1, 2, ..., R}). Asymptotically with the size of the domain, XT
e → XT .

The proof of this theorem is by construction of the set XT
e for any XT , and has been defered to

the appendix A.3. It is easy to see that a global-pseudo labelleling setup is the special case of this
formulation when the vertex K-partition in assumption 3.3 is the trivial partition with K = 1. It
is also noteworthy that in the asymptotic case, even the global labelling setup would yield the same
adaptability as SVA; but in practice, SVA yields much more data for adaptation than the former (see
figure 5). Although the elicited target domain XT

e does not represent the true target distribution
precisely, it does yield more adaptability than global-pseudo labelling for a finite-sample and under
assumption 3.3, asymptotically adapts to the true distribution (Figure 4).
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Figure 3: Qualitative Results of 3DUDA compared to ground truth and NeMo (Wang et al., 2021a).
3DUDA adapts to real world OOD target domains consisting of nuisances like weather and occlusion
in an unsupervised manner and produces robust 3D object pose estimates. The CAD objects are for
representation only and are taken from ShapeNet (Chang et al., 2015).

4 EXPERIMENTS

Data We evaluate our model on OOD-CV (Zhao et al., 2023) and Imagenet-C (Hendrycks &
Dietterich, 2019) corrupted Pascal3D+ dataset (Xiang et al., 2014). OOD-CV is a benchmark in-
troduced to evaluate the robustness of the model in OOD scenarios. It includes OOD examples of
10 categories that cover unseen variations of nuisances including pose, shape, texture, context, and
weather. The source model is trained on IID samples while the model is adapted and evaluated on
OOD data for individual and combined nuisances. For Corrupted-Pascal3d+, we corrupt the adap-
tation and evaluation data with synthetic corruptions like shot noise, elastic deformation, fog, etc.
from Imagenet-C. PASCAL3D+ dataset contains objects from 12 man-made categories, and each
object is annotated with 3D pose, 2D centroid, and object distance. During adaptation and infer-
ence, only RGB images are provided. For a harder set-up of real-world nuisances combined with
partial occlusion, we test our algorithm on Occluded-OOD-CV dataset which has been created in a
manner similar to Wang et al. (2020) with 2 levels of object occlusion (L1(20−40%), L2(40−60%)).

We also evaluate our model on two extreme UDA setups of (1) Real + Synthetic corruptions. We add
Imagenet-C corruptions to the OOD-CV dataset and expect models to adapt from clean IID source
data to these data in an unsupervised manner. (2) Real + Synthetic Corruption + Partial Occlusion.
These are very difficult scenarios for UDA which, to our knowledge, have not been attempted before
in a semi-supervised or unsupervised 3D pose estimation.

Metrics 3D pose estimation aims to recover the 3D rotation parameterized by azimuth, elevation,
and in-plane rotation of the viewing camera. We follow previous works like Zhou et al. (2018);
Wang et al. (2021a); Ma et al. (2022) and evaluate the error between the predicted rotation matrix

and the ground truth rotation matrix: ∆(Rpred, Rgt) =
||logm(RT

predRgt)||F√
2

. We report the accuracy
of the pose estimation under common thresholds, π

6 and π
18 alongwith median error.

Implementation Details An Imagenet pretrained Resnet50 is used as a feature extractor for our
source model. The cuboid mesh is defined for each category and ensures that the majority of object
area are covered by it. The source model is trained for 800 epochs with a batch size of 32 using
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an Adam optimizer in a fully supervised manner. For every adaptation step, we require a minimum
batch size of 32 images for selective vertex and feature extractor update. We can also set the batch
size for a step adaptively by requiring enough samples s.t. ≃ 80% of vertices can be updated. For a
fixed κ, our local vertex feature similarity threshold is .8. We train our model by switching between
(in an EM fashion) selective vertex update and feature extractor training for about 100 epochs. Our
adaptation model is implemented in PyTorch (with PyTorch3D for differential rasterization) and
takes around 3 hours to train on 2 A5000 GPUs.

Baseline Models We evaluate NeMo (Wang et al., 2021a), DMNT (Wang et al., 2023), Synthet-
icP3D (Yang et al., 2023) and standard Resnet-50. Wang et al. (2021a; 2023); Yang et al. (2023)
are pose estimation methods which utilize similar feature level render and compare methodology as
our source model and have been shown to be robust and efficient. (Res50-General) is a ResNet50
classifier that formulates the pose estimation task for all categories as one single classification task.
Note that all models are evaluated on image only unsupervised learning setup. Although annotated
target domain images are not provided to models, data augmentation or synthetic data is allowed for
our baseline models.

4.1 UNSUPERVISED 3D POSE ESTIMATION: RESULTS AND ANALYSIS

OOD-CV Table 1 shows the Unsupervised 3D pose estimation results on OOD-CV (Zhao et al.,
2023) dataset. This is our primary result, which shows our model efficacy in real-world scenarios.
A qualitative comparison with Wang et al. (2021a) can be seen in Figure 3. All compared methods
suffer equally in the real OOD scenarios. Surprisingly, the general Resnet50 model performs quite
well relative to more complex models like NeMo and DMNT, suggesting that the additional category
data is helpful in OOD scenarios. However, our method clearly outperforms all the models and is
able to significantly bridge the domain gap.

Table 1: Unsupervised 3D Pose Estimation for OOD-CV (Zhao et al., 2023) dataset
π
6 Accuracy

Nuisance Combined shape pose texture context weather

Res50-General 51.8 50.5 34.5 61.6 57.8 60.0
NeMo (Wang et al., 2021a) 48.1 49.6 35.5 57.5 50.3 52.3
MaskRCNN (He et al., 2018) 39.4 40.3 18.6 53.3 43.6 47.7
DMNT (Wang et al., 2023) 50.0 51.5 38.0 56.8 52.4 54.5
P3D (Yang et al., 2023) 48.2 52.3 45.8 51.0 54.6 44.5
Ours 94.0 93.7 95.1 97.0 95.5 83.1

π
18Accuracy

Res50-General 18.1 15.7 12.6 22.3 15.5 23.4
NeMo (Wang et al., 2021a) 21.7 19.3 7.1 33.6 21.5 30.3
MaskRCNN (He et al., 2018) 15.3 15.6 1.6 24.3 13.8 22.9
DMNT (Wang et al., 2023) 23.6 20.7 12.6 32.6 16.6 33.5
P3D (Yang et al., 2023) 14.8 16.1 12.3 16.6 12.1 16.3
Ours 87.8 82.1 69.5 92.6 89.3 90.7

Pascal3D→Corrrupted-Pascal3D+ Table 2 shows the Unsupervised 3D pose estimation results
on this setup for multiple corruptions. As expected, the drop in model performance is largely depen-
dent on the type of corruption and its severity. Our method still performs significantly better when
dealing with synthetic corruptions.

