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ABSTRACT

Physical properties derived from electronic distributions are essential information
that determines molecular properties. However, the electron-level information is
not accessible in most real-world complex molecules due to the extensive com-
putational costs of determining uncertain electronic distributions. For this reason,
existing methods for molecular property prediction have remained in regression
models on simplified atom-level molecular descriptors, such as atomic structures
and fingerprints. This paper proposes an efficient knowledge transfer method for
electron-aware molecular representation learning. To this end, we devised a self-
supervised diffusion method that estimates the electron-level information of real-
world complex molecules without expensive quantum mechanical calculations.
The proposed method achieved state-of-the-art prediction accuracy in the tasks of
predicting molecular properties on extensive real-world molecular datasets.

1 INTRODUCTION

Machine learning has been widely studied as an efficient data-driven method for predicting the phys-
ical and chemical properties of molecules (Wigh et al., 2022). In particular, graph neural networks
(GNNs) (Kipf & Welling, 2017) achieved numerous successes in various molecular representation
learning tasks (Bilodeau et al., 2022; Duval et al., 2023). In GNNs, an atom-level molecular structure
is defined as a graph G = (V,U ,A,X,R), where V is a set of nodes (i.e., atoms), U is a set of edges
(i.e., chemical bonds), A ∈ {0, 1}|V|×|V| is an adjacency matrix, X ∈ R|V|×d is a d-dimensional
node-feature matrix, and R ∈ R|U|×r is an r-dimensional edge-feature matrix (Wieder et al., 2020).

In addition to traditional GNNs, various methods have been proposed to learn informative molecular
representations from different approaches, such as fragmentation-based learning (Zhang et al., 2021;
Kim et al., 2023), domain knowledge integration (Wang et al., 2022), and hierarchical representation
learning (Zang et al., 2023). However, existing methods aimed to learn molecular representations
from atom-level molecular descriptors, while overlooking a physical principle that molecular prop-
erties are essentially derived from electron-level information, such as electronic distributions and
related electronic energies, beyond the atom-level information (Parr & Yang, 1995; Engel & Drei-
zler, 2011). Therefore, the representation capabilities of the existing methods for molecular repre-
sentation learning are inherently limited, even though they were sophisticatedly designed to capture
latent information from the atom-level molecular descriptors.

In physical science, quantum mechanical calculations have been used as a de facto standard to
calculate the electron-level molecular information (Parr & Yang, 1995), such as molecular or-
bital and atomization energy. However, as these methods suffer from cubic or greater time
complexities with respect to the number of electrons in a molecule (Engel & Dreizler, 2011;
Dawson et al., 2022), electron-level information about real-world complex and large molecules
are usually not accessible in chemical applications. Although there is an efficient solution
that uses sophisticatedly designed 3D-GNNs with electron-level information generated by force-
field-based and semi-empirical calculations (FFSECs) (Riniker & Landrum, 2015), the effec-
tiveness of this straightforward solution is questionable due to the low calculation accuracy
of the FFSEC methods. To corroborate our argument, we empirically evaluated the effec-
tiveness of 3D-GNNs with FFSEC on well-known real-world molecular datasets: Lipop (Wu
et al., 2018), ESOL (Delaney, 2004), and IGC50 (Wu & Wei, 2018) datasets. Fig. 1 shows
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Figure 1: R2-scores (Nagelkerke et al., 1991) of 3D-GNNs
with FFSEC on real-world molecular datasets.

that the experimental evaluations did
not demonstrate significant improve-
ment by the 3D-GNNs with FFSEC,
denoted by PhysChem (Yang et al.,
2021), M3GNet (Chen & Ong, 2022),
and FAENet (Duval et al., 2023),
while a simple 2D-GNN called AttFP
(Xiong et al., 2019) rather showed
better prediction accuracy. We con-
jecture two major reasons for such
results: 1) The calculation errors of
FFSEC can be propagated to the 3D
GNN models, which in turn degrades the prediction accuracy. 2) Complex 3D-GNNs are not effec-
tive in representation learning on large molecules due to the overfitting problem (Li et al., 2023a).