Occluded-OOD-CV Table 3 (OccL1/L2) shows the Unsupervised 3D pose estimation results on
Occluded-OOD-CV dataset at 2 levels of partial occlusion. This is a harder setup in which real
nuisances are combined with occlusion. Our method is able to perform exceedingly well even in
such a complex target domain with upto 67% improvement in accuracy. This is because our selective
vertex adaptation focuses independently on adapting individual neural vertices (and the model) and
is able to ignore occluded vertices for adaptation. Notably, Wang et al. (2021a) has been shown to
be robust to occlusion but suffers when it is combined with real world nuisances.
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Table 2: Unsupervised 3D pose estimation results for Pascal3d+ → Corrupted-Pascal3D+
(Metrics : π\6 Accuracy (π6 ), π\18 Accuracy ( π

18 ), Median Error (Er))

π
6

π
18 Er π

6
π
18 Er π

6
π
18 Er π

6
π
18 Er

Gaussian Noise Shot Noise Impulse Noise Defocus Blur
NeMo 43.7 21.3 42.1 50.6 25.3 35.0 45.4 22.2 39.4 72.9 41.8 16.0
Ours 84.3 59.1 9.8 85.9 62.0 9.0 84.0 58.5 10.1 87.8 64.6 8.0

Glass Blur Motion Blur Zoom Blur Snow
NeMo 56.7 27.0 33.8 69.7 39.2 18.7 69.0 39.7 19.1 69.9 40.1 18.9
Ours 86.7 62.4 8.6 88.0 63.8 8.3 87.9 65.1 8.1 87.7 64.0 8.2

Frost Fog Contrast Elastic Transform
NeMo 73.3 44.1 16.4 85.5 59.0 9.5 74.5 43.8 14.7 77.4 50.3 13.8
Ours 86.3 62.5 8.6 88.7 65.6 7.8 88.8 66.7 7.6 88.2 64.4 8.1

Pixelate Speckle Noise Gaussian Blur Spatter
NeMo 77.5 53.0 13.0 67.9 38.3 20.8 68.3 36.5 18.7 72.4 44.2 17.2
Ours 88.7 65.4 7.8 87.7 64.2 8.0 87.7 63.8 8.3 87.5 63.9 8.4

NeMo (Wang et al., 2021a).

Extreme UDA: Real+Synthetic Corruption Table 3 (OOD+SN/GB) show the results on the
extreme UDA setup combining real and synthetic corruptions from the OOD-CV (Combined) and
Imagenet-C datasets. We again see significant improvements compared to Wang et al. (2021a) which
have been shown previously to be robust under this challenging setup.

Table 3: Unsupervised 3D pose estimation results for Occlusion and Extreme UDA setup

(a) OccL1/L2: Real Nuisance (OOD-CV (Combined)) + Occlusion (Level1/Level2) (b) OOD+SN/GB: Real
Nuisance (OOD-CV) + Synthetic Noise (Speckle Noise/Glass Blur) (c) L1/L2+Spec: Real Nuisance (OOD-
CV) + Occlusion (L1/L2) + Synthetic Noise (Speckle Noise)

OccL1 OccL2 OOD+SN OOD+GB L1+Spec L2+Spec
π
6

π
18

π
6

π
18

π
6

π
18

π
6

π
18

π
6

π
18

π
6

π
18

NeMo 30.6 10.2 24.1 6.6 32.7 10.2 29.6 9.5 18.6 3.4 15.1 2.7
Ours 84.6 77.1 78.7 70.4 80.5 63.0 77.7 65.9 69.4 50.4 60.6 38.9

Extreme UDA: Real+Synthetic Corruption+Occlusion Table 3 (L1/L2+Spec) show the results
on the extreme UDA setup combining real and synthetic corruptions along with partial occlusion
from Occluded-OOD-CV and Imagenet-C datasets. This is an extremely challenging setup where
three different kinds of nuisances/domain differences are combined and is reflected in NeMo’s re-
sults. Our model is still able to adapt to such a target domain, showing our method’s efficacy.

Further experimental and ablation analysis is deferred to the Appendix due to limited space.

5 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this work, we attempt to solve the previously unaddressed problem of unsupervised image-only
source-free domain adaptation for 3D pose estimation. We focus our efforts on real world data
with real world nuisances like weather, shape, texture, etc. and show that our method achieves sig-
nificant success. Our method has limitations as it relies on the source model and cannot be trivially
extended to articulated objects. It requires multiple pre-rendered samples for pose estimation. Like
many other pose estimation methods, inference requires optimization using render-and-compare
methodology for optimal pose estimation. In the future, we want to extend our method to unsuper-
vised 6D pose estimation and to unseen object setups. Furthermore, the importance of the concen-
tration parameter κ needs more research, as we believe that it is a crucial uncertainty marker that
may be relevant in more difficult domain transfer settings.
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A APPENDIX

A.1 PROBLEM SETUP

Our problem is set up as Source-Free, Image Only Unsupervised Domain Adaptation for Category
Level 3D Pose Estimation. We have a source 3D pose estimation model which has been trained on
annotated source domain data (considered in-domain or IID). However, during adaptation, we do not
have the source data. During the adaptation and evaluation time, we only have images of the OOD
target domain. We don’t have any 3D CAD model, LIDAR data, depth data or keypoint annotations
for the OOD target domain data. Models are expected to adapt the source model in an unsupervised
manner with the target images only. Our image data and pre-processing setup follow previous 3D
pose estimation works like Zhou et al. (2018); Wang et al. (2021a).

Previous Semi-supervised 3D Unsupervised Domain Adaptation Works. There have been a few
attempts in solving the domain adaptation problem in the field of 3D pose estimation; however,
most domain adaptation models utilize some kind of 3D data like depth map, point cloud, or CAD
models in the target domain. Some works have also tried to do semi-supervised learning using
synhetic data (Yang et al., 2023; Loghmani et al., 2020) (Synthetic to Real), but in addition to
requiring ground truth 3D annotations in the target domain or some target domain annotated data,
they may not be applicable to real world OOD scenarios (Lee et al., 2022). Such method also seems
to be partially successful since they may adapt from a specific Synthetic to Real domain but cannot
trivially extend to realistic nuisance-ridden real world data.

A.2 QUALITATIVE RESULTS

Figure 3 shows qualitative results from our method as compared to ground truth and another fea-
ture level generative model (Wang et al., 2021a) in different kinds of real world nuisances, partial
occlusion and synthetic corruptions.

Selective Vertex Adaptation and advantages w.r.t. Occlusion The presence of partial occlusion
in addition to real or synthetic nuisance factors in the target domain further complicates the already
difficult UDA problem. Methods like global pseudo-labeling which utilize the entire neural mesh
model will suffer immensely since now the parts of the object are individually affected - with some
obscured and others visible. Our selective vertex adaptation is helpful in this complex UDA scenario,
as we focus independently on the adaptation of individual neural vertices (and the model) and, as
shown in our experiments 4.1 and Figure 3 performs exceedingly well even in the presence of partial
occlusion in the noise-ridden target domain.

A.3 PROOF OF THEOREM 1

We first restate the theorem,

Theorem A.1 A target domain XT satisfying assumption 3.3, elicits another target domain XT
e

such that each sample in XT
e satisfies the global-pseudo labelling constraint (Lsim(fi→r, Cr) >

δr ∀ r ∈ {1, 2, ..., R}). Asymptotically with the size of the domain, XT
e → XT .

Proof : The CNN feature corresponding to vertex feature Cr is fi→r. Given a vertexK-partition, for
each subset of vertex features Ik, let f−k denote the pre-image of these vertex features. As vertex
feature distributions are independent, there exists such a pre-image for each vertex feature subset.
There may be uneven support in the individual pre-image sets f−k, but the pre-image sets can be
sampled such that the resulting distribution of vertex features matches P Ik for a given domain X .
The same pre-image argument extends to CNN features and the corresponding inputs that produce
them. Let X−1 denote the pre-image of the required CNN features which elicit the distribution P Ik

over each vertex feature subset Ik.

For a given target domain XT satisfying assumption 3.3 and its corresponding vertex K-partition,
we compute the kδ-subsets. Let the pre-images of vertex features for these kδ-subsets be denoted by
f−kδ and the corresponding pre-image of the CNN features be denoted by XT

−1. By construction,
this pre-image is the target domain XT

e such that each vertex feature Cr produced for samples in
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this domain satisfies the global pseudo-labelling constraint. This hypothetical domain may not be
easy to access but as asymptotically

∏
k P

Ikδ
T converges to P ∗

T , this pre-image XT
−1 converges to

the given XT itself. □

Figure 4: The elicited target distribution P (Xe
T ) found by SVA may not be precisely the same as the

true target distribution P (X∗
T ), but asymptotically (shown by arrows) it tends to the true distribution

and the same happens to the adapted source model.

A.4 METHOD MOTIVATION

Figure 1 gives an intuition into our method motivation. Our method is intuitively motivated by two
simple, yet crucial intuitions. Local Part Pose Ambiguity and Local Part Robustness. Local part
pose ambiguity refers to the pose ambiguity that occurs when we can see only a part of an object.
This is reflected in Figure 1 car object. If we could only see the right headlight (in the red box) of
the car, there are many possible global poses that the car could be in. This is often the problem is 3D
pose estimation, but we utilize this pose ambiguity to our advantage. We realize that since the object
parts may be visible from numerous object poses, we can still update our model parameters, which
correspond to these parts even when the global pose estimation is incorrect. Our second observation
deals with Robust Local parts. We observe and provide evidence in Figures 1, 5, 8 and 9 of the
polar histograms of some vertex features (which roughly correspond to parts of an object) being less
affected or robust in the OOD data. As is trivially observed in the real world, there are some parts of
objects that are less affected or even affected by certain domain changes, and we can leverage this
local robustness. For example, the right headlight in Figure 1 is a part of an object which may not
change much even when encountering domain nuisances like texture, weather, and context changes
and will still be fairly similar to features corresponding to car headlights in the source domain.

Therefore, we are able to utilize the aforementioned observations to adapt our source model. Given
local robust parts that will have high similarity to source counterparts and the fact that local parts
are visible for a large number of global object poses, we can focus on these individual local parts
and utilize them to update our model.

A.5 ABLATION STUDY AND METHOD ANALYSIS

Selective Vertex Feature Update We can ablate the efficacy of our selective vertex feature update
method and justify our assumption regarding robust parts of an object by comparing the (azimuth)
polar histograms in Figure 5. The upper histogram represents the ratio of vertex feature activated
(over visible vertex features) within a high similarity threshold on the OOD target data with a source
model. It shows that even though they may not be enough robust vertex feature adaptation for a
global pseudo labeling set-up, there are still individual vertex that correspond to parts of an object
which can still be detected robustly. This is a simple observation in the real world as well, where
humans identify objects in new circumstances or context by drawing upon their knowledge and
recognition of individual parts which have not changed much.

False Positives in Vertex-Feature Similarity In our experiments, false positives were not a major
issue. For example, the average ratio of false positives in Figure 5 is 2% and has an insignificant
affect on the adaptation. We believe this may be to a number of reasons: (1) Our CNN backbone
is trained and adapted in a contrastive manner where all unique vertex features are encouraged to
be different from one another and from the background clutter features (2) While adaptation, we
constrain the similarity measure with high thresholds as well require a lower bound of vertices
being activated. (3) Pretrained CNN like Resnet50 have shown to have some invariance to 3D pose
and other nuisances, which also contributes to the robustness of the similarity measure.
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Figure 5: (Upper left) Azimuth Polar histogram represents the ratio of visible neural mesh vertices
which are detected (for OOD-CV bus category), with high similarity threshold(= 0.9) to feature
vectors, by the source model. As we hypothesize in this work, the average number of robust vertices
in an image varies from 5 → 20%. The ratio of false positives 2% per vertex feature is negligent
and its effect is minimized due to the sampling of features from multiple image feature maps. (Top
right) The cumulative pose error histogram for the source model evaluated on the OOD-CV (Com-
bined Nuisance) target domain. (Lower left) Polar histogram of robust neural mesh vertices for our
unsupervised adapted model which shows the major increase in adapted and robust vertex features.
(Lower right) shows a histogram of pose errors for our adapted model and shows how the pose error
has been minimized for the target domain.

Multi-Pose Initialization Figure 6 shows the estimated pose by our source model when evaluated
on a sample from the OOD-CV (Zhao et al., 2023) dataset. We have three highly likely solutions
learned by optimizing the reconstruction loss between the rendered feature map and the image fea-
ture map when the initial pose were randomly initialized.

Quality of Vertex Features after Selective Adaptation Figure 5 shows before and after results
of the average ratio of correctly matched visible vertices per image in the target domain. The polar
histogram is defined over the azimuth of the object pose in the target dataset. We can see significant
improvements where the correctly detected ratio of vertices increases from 5 − 20% to 50 − 70%
which is enough to estimate the pose of an object in an image. This improvement is reflected in the
pose error histograms in Figure 5. Similar improvements for other classes (in OOD-CV) can be seen
in Figures 8, 9.

Ablation Analysis for Clutter Model Hyperparameter N As can be observed from Table 4, our
method is not sensitive to the change in the number of clutter models. This could be attributed to the
fact that our similarity threshold can be construed as a clutter model with uniform distribution. We
do see small improvements as the number of clutter models is drastically increased, which comes at
a high computational cost. Our default value of this hyperparameter is 5.
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Figure 6: Neural Render-and-Compare optimized pose estimates for single image from target do-
main (OOD-CV) with different initialization for the source model

Table 4: Ablation Analysis of clutter model number hyperparameter

N (Clutter) Median Error π/18 Acuracy π/6 Accuracy
1 3.01 90.1 95.1
5 3.03 91.1 94.4

20 2.99 92.3 95.5
35 2.79 91.7 94.5

A.6 ADDITIONAL RELATED WORKS

Although there has not been any recent work on source free and image-only unsupervised domain
adaptation for 3D pose estimation, there have been few works which have worked on self-supervised,
zero-shot or few shot learning with some 3D data or multi-view availability. Goodwin et al. (2022)
utilize a pretrained DINO Vision Transformer, large-scale pretraining, depth estimates and multiple
views of the target object to do zero shot category level pose estimation using the idea of semantic
keypoint correspondence between pairs of images. Zhang et al. (2022); He et al. (2022) and Lin et al.
(2022) all utilize mesh model priors for a self-supervised approach involving 3d-2d correspondence
with the mesh model or point cloud, image registration and deformation. All of these methods rely
on local and global geometric constraints and correspondence to varying extents.