In this paper, we propose decomposition-supervised electron-level information diffusion (DELID)
for an electron-aware molecular representation learning. The main challenge is that the electron-
level information s0 is usually unknown for a real-world moleculeG. To this end, we propose a self-
supervised diffusion model for estimating the unknown latent representation s0 without its ground
truth being accessible in the training process. As shown in Fig. 2a, DELID consists of two diffusion
models. The diffusion model on G aims to estimate the original molecule G from the noise GT ,
while the diffusion model on s aims to estimate the unknown complete electron-level information s0
of G from the noise sT . The main idea of DELID is to consider GT as decomposed substructures of
G, and sT as their electron-level information, whereGT and sT can be easily obtained from molecu-
lar decomposition algorithms (Liu et al., 2017), and public chemical databases (Ramakrishnan et al.,
2014), respectively, without expensive quantum mechanical calculations. As illustrated in Fig. 2b,
DELID employs the transition probability p(Gt−1|Gt;G0) of the diffusion process on G as a self-
supervision to learn the diffusion process from readily accessible sT to unknown s0. In Section 3.2,
we will mathematically show that the diffusion model on s can be optimized by minimizing the KL
divergence between p(Gt−1|st;G0) and p(Gt−1|Gt;G0).

In our experiments, we focus on evaluating the prediction capabilities of the machine learning meth-
ods on biased and relatively small experimental datasets rather than simulated datasets (e.g., QM9
dataset (Ramakrishnan et al., 2014)). Although the simulated datasets are useful for analyzing rough
statistics on small molecules, they are not appropriate to evaluate the prediction capabilities of the
machine learning methods on real-world molecular physics due to the following two reasons: 1)
The simulated datasets do not contain complex and large molecules due to the large time complexity
of the quantum mechanical calculations. 2) The simulated datasets do not sufficiently reflect the
quantum mechanical uncertainty in real-world molecules (Sim et al., 2018). For these reasons, we
used experimentally collected molecular datasets from physicochemistry, toxicity, pharmacokinet-
ics, and optical applications to evaluate the practical potential of DELID. For all benchmark molec-
ular datasets, DELID achieved state-of-the-art performance in predicting experimentally observed
properties of real-world complex molecules. The contributions can be summarized as:

• A novel method called DELID for learning electron-aware molecular representations beyond
atom-level molecular representations without expensive quantum mechanical calculations.

• A self-supervised diffusion mechanism to estimate the unknown electron-level information.

• The state-of-the-art prediction accuracy of DELID on extensive real-world molecular datasets
containing experimentally collected complex molecules and their properties.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS ON MOLECULES

2D-GNNs for molecular representation learning on the 2D molecular structures have been widely
studied in chemical science due to their practicality and efficiency. SchNet (Schütt et al., 2017) and
MEGNet (Chen et al., 2019) are graph convolutional neural networks for molecular representation
learning on quantum mechanical principles in chemical bonds and local atomic substructures. They
employed an atom-wise representation to learn geometric information of the molecules. MPNN
(Gilmer et al., 2017) is a message-padding neural network that captures the quantum mechanics
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Figure 2: a. The overall architecture of DELID, and b. the self-supervised diffusion process to
estimate the complete electron-level information s0 that represents the ground truth s of G. In the
self-supervised diffusion process, GT , G0, and sT are given data, whereas s0 is unknown data.

between the atoms. Directed MPNN (D-MPNN) is an extension of MPNN for molecular repre-
sentation learning based on a directed message passing scheme (Yang et al., 2019). In addition to
the general-purpose GNNs, AttFP (Xiong et al., 2019) was proposed to predict the physical and
chemical properties of the molecules for drug discovery.

3D-GNNs that utilize the 3D molecular structures in representation learning have been devised for
more accurate molecular representation learning. DimeNet++ (Gasteiger et al., 2020), PhysChem
(Yang et al., 2021), and M3GNet (Chen & Ong, 2022), and FAENet (Duval et al., 2023) were
proposed to learn local and global 3D geometry of the molecules. ConAN (Nguyen et al., 2024) used
the 3D molecular structures of possible conformers of the input molecule in molecular representation
learning. In addition to these methods, PaiNN (Schütt et al., 2021), GemNet (Gasteiger et al.,
2021), Equiformer (Liao & Smidt, 2022), MolKGNN (Liu et al., 2023), and ViSNet (Wang et al.,
2024) were proposed for molecular property prediction on the 3D structures. However, despite their
state-of-the-art performances on several benchmark datasets on calculated molecular structures, their
applicability is significantly limited in real-world molecular science because calculating an accurate
3D molecular geometry is not feasible in most real-world complex molecules due to the uncertainty
of the electronic structures and the large computational costs to calculate them (Krivanek et al., 2010;
Suenaga & Koshino, 2010; Schuch & Verstraete, 2009). Although ConAN showed state-of-the-art
prediction accuracy with an efficient geometry calculation, its practicality also limited because we
should generate all conformers of the input molecules for each inference process.