A.7 TRAINING AND IMPLEMENTATION DETAILS

Our baseline model implementations are taken from their official codebase. We utilize the imple-
mentation of Ma et al. (2022) for the Resnet50-General model. The general Resnet50 model is
trained with data from all categories at the same time, which could be a factor for better OOD ro-
bustness relative to other baseline models. Yang et al. (2023) is a semi-supervised setup where they
create synthetic data to enable pose estimation with real data. The synthetic data creation code is not
publicly available; we utilize their reported OOD-CV (Zhao et al., 2023) results in our experimental
results.

During inference, it takes our method 0.33 seconds to evaluate one sample on a NVIDIA RTX 2060
GPU.

A.7.1 SOURCE MODEL

Our source model is similar to previous works like Wang et al. (2021a; 2023); Ma et al. (2022)
on category-level pose estimation using neural feature level render and compare. These methods
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Figure 7: Source Model: Figure taken from Wang et al. (2021a) to reflect the training of our source
model

are themselves 3D extensions of feature generative models such as Kortylewski et al. (2020). Our
source model defines a probabilistic generative model of normalized real-valued feature activations
F conditioned on a 3D neural mesh representation M. The neural mesh model aims to capture the
3D information of the foreground objects. For each object category y, the source model defines
a neural mesh MS as {V, C}, where V = {Vr ∈ R3}Rr=1 is the set of vertices of the mesh and
C = {Cr ∈ Rc}Rr=1 is the set of learnable features, i.e. neural features. r denotes the index of the
vertices. R is the total number of vertices. We also define a clutter model B = {βn}Nn=1 to describe
the backgrounds. N is a prefixed hyperparameter. For a given object pose or camera viewpoint
g, we can render the neural mesh model MS into a feature map using (differentiable) rasterization
(Kato et al., 2020). We can compute the object likelihood of a target feature map F ∈ RH×W×D as

p(F |M, g,B) =
∏

i∈FG
p(fi|M, g)

∏ ∏
i′∈BG

p(fi′ |B), (6)

where FG and BG denote the foreground and background pixels, respectively. FG is set of all the
positions in the 2D lattice P covered by the mesh M and BG are the positions that are not. Unlike
(Ma et al., 2022; Wang et al., 2023), we define P (fi|M(Vr, Cr), g) = Z[κr] exp{κr,cfi · nr,c} as
a von Mises Fisher (vMF) distribution with mean Cr and concentration parameter κr. Z[κr] is a
normalization constant and is defined as κd/2−1

(2π)d/2Iv
d/2−1

(κ)
(Mardia & Jupp, 2009) where I denotes

the modified Bessel function of the first kind of order v and d is the dimension. P (fi|b) is the
background distribution, also defined as a vMF distribution. The correspondence between the image
feature fi and the vertex features Cr is calculated using rendering assuming perspective projection.
The concentration parameter can be calculated using the simple approximation κ̂ = R̄(d−R̄2)

1−R̄2 (Sra,

2012) where R̄ = ∥x̄∥ and x̄ = 1
N

∑N
i xi, for a series of N independent unit vectors x. However,

for our source model, we find that fixing κ to a constant is sufficient to learn a good supervised
model. The training objective function of the source model is Lsource = Lneural +Lclutter +Lcontrastive.
Lneural maximizes the likelihood between the neural featuresCr and the corresponding CNN features
fi→r for each vertex r. Lclutter maximizes the likelihood between the B and the CNN features fi′ .
Lcontrastive defines two constrastive terms which encourage vertex features to be different from one
another and the background.

Figure 7 gives an outline of our source model which is similar to the feature-level neural render and
compare methodology introduced in (Wang et al., 2021a; Ma et al., 2022). The training objective
function of the source model is defined in (Wang et al., 2021a; Ma et al., 2022) as follows:

Lsource = Lneural + Lclutter + Lcontrastive. (7)

Lneural = −
R∑

r=1

logP (fi→r|Cr); Lclutter = −
∑
i′∈M

logP (fi′ |β), (8)
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Lcontrastive = λ

R∑
r=1

∑
l∈R,l/∈Nr

logP (fi→r|Cl) + µ

R∑
r=1

N∑
n=1

logP (fi→r|βn) (9)

Lneural maximizes the likelihood between the neural features Cr and the corresponding CNN fea-
tures fi→r for each vertex r. Lclutter maximizes the likelihood between the B and the CNN features
fi′ . Lcontrastive defines two constrastive terms which encourage vertex features to be different from
one another and the background.The first term pertains to the contrastive learning between differ-
ent vertices, while the second term focuses on the contrastive learning between a vertex and the
background. Notably, we can do inference with the source model with only a RGB image which
is one of the major reasons to utilize these class of models as our source model. However, despite
earlier attempts (Yang et al., 2023; Wang et al., 2023) these models cannot be trivially extended to
source-free unsupervised learning.
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Figure 8: Part 1: Azimuth Polar histograms representing the ratio of visible neural mesh vertices
which are robustly detected for different categories of OOD-CV (Zhao et al., 2023) dataset before
and after adaptation using our method. As explained in 5, (left column) we can see the ratio
of robustly detected vertices in the target domain using the source model which provides strong
evidence towards our hypothesis regarding locally robust neural vertex features irrespective of the
correctness of the global object pose. Our method, 3DUDA, leverages these locally robust parts and
adapts the model in an unsupervised manner. The right column reflects the drastic increase of ratio
of robustly detected vertex features post adaptation.
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Figure 9: Part 2: Azimuth Polar histograms representing the ratio of visible neural mesh vertices
which are robustly detected for different categories of OOD-CV (Zhao et al., 2023) dataset before
and after adaptation using our method.
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A.8 CATEGORY-WISE EXPERIMENTAL RESULTS

We list the results of our unsupervised pose estimation results with category-wise separation in
this section. Due to the sheer number of experimental results, we focus on our main comparison
NeMo (Wang et al., 2021a) which has been shown to be robust to certain OOD scenarios and occlu-
sion (Wang et al., 2023).

A.9 EXTENDED MAIN RESULTS

Table 5: Unsupervised 3D pose estimation results for Pascal3d+→ Corrupted-Pascal3D+

(a) (Metrics : π\6 Accuracy (π
6

), π\18 Accuracy ( π
18

), Median Error (Er))

π
6

π
18 Er π

6
π
18 Er π

6
π
18 Er

Shot Noise Impulse Noise Defocus Blur
Res50-General 39.3 8.9 52.1 36.6 8.1 55.7 45.6 10.3 44.6
ViT-b-16 39.1 8.8 55.4 36.7 8.4 54.9 45.2 13.1 41.9
DMNT 51.2 21.1 31.1 50.1 25.3 33.3 72.1 44.5 16.1
P3D 48.9 19.7 33.7 48.6 18.9 37.9 71.6 40.7 17.8
NeMo 50.6 25.3 35.0 45.4 22.2 39.4 72.9 41.8 16.0
Ours 85.9 62.0 9.0 84.0 58.5 10.1 87.8 64.6 8.0

Motion Blur Zoom Blur Snow
Res50-General 42.3 9.2 49.9 59.6 18.4 41.0 55.4 16.2 40.4
ViT-b-16 46.1 8.7 49.8 53.9 12.1 40.7 54.3 12.8 40.3
DMNT 70.7 41.1 16.9 70.9 42.1 16.6 72.2 44.6 16.6
P3D 69.9 37.6 17.9 70.0 40.0 18.6 72.0 41.9 17.8
NeMo 69.7 39.2 18.7 69.0 39.7 19.1 69.9 40.1 18.9
Ours 88.0 63.8 8.3 87.9 65.1 8.1 87.7 64.0 8.2

Fog Contrast Elastic Transform
Res50-General 65.3 19.6 31.5 61.5 19.3 38.1 45.6 8.6 43.7
ViT-b-16 65.7 21.8 29.9 61.9 21.5 37.7 41.3 6.3 47.9
DMNT 86.0 60.1 9.7 77.7 45.9 12.9 77.9 51.1 13.7
P3D 85.9 58.4 9.9 76.5 44.8 13.6 76.1 48.9 14.3
NeMo 85.5 59.0 9.5 74.5 43.8 14.7 77.4 50.3 13.8
Ours 88.7 65.6 7.8 88.8 66.7 7.6 88.2 64.4 8.1

A.9.1 OOD-CV (ZHAO ET AL., 2023)

Tables 7 8 15 16 9 10 11 12 13 14 17 18 show per category results for Unsupervised Domain
Adaptation for the OOD-CV (Zhao et al., 2023) dataset, where we have real world nuisances in the
target domain.

A.9.2 PASCAL3D+→ CORRUPTED-CORRUPTED PASCAL3D+

Tables 19-50 show category wise results of our Pascal3D+ to Corrupted Pascal3D+ setup where we
add synthetic noise like glass blur, elastic transform, rain, fog, gaussian noise, etc. to the evaluation
data.
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Table 6: Unsupervised 3D pose estimation results for Occlusion and Extreme UDA setup

(a) OccL1/L2: Real Nuisance (OOD-CV (Combined)) + Occlusion (Level1/Level2) (b) OOD+SN/GB: Real
Nuisance (OOD-CV) + Synthetic Noise (Speckle Noise/Glass Blur) (c) L1/L2+Speckle: Real Nuisance (OOD-
CV) + Occlusion (L1/L2) + Synthetic Noise (Speckle Noise)

OccL1 OccL2 OOD+SN
π
6 Acc. π

18Acc. π
6 Acc. π

18Acc. π
6 Acc. π

18Acc.

Res50-General 30.1 10.9 18.9 4.9 30.1 8.8
MaskRCNN 28.9 9.8 17.7 4.5 31.2 9.7
DMNT 32.4 11.9 25.3 7.1 35.4 10.2
P3D 29.6 11.4 22.1 6.9 33.1 11.1
NeMo 30.6 10.2 24.1 6.6 32.7 10.2
Ours 84.6 77.1 78.7 70.4 80.5 63.0

OOD+GB L1+Speckle L2+Speckle
Res50-General 30.3 10.1 16.7 3.3 11.8 1.5
MaskRCNN 28.9 9.9 15.4 3.1 12.5 1.8
DMNT 32.3 10.2 18.9 3.9 16.8 3.1
P3D 30.1 9.3 17.7 3.4 15.9 2.6
NeMo 29.6 9.5 18.6 3.4 15.1 2.7
Ours 77.7 65.9 69.4 50.4 60.6 38.9

Table 7: Unsupervised 3D pose estimation results for OOD-CV (combined) Part 1

aeroplane bicycle boat bus car
Method Metric

Wang et al. (2021a) π\6 Acc. 45.6 48.5 39.2 66.0 68.8
π\18 Acc. 25.0 20.8 14.7 47.4 52.7
Median Error 36.35 31.71 48.0 11.6 9.22

Ours π\6 Acc. 98.6 90.5 86.8 92.4 97.1
π\18 Acc. 94.3 88.2 75.0 88.0 92.9
Median Error 1.45 1.44 3.6 1.75 1.82

Table 8: Unsupervised 3D pose estimation results for OOD-CV (combined) Part 2

chair diningtable motorbike sofa train
Method Metric

Wang et al. (2021a) π\6 Acc. 42.6 57.6 57.2 73.2 77.8
π\18 Acc. 14.8 19.0 23.5 26.1 60.5
Median Error 42.63 23.65 24.16 17.89 7.06

Ours π\6 Acc. 93.0 96.5 96.0 97.7 92.9
π\18 Acc. 80.8 88.2 89.2 91.6 89.5
Median Error 3.3 1.82 1.73 1.7 2.59

Table 9: Unsupervised 3D pose estimation results for OOD-CV (shape) Part 1

aeroplane bicycle boat bus car
Method Metric

Wang et al. (2021a) π\6 Acc. 41.4 58.6 52.8 76.7 76.9
π\18 Acc. 14.1 36.9 13.9 33.3 50.0
Median Error 36.0 15.77 26.34 17.08 10.95

Ours π\6 Acc. 96.1 91.9 94.4 90.0 100.0
π\18 Acc. 92.2 91.0 83.3 83.3 84.6
Median Error 1.72 1.43 2.35 2.34 3.21
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Table 10: Unsupervised 3D pose estimation results for OOD-CV (shape) Part 2

chair diningtable motorbike sofa train
Method Metric

Wang et al. (2021a) π\6 Acc. 48.3 52.8 51.2 78.9 50.0
π\18 Acc. 15.2 12.4 25.6 26.3 22.2
Median Error 33.59 27.61 28.87 16.31 26.83

Ours π\6 Acc. 92.7 93.3 93.0 96.8 77.8
π\18 Acc. 74.8 70.8 76.7 83.2 72.2
Median Error 3.58 5.62 2.95 2.42 3.73

Table 11: Unsupervised 3D pose estimation results for OOD-CV (weather) Part 1

aeroplane boat bus car
Method Metric

Wang et al. (2021a) π\6 Acc. 54.0 45.8 64.9 68.6
π\18 Acc. 38.8 22.3 50.6 56.5
Median Error 21.52 35.39 8.5 7.68