2.2 KNOWLEDGE TRANSFER METHODS FOR MOLECULAR REPRESENTATION LEARNING

Machine learning methods usually suffer from the lack of training data and informative features
in chemical applications because time-consuming and labor-intensive chemical experiments are re-
quired to collect experimentally generated data (Gromski et al., 2019; Shen et al., 2021). To over-
come the lack of experimental data, transfer learning to exploit simulated molecular data has been
widely studied in physics and chemistry (Jha et al., 2019; Cai et al., 2020; Zaverkin et al., 2023; Dou
et al., 2023b). However, the practicality of the transfer learning methods on simulated molecular
data is still limited because the source calculation databases are not able to cover the majority of
large molecules in real-world chemical experiments due to the cubic or greater time complexities of
the calculation methods with respect to the number of electrons in the molecules (Engel & Dreizler,
2011; Schuch & Verstraete, 2009). In addition to transfer learning, various molecular representation
learning methods have been proposed to exploit fragmented information on molecular representation
learning (Zhang et al., 2021; Wang et al., 2022; Yu & Gao, 2022; Chen et al., 2022; Kim et al., 2023;
Feng et al., 2023). However, the representation capabilities of the existing molecular representation
learning methods are essentially limited to the atom-level molecular representations because they
did not consider how to estimate the electron-level information and how to utilize it.

2.3 DIFFUSION MODELS

Diffusion models aim to learn a stochastic process that approximates the probability distribution of a
given dataset (Kingma et al., 2021; Song et al., 2020). The diffusion models have achieved remark-
able successes in learning physical systems consisting of complex and long-step stochastic processes
over conventional generative models (Zeni et al., 2023; Yuan et al., 2023; Wu & Li, 2023). The re-
verse process of the diffusion models, which restore the data from noise, can be used as a generative
model to generate new data (Ho et al., 2022; Vignac et al., 2022). In addition to the conventional dif-
fusion models, conditional diffusion models were devised to generate new data of desired properties
(Tashiro et al., 2021; Zhang et al., 2023; Zbinden et al., 2023). Since the electron-level information is
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usually derived by complex and long-step physical processes (Parr & Yang, 1995; Hollingsworth &
Dror, 2018), DELID employs the variational diffusion models (Huang et al., 2021) rather than shal-
low generative models, such as variational autoencoder (Kingma, 2013). However, as the existing
diffusion models essentially require the ground truth data to learn the forward and reverse processes,
they are not applicable to our problem where the electron-level information is not available.

3 PROPOSED METHOD

Vanilla Diffusion Models. The diffusion models essentially aim to learn the reverse process
p(st−1|st) to restore the original data s0 from noise sT (Ho et al., 2022). The diffusion models
are usually optimized by maximizing the following probability (Kingma et al., 2021):

log p(s) = logEq(s1:T |s0)

[
p(sT )

∏T
t=1 p(st−1|st)∏T

t=1 q(st|st−1)

]
. (1)

A fundamental assumption of the diffusion models is that s0 to learn the diffusion processes is given
in the training dataset (Kingma et al., 2021; Graham et al., 2023). However, since s0 represents the
electron-level information of a real-world molecule, it is assumed to be unavailable in our task.

Challenges in the Diffusion Processes of DELID. In our regression setting, the objective function
of the prediction models is given by:

log p(y, s, G) = log p(y|s, G)︸ ︷︷ ︸
Section 3.1

+ log p(s|G)︸ ︷︷ ︸
Section 3.2.2

+ log p(G)︸ ︷︷ ︸
Section 3.2.1

. (2)

where y is the target molecular property corresponding to the atom-level molecular descriptorG, and
s is hidden electron-level representation about G. However, calculating p(s|G) based on the vanilla
diffusion models is not feasible because the ground truth s is unknown in our task. Hence, our
proposed DELID adopts a self-supervised diffusion process for learning the distribution of s0, even
though s0 is not given in the training process, which will be described in the following subsections.
We will also mathematically show how we can approximate p(s|G) based on the diffusion process
on p(G) under some mild conditions on a set of substructures GT of the original molecule G.