Ours π\6 Acc. 99.3 85.7 97.4 98.8
π\18 Acc. 96.9 76.9 89.6 96.6
Median Error 2.48 2.29 1.35 1.49

Table 12: Unsupervised 3D pose estimation results for OOD-CV (weather) Part 2

chair motorbike sofa train
Method Metric

Wang et al. (2021a) π\6 Acc. 44.1 63.9 87.5 81.4
π\18 Acc. 17.6 23.9 62.5 68.3
Median Error 48.9 20.68 5.42 5.62

Ours π\6 Acc. 97.1 97.8 100.0 89.8
π\18 Acc. 91.2 94.4 87.5 85.6
Median Error 2.7 1.65 1.62 1.51

Table 13: Unsupervised 3D pose estimation results for OOD-CV (texture) Part 1

aeroplane bicycle boat bus car
Method Metric

Wang et al. (2021a) π\6 Acc. 54.5 57.1 45.3 76.9 77.1
π\18 Acc. 28.7 13.1 14.0 57.9 56.2
Median Error 24.3 24.15 44.11 8.01 7.94

Ours π\6 Acc. 99.0 97.6 88.4 98.3 100.0
π\18 Acc. 98.0 94.0 76.7 95.9 97.9
Median Error 1.68 1.68 2.75 1.68 2.61

Table 14: Unsupervised 3D pose estimation results for OOD-CV (texture) Part 2

chair diningtable motorbike sofa train
Method Metric

Wang et al. (2021a) π\6 Acc. 36.2 65.4 59.3 67.0 72.3
π\18 Acc. 12.1 24.1 28.7 25.3 56.3
Median Error 62.55 18.07 22.35 18.77 7.52

Ours π\6 Acc. 94.8 99.0 97.2 96.7 97.5
π\18 Acc. 86.2 94.8 92.6 92.3 95.8
Median Error 3.01 1.66 1.99 2.16 1.61
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Table 15: Unsupervised 3D pose estimation results for OOD-CV (context) Part 1

aeroplane boat bus car
Method Metric

Wang et al. (2021a) π\6 Acc. 34.1 34.3 65.4 69.4
π\18 Acc. 12.1 10.1 50.7 45.8
Median Error 47.11 49.27 9.61 11.38

Ours π\6 Acc. 98.8 89.9 91.9 97.2
π\18 Acc. 94.8 76.9 87.5 91.7
Median Error 1.61 3.64 1.67 2.41

Table 16: Unsupervised 3D pose estimation results for OOD-CV (context) Part 2

chair diningtable motorbike sofa train
Method Metric

Wang et al. (2021a) π\6 Acc. 43.7 49.0 55.2 73.1 84.9
π\18 Acc. 18.3 18.3 21.8 25.4 57.0
Median Error 35.34 30.4 23.36 18.5 7.52

Ours π\6 Acc. 94.4 98.1 94.3 99.5 94.2
π\18 Acc. 90.1 90.4 82.8 96.4 91.9
Median Error 3.62 2.12 1.9 1.56 1.57

Table 17: Unsupervised 3D pose estimation results for OOD-CV (pose) Part 1

aeroplane bicycle boat bus car
Method Metric

Wang et al. (2021a) π\6 Acc. 7.1 15.1 12.7 33.3 53.8
π\18 Acc. 0.0 1.6 0.0 11.1 32.7
Median Error 107.37 81.41 113.72 48.94 17.36

Ours π\6 Acc. 96.4 73.8 79.4 80.0 92.3
π\18 Acc. 64.3 69.8 58.7 71.1 71.2
Median Error 8.74 3.59 7.39 3.01 3.1

Table 18: Unsupervised 3D pose estimation results for OOD-CV (pose) Part 2

chair diningtable motorbike sofa train
Method Metric

Wang et al. (2021a) π\6 Acc. 23.1 20.0 25.0 0.0 65.0
π\18 Acc. 7.7 0.0 7.1 0.0 45.0
Median Error 119.05 66.66 76.21 88.57 10.8

Ours π\6 Acc. 76.9 80.0 100.0 100.0 95.0
π\18 Acc. 53.8 80.0 78.6 100.0 90.0
Median Error 6.54 3.55 2.89 1.49 2.6
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Table 19: Unsupervised 3D pose estimation for Corrupted-Pascal3D+ (gaussian noise) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 16.7 29.9 13.1 17.1 47.2 80.3
π
18 Accuracy 1.7 3.3 1.9 0.7 23.5 64.0
Median Error 84.23 60.37 86.0 45.71 37.68 7.4

Ours π
6 Accuracy 79.8 71.9 59.9 86.9 95.7 97.9
π
18 Accuracy 46.3 16.6 32.1 48.1 91.0 93.8
Median Error 11.04 20.2 20.08 10.43 3.22 3.47

Table 20: Unsupervised 3D pose estimation for Corrupted-Pascal3D+ (gaussian noise) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 42.3 28.3 31.3 34.5 46.6 69.1
π
18 Accuracy 8.5 2.5 3.9 6.4 18.6 19.8
Median Error 35.04 48.16 49.55 50.1 34.37 21.17

Ours π
6 Accuracy 85.8 78.1 77.6 89.9 89.0 79.1
π
18 Accuracy 50.4 55.9 23.6 53.7 75.5 39.3
Median Error 9.92 8.63 17.16 9.22 5.44 12.86

Table 21: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (shot noise) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 23.4 33.5 22.0 19.1 62.6 86.9
π
18 Accuracy 5.1 5.3 3.5 2.0 37.4 71.4
Median Error 69.94 49.79 75.4 47.59 15.39 6.91

Ours π
6 Accuracy 79.6 74.9 63.5 87.3 94.9 98.2
π
18 Accuracy 49.7 23.6 35.5 48.9 90.8 94.3
Median Error 10.1 17.4 17.98 10.61 2.94 3.33
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Table 22: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (shot noise) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 42.9 39.1 39.9 43.1 53.4 71.5
π
18 Accuracy 10.1 6.3 3.9 8.5 21.7 19.5
Median Error 35.53 39.29 37.74 34.38 25.59 20.39

Ours π
6 Accuracy 88.1 80.6 83.7 92.0 89.8 82.0
π
18 Accuracy 53.4 62.3 32.2 54.8 77.6 42.0
Median Error 9.53 7.35 14.39 9.06 5.22 12.28

Table 23: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (impulse noise) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 17.6 32.7 12.9 21.7 50.6 82.5
π
18 Accuracy 2.4 3.6 1.6 1.1 25.8 66.9
Median Error 80.9 50.67 83.49 49.34 29.27 6.94

Ours π
6 Accuracy 80.7 73.0 57.4 85.1 93.4 97.7
π
18 Accuracy 46.7 19.1 29.2 44.6 88.0 93.1
Median Error 11.05 20.03 21.96 11.35 3.25 3.46

Table 24: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (impulse noise) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 40.3 25.9 30.8 43.1 51.2 69.2
π
18 Accuracy 7.5 2.2 3.7 8.0 19.9 18.0
Median Error 37.0 47.17 48.24 36.48 28.19 20.42

Ours π
6 Accuracy 88.5 76.8 79.0 89.1 88.4 81.0
π
18 Accuracy 53.0 55.3 24.2 52.2 74.4 40.4
Median Error 9.37 8.96 16.51 9.6 5.44 12.82
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Table 25: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (defocus blur) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 52.4 60.9 44.6 83.0 69.2 89.7
π
18 Accuracy 15.9 16.9 11.1 40.7 46.8 74.9
Median Error 28.41 22.27 35.9 12.14 11.25 6.57

Ours π
6 Accuracy 84.8 81.6 71.8 88.4 94.5 98.6
π
18 Accuracy 51.9 31.8 43.3 53.0 91.5 94.6
Median Error 9.67 15.72 12.11 9.52 3.06 3.18

Table 26: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (defocus blur) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 82.6 71.6 64.0 91.3 57.6 82.9
π
18 Accuracy 43.5 44.4 14.6 46.3 33.7 37.0
Median Error 10.99 11.98 22.52 10.73 18.51 13.62

Ours π
6 Accuracy 89.7 79.5 84.3 94.4 89.1 83.8
π
18 Accuracy 60.3 62.3 32.2 61.4 78.1 43.3
Median Error 8.63 7.24 13.89 8.12 4.9 11.82

Table 27: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (glass blur) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 24.2 31.9 28.5 78.2 53.6 75.8
π
18 Accuracy 4.1 4.0 6.0 31.1 22.0 52.4
Median Error 63.83 54.77 59.95 15.43 25.27 9.43

Ours π
6 Accuracy 80.4 75.7 69.0 88.2 93.6 97.7
π
18 Accuracy 47.7 24.3 39.2 49.1 89.1 93.8
Median Error 10.67 17.37 14.06 10.24 3.34 3.39
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Table 28: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (glass blur) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 70.0 57.2 30.8 87.2 36.0 78.7
π
18 Accuracy 29.8 28.5 4.2 42.5 14.4 24.2
Median Error 15.75 21.99 46.19 11.66 116.73 17.54

Ours π
6 Accuracy 88.7 84.0 81.8 95.2 86.8 82.3
π
18 Accuracy 58.1 63.7 29.6 62.8 71.0 44.1
Median Error 8.86 7.26 15.76 8.17 5.75 11.79

Table 29: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (motion blur) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 54.6 44.7 39.0 77.4 69.9 92.4
π
18 Accuracy 18.6 10.2 10.4 19.8 40.6 78.5
Median Error 26.85 35.07 41.92 17.82 13.07 5.73

Ours π
6 Accuracy 85.1 80.2 71.3 87.4 94.5 98.7
π
18 Accuracy 52.6 29.1 43.9 46.3 90.6 94.8
Median Error 9.43 16.32 12.26 11.02 3.03 3.34

Table 30: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (motion blur) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 80.2 64.4 42.1 90.4 59.8 79.7
π
18 Accuracy 40.7 35.0 7.2 41.7 39.0 35.3
Median Error 12.08 15.89 37.85 11.36 16.12 14.19

Ours π
6 Accuracy 89.5 82.5 82.0 94.9 90.2 82.9
π
18 Accuracy 53.8 65.3 29.3 59.8 77.6 42.2
Median Error 9.24 7.32 15.13 8.26 5.14 11.74
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Table 31: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (zoom blur) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 58.9 40.3 40.6 74.8 70.7 92.0
π
18 Accuracy 22.8 10.1 16.2 27.3 45.3 76.9
Median Error 22.51 40.54 42.25 16.8 11.24 6.15

Ours π
6 Accuracy 86.1 80.2 66.6 87.8 94.0 98.5
π
18 Accuracy 57.1 29.3 40.2 54.2 91.5 94.8
Median Error 8.56 16.52 13.6 9.21 2.97 3.25

Table 32: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (zoom blur) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 78.9 62.5 36.0 86.7 63.0 77.3
π
18 Accuracy 37.2 36.0 7.1 38.9 38.4 26.6
Median Error 12.59 17.87 41.47 12.17 14.46 16.68

Ours π
6 Accuracy 91.3 84.0 82.8 94.6 91.8 82.3
π
18 Accuracy 58.5 66.3 30.1 59.9 80.6 43.0
Median Error 8.55 6.84 15.3 8.02 5.01 12.09

Table 33: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (snow) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 52.6 61.9 34.7 70.0 82.3 94.6
π
18 Accuracy 20.4 12.9 10.1 21.8 63.9 83.4
Median Error 27.74 24.37 51.79 18.92 7.01 5.33

Ours π
6 Accuracy 86.6 80.9 69.0 87.1 94.9 98.7
π
18 Accuracy 55.3 29.9 40.4 47.3 91.2 95.0
Median Error 8.97 16.29 13.45 10.62 2.73 3.19
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Table 34: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (snow) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 72.3 58.3 57.4 72.3 70.7 75.2
π
18 Accuracy 26.7 27.1 14.0 28.5 50.5 23.7
Median Error 16.36 21.16 25.11 15.83 9.71 17.64

Ours π
6 Accuracy 90.1 81.5 84.0 92.9 88.8 82.0
π
18 Accuracy 55.3 62.4 34.7 58.2 77.3 44.6
Median Error 9.02 7.24 13.87 8.67 4.69 11.59

Table 35: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (frost) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 57.6 65.9 39.0 77.0 86.8 95.8
π
18 Accuracy 23.1 17.8 12.6 30.7 70.9 85.6
Median Error 22.75 21.52 43.77 15.29 5.84 5.08

Ours π
6 Accuracy 80.7 79.8 65.3 88.0 94.0 98.6
π
18 Accuracy 51.9 27.8 38.7 49.9 89.7 94.4
Median Error 9.62 16.07 15.22 10.02 3.02 3.26

Table 36: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (frost) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 73.1 66.8 58.8 84.1 62.4 75.7
π
18 Accuracy 31.6 38.8 12.5 35.6 47.5 24.6
Median Error 15.99 14.94 24.66 12.51 11.38 18.29

Ours π
6 Accuracy 87.9 80.1 81.5 89.7 90.5 82.9
π
18 Accuracy 52.6 60.1 30.8 53.5 78.7 42.5
Median Error 9.68 7.77 14.52 9.36 5.07 13.04
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Table 37: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (fog) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 80.4 80.2 65.9 87.4 93.6 98.3
π
18 Accuracy 46.4 27.4 36.3 47.0 89.5 94.2
Median Error 10.82 16.62 15.8 10.52 3.24 3.63

Ours π
6 Accuracy 85.5 81.6 70.6 89.3 95.9 99.2
π
18 Accuracy 55.7 29.6 42.2 54.2 92.7 95.6
Median Error 8.79 15.16 13.08 8.98 2.69 3.12