3.1 DELID: DECOMPOSITION-SUPERVISED ELECTRON-LEVEL INFORMATION DIFFUSION

Experimental observations on the atomic systems contain measurement noise originated from the
uncertainty of the electronic distributions (Robertson, 1929; Najm et al., 2009). In physical science,
quantum mechanical calculations have been widely used to quantify the uncertainty of the electronic
distributions (Engel & Dreizler, 2011; Parr & Yang, 1995). Following the convention in physical
science, DELID employs the electron-level information calculated by the quantum mechanical cal-
culations as supplementary information to correct the measurement noise as:

y = f(G) + ψ(s;G), (3)

where y is the target property of a molecule G, f is a structure encoder for the atom-level molecular
descriptor G, and ψ is a function to estimate quantum mechanical noise from the electron-level
information s, which is calculated by the quantum mechanical calculations.

To predict the target molecular property y based on Eq. (3), DELID implements f as a deterministic
function based on 2D-GNNs and ψ as a stochastic function derived from parameterized normal
distribution N (µy, σ

2
y), where µy = fy,µ(s;G) and σy = fy,σ(s;G) are parameterized mean and

standard deviation, respectively. However, since s is not accessible in real-world complex and large
molecules, we devised the self-supervised diffusion process to estimate unknown s from a given
atom-level molecular descriptor G. In the following sections, we will formally define the self-
supervised diffusion process to estimate unknown s for ψ(s;G).

3.2 SELF-SUPERVISED DIFFUSION PROCESSES

3.2.1 DIFFUSION PROCESS ON MOLECULAR GRAPHS

The purpose of the self-supervised diffusion of DELID is to learn the electron-aware representation
s without labeled data for training s. To this end, we define a diffusion process of the molecule G
that will be used to guide the diffusion process on the unknown s. The lower bound of log p(G) is
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given by the variational diffusion model (Kingma et al., 2021) as:
log p(G) ≥ Eq(G1|G0) [log p(G0|G1)]−DKL(q(GT |G0)||p(GT ))

−
T∑

t=2

Eq(Gt|G0) [DKL(q(Gt−1|Gt, G0)||p(Gt−1|Gt))] ,
(4)

where DKL(·||·) is the KL divergence, G0 is the latent embedding that follows the distribution of the
input atom-level molecular graph G, and GT is the noised data of G. Note that the diffusion process
on G does not guarantee G0 ≈ G in our problem setting because the entire model is finally trained
to maximize log p(y, s, G) instead of log p(s, G), as shown in Eq. (2).

The main difference between the vanilla diffusion models and our proposed diffusion process lies in
the assumption on GT , i.e., vanilla diffusion models assume GT as a random noise drawn, whereas
DELID defines GT as atom-level decomposed substructures of G. Formally, in DELID, GT =
(VT ,UT ,AT ,XT ,RT ) is defined as a graph of graphs, where VT = {F1, F2, ..., FK} is a set of
decomposed substructures of G, UT = {E1, E2, ..., EK} is a set of edges within each substructure,
AT is an adjacency matrix representing UT , XT is the atom-feature matrix of the atoms in each
substructure, RT is the edge-feature matrix of UT . The diffusion probability onGT is parameterized
by GNN to consider the interactions between the substructures and their electron-level information.

Definition 1. Complete graph decomposition. A graph decomposition is complete for G if the
decomposed substructures of G, denoted by F1,F2, ...,FK , satisfy F1 ∪ F2 ∪ · · · ∪ FK = G and
F1 ∩ F2 ∩ · · · ∩ FK = ∅ where K is the number of decomposed substructures.

DELID assumes that GT is decomposed substructures generated through a complete graph decom-
position defined by Definition 1. The essential property of the complete graph decomposition is that
the nodes in G are preserved through the overall graph decomposition process, i.e., XT is preserved
through the overall graph decomposition process. Hence, we can consider the node-features of the
graphs as constant values in the diffusion process on G. For this reason, the structural differences
through the diffusion process are only in the the latent adjacency matrix At and latent edge-feature
matrix Rt of the latent graph Gt. However, Rt is deterministically calculated by At for the given
initial edge-feature matrix R0 because Rt is a matrix consisting of the rows of R0 selected by At.
Therefore, if GT is generated through the complete graph decomposition, the diffusion process on
G can be rewritten based on At ∈ [0, 1]|Vt|×|Vt| for the given R0 as:

log p(G) ≥ Eq(A1|A0;R0)[log p(A0|A1;R0)]−DKL(q(AT |A0;R0)||p(AT ;R0))

−
T∑

t=2

Eq(At|A0;R0) [DKL(q(At−1|At,A0;R0)||p(At−1|At;R0))] .
(5)

DELID assumes At,i,j ∼ N (µt,i,j , σ
2
t,i,j) for t ∈ {1, 2, ..., T − 1}, where At,i,j is the (i, j)-th

element of At, and N (µt,i,j , σ
2
t,i,j) is a normal distribution parameterized by µt,i,j and σt,i,j . How-

ever, since A0 and AT , which are the adjacency matrices of G0 and GT respectively, should be in
{0, 1}|V|×|V|, DELID assumes At,i,j ∼ Bernoulli(pt) parameterized by pt for t ∈ {0, T}.

Decomposing G into GT . DELID employs a chemically-informed molecular decomposition
method based on extended functional groups (EFGs) (Lu et al., 2021) as an implementation of the
complete graph decomposition. The EFG-based method has two benefits: 1) It can generate chemi-
cally valid substructures. 2) The size of the substructures is automatically adjusted based on chem-
ical knowledge. In chemical science, several other molecular decomposition methods are available
for molecular decomposition, such as the junction tree (Jin et al., 2018) and the BRICS decomposi-
tion (Liu et al., 2017). However, DELID uses the EFG-based molecular decomposition due to the
following two benefits of the EFG-based molecular decomposition: 1) it is an efficient complete
graph decomposition that generates chemically-valid subgraphs, and 2) it can capture commonly
appeared large molecular substructures beyond the traditional small functional groups. Appendix
G empirically shows the benefits of the EFG-based molecular decomposition over other molecular
decomposition methods in molecular property prediction.

3.2.2 CONDITIONAL DIFFUSION PROCESS ON ELECTRON-LEVEL INFORMATION (p(S|G))
DELID calculates the unknown electron-aware latent representation s through a diffusion process
guided by the diffusion process on G. log p(s|G) is given by the variational diffusion model as:

log p(s|G) = log p(sT |G) +

T∑
t=1

log p(st−1|st), (6)
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where s0 is the latent embedding representing the ground truth electron-level information s, and sT
is noised electron-level information corresponding toGT . Recall that we define sT as pre-calculated
electron-level features (properties) of the decomposed substructures GT of the input molecule G
instead of a simple random variable drawn from the standard normal distribution. Detailed descrip-
tions to obtain sT will be presented in Section 3.3.

We can derive a computable lower bound of the second term in Eq. (6) by marginalizing it with
respect to the latent graph Gt−1. The lower bound of the second term is given by:

T∑
t=1

log p(st−1|st, G) ≥
T∑

t=1

Eq(Gt−1|Gt) [log p(st−1|st, Gt−1)]−
T∑

t=1

DKL(q(Gt−1|Gt)||p(Gt−1|st)). (7)

If GT is generated through the complete graph decomposition, the lower bound of log p(s|G) can
also be rewritten based on At and R0 as:

log p(s|G) ≥ log p(sT |A0;R0) +

T∑
t=1

Eq(At−1|At;R0)[log p(st−1|st,At−1;R0)]

−
T∑

t=1

DKL(q(At−1|At;R0)||p(At−1|st;R0)).

(8)

The full derivation of the conditional diffusion process on s is provided in Appendix B. In the
conditional diffusion process, DELID assumes that p(st−1|st,At−1;R0) follows the parameterized
normal distributions for t ∈ {2, 3, ..., T}, while p(s0|s1,A0;R0) and p(sT |A0;R0) are assumed to
follow the parameterized Bernoulli distributions.

It is important to note that the conditional representation of the diffusion process on s described
above shows that we can calculate the lower bound of log p(s|G) without the ground truth values of
s. Furthermore, the conditional representation also demonstrates that we can maximize log p(s|G)
by minimizing the KL divergence between q(At−1|At;R0) and p(At−1|st;R0) so that the diffusion
process conditioned by st follows the diffusion process on G.

3.3 A RETRIEVAL PROCESS FOR OBTAINING ST IN CONDITIONAL DIFFUSION PROCESS

In Section 3.2.2, we formulated the conditional diffusion process, which can be performed without
the ground truth s. However, we still need the ground truth sT to perform the conditional diffusion
process, since DELID defined sT in Eq. (8) as the pre-calculated electron-level features of the
decomposed substructures GT instead of the simple random noise. In this section, we will present a
retrieval process of DELID to obtain sT without expensive quantum mechanical calculations.

Formally, sT is defined as an embedding vector calculated by a trainable neural network for an input
matrix Q ∈ RK×m containing electron-level features about theK decomposed substructures, where
the k-th row of Q, denoted by Qk, is the pre-calculated m-dimensional electron-level features of the
k-th substructure Fk ∈ VT . A straightforward way to obtain Q for calculating sT is to execute
the quantum mechanical calculations for each Fk. However, researchers in physical science have
constructed public chemical databases that provide the electron-level features of small molecules
via high-throughput quantum mechanical calculations (Ramakrishnan et al., 2014; Hoja et al., 2021;
Kim et al., 2019), and the public chemical databases already provide various electron-level features
for most possible small molecules. Hence, DELID leverages the readily accessible databases by
taking the pre-calculated electron-level features of the decomposed substructures F1,F2, ...,FK

based on a graph matching method for the public chemical databases.

More precisely, Qk is determined through the following retrieval process for a given public chemical
database Dqm, such as QM9 (Ramakrishnan et al., 2014) and PubChemQC (Nakata & Shimazaki,
2017) datasets. The retrieval process is given by:

Qk = sqm,i∗ , (9)

where sqm,i∗ is the pre-calculated electron-level features (e.g., electronic energies) of the i∗-th small
molecule Gqm,i∗ in Dqm, and an index i∗ is calculated by:

i∗ = argmax
i∈{1,2,...,|Dqm|}

ϕ(Fk, Gqm,i), (10)

ϕ : G × G → R is the Tanimoto similarity metric (Bajusz et al., 2015) to calculate the similarity
between two molecular graphs Fk and Gqm,i in a graph domain G. In other words, for a decom-
posed substructure Fk, we assign the pre-calculated electron-level features of a molecule in Dqm
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whose Tanimoto similarity with Fk is the highest. By performing the above retrieval process for all
Fk ∈ {F1,F2, ...,FK}, we can get Q for constructing sT without expensive quantum mechanical
calculations. In the implementation of DELID, we used the QM9 dataset as Dqm and transferred 15
energy- and polarity-related electron-level features for generating Qk.

4 EXPERIMENTS

We compared the prediction capabilities of DELID with those of state-of-the-art methods on various
benchmark molecular datasets containing experimentally collected molecules and their properties.
We focused on evaluating the prediction capabilities of DELID on the experimentally generated
datasets rather than simulated datasets (e.g., the QM9 dataset) due to the following reasons: 1)
The simulated datasets are not suitable to evaluate the prediction capabilities of machine learning
methods in real-world chemical applications because most molecules in the simulated datasets are
too simple and small (Ramakrishnan et al., 2014; Hoja et al., 2021). 2) Unlike the simulated datasets,
heterogeneous and out-of-distribution molecules are common in real-world chemical applications,
and we will discuss about this difference in Section 4.1 3) Experimental datasets containing the
measurement noises from the uncertainty of the electronic distributions are closer to real-world
nature than the simulated datasets (Wu et al., 2018; Joung et al., 2020).

Although we focused on evaluating the prediction capabilities of DELID on the experimental
datasets, DELID also showed the prediction accuracy comparable to state-of-the-art methods on
a large simulated dataset (Appendix H). In addition to the evaluation on the large simulated dataset,
we conducted additional experiments to evaluate the prediction performances of DELID for classi-
fication tasks (Appendix I) and for different molecular scales of Dqm (Appendix J).

Datasets. We employed nine benchmark molecular datasets constructed by real-world chemical ex-
periments. The benchmark molecular datasets were selected from well-known databases in molec-
ular science (Wu et al., 2018; Wu & Wei, 2018; Mendez et al., 2019; Joung et al., 2020). For com-
prehensive evaluations, we selected the benchmark molecular datasets from four different chemical
applications: physicochemistry, toxicity, pharmacokinetics, and optics. The characteristics of the
benchmark molecular datasets are summarized in Appendix D.

Competitors. We categorized competitor methods into three classes according to commonly used
molecular descriptors: molecular fingerprint, 2D molecular graph, and 3D molecular graph. 1) For
the molecular fingerprints, we generated three XGBoost (Chen & Guestrin, 2016) based ensemble
methods called XGB-Mor, XGB-FC, and XGB-MK that predict