Table 38: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (fog) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 86.2 80.1 73.6 92.6 87.6 78.7
π
18 Accuracy 45.5 55.9 21.0 55.0 69.9 31.1
Median Error 10.6 8.45 18.8 9.14 5.71 15.86

Ours π
6 Accuracy 90.7 82.9 87.2 94.2 90.4 82.4
π
18 Accuracy 58.5 65.0 34.7 61.1 79.0 44.1
Median Error 8.73 6.97 13.26 8.16 4.74 11.72

Table 39: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (contrast) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 56.4 67.0 56.6 82.5 81.4 92.4
π
18 Accuracy 18.2 14.9 25.6 42.3 61.1 80.3
Median Error 24.48 22.18 23.49 11.96 7.22 5.55

Ours π
6 Accuracy 87.7 81.9 70.4 89.2 94.0 99.2
π
18 Accuracy 58.7 32.4 42.6 52.5 90.8 96.0
Median Error 8.24 15.18 12.66 9.57 2.64 3.07
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Table 40: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (contrast) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 69.4 69.1 49.0 88.1 71.6 74.7
π
18 Accuracy 26.1 38.2 7.4 45.7 45.5 28.5
Median Error 15.8 14.94 30.86 10.62 11.29 17.95

Ours π
6 Accuracy 90.5 83.0 86.4 95.2 91.0 81.8
π
18 Accuracy 57.7 67.4 37.4 61.7 79.5 50.1
Median Error 8.82 6.51 13.28 8.03 4.63 9.98

Table 41: Unsupervised 3D pose estimation for Corrupted-Pascal3D+ (elastic transform) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 76.0 48.4 51.6 84.5 89.1 97.7
π
18 Accuracy 39.9 10.2 19.8 36.9 81.8 92.7
Median Error 13.68 30.82 27.66 12.87 4.64 4.02

Ours π
6 Accuracy 84.9 81.6 71.6 88.8 94.5 98.9
π
18 Accuracy 55.3 31.6 42.4 51.8 91.7 95.2
Median Error 8.92 16.42 12.75 9.56 3.01 3.17

Table 42: Unsupervised 3D pose estimation for Corrupted-Pascal3D+ (elastic transform) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 63.2 72.8 42.9 92.0 87.6 74.1
π
18 Accuracy 16.6 46.5 4.7 54.3 66.3 21.1
Median Error 20.67 10.98 33.62 9.24 6.76 17.28

Ours π
6 Accuracy 90.9 82.5 85.9 94.1 87.7 81.6
π
18 Accuracy 55.1 63.2 33.3 61.7 69.7 44.3
Median Error 9.32 7.13 14.3 8.05 6.3 11.65
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Table 43: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (pixelate) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 60.1 52.2 56.1 82.7 94.0 95.1
π
18 Accuracy 25.9 9.5 28.4 39.1 88.0 90.1
Median Error 20.61 28.77 23.4 12.37 4.12 4.03

Ours π
6 Accuracy 86.0 82.6 73.2 88.4 94.9 98.9
π
18 Accuracy 55.5 30.7 45.6 50.2 91.2 95.6
Median Error 8.58 16.1 11.72 9.95 2.82 3.1

Table 44: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (pixelate) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 82.8 78.9 43.4 93.9 75.5 81.2
π
18 Accuracy 51.2 58.7 8.8 55.1 52.5 38.2
Median Error 9.66 8.01 34.47 9.14 9.45 13.2

Ours π
6 Accuracy 88.9 82.7 86.9 95.4 90.4 81.5
π
18 Accuracy 56.9 65.2 34.2 59.8 79.2 44.0
Median Error 9.03 6.9 13.23 8.43 5.07 11.38

Table 45: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (speckle noise) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 44.8 59.1 37.3 47.9 81.6 95.7
π
18 Accuracy 15.7 8.8 13.4 12.6 64.7 85.0
Median Error 35.14 26.09 49.24 31.02 7.15 5.21

Ours π
6 Accuracy 84.1 81.9 69.7 87.7 94.7 98.8
π
18 Accuracy 53.5 27.9 42.2 51.7 91.2 95.1
Median Error 9.22 15.93 13.24 9.79 2.93 3.22
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Table 46: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (speckle noise) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 63.8 56.5 66.2 71.8 70.5 75.7
π
18 Accuracy 19.0 22.5 15.2 29.6 36.2 29.1
Median Error 21.65 23.82 21.6 15.58 13.99 16.64

Ours π
6 Accuracy 90.9 81.2 83.2 92.1 89.1 82.8
π
18 Accuracy 52.6 62.9 38.0 55.0 76.7 46.7
Median Error 9.47 7.28 12.66 8.84 4.83 10.66

Table 47: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (gaussian blur) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 42.2 55.5 39.7 81.3 62.0 86.0
π
18 Accuracy 10.7 14.1 7.8 38.3 32.0 68.1
Median Error 37.05 25.81 40.23 12.78 15.19 7.17

Ours π
6 Accuracy 84.4 77.2 70.6 88.1 93.8 98.2
π
18 Accuracy 51.7 28.4 41.1 47.8 90.0 94.2
Median Error 9.62 16.62 13.38 10.51 3.08 3.31

Table 48: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (gaussian blur) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 79.6 67.6 57.7 89.4 54.3 78.4
π
18 Accuracy 39.7 38.1 11.6 42.8 28.6 32.5
Median Error 12.45 14.38 25.99 11.47 23.2 15.19

Ours π
6 Accuracy 88.9 83.7 83.0 95.0 89.6 82.3
π
18 Accuracy 56.7 65.8 33.3 58.7 77.5 43.5
Median Error 9.12 6.96 14.31 8.64 5.22 11.45
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Table 49: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (spatter) Part 1

plane bicycle boat bottle bus car
Method Metric

(Wang et al., 2021a) π
6 Accuracy 58.3 64.0 41.6 64.5 88.3 96.0
π
18 Accuracy 25.6 14.3 15.9 23.0 79.5 87.8
Median Error 23.54 23.43 41.0 21.41 4.97 4.69

Ours π
6 Accuracy 84.4 79.4 65.8 87.6 94.4 99.0
π
18 Accuracy 52.9 28.4 38.3 50.5 91.0 95.2
Median Error 9.44 16.77 15.38 9.96 3.03 3.25

Table 50: Unsupervised 3D pose estimation results for Corrupted-Pascal3D+ (spatter) Part 2

chair table bike sofa train tv
Method Metric

(Wang et al., 2021a) π
6 Accuracy 73.1 56.6 63.5 78.0 82.1 70.4
π
18 Accuracy 32.0 29.4 14.0 32.7 61.2 18.0
Median Error 15.0 21.87 22.05 14.3 7.39 21.21

Ours π
6 Accuracy 90.5 82.1 87.0 94.2 89.0 82.0
π
18 Accuracy 56.5 62.8 34.0 59.5 76.9 44.9
Median Error 8.81 7.45 13.68 8.24 5.28 11.27
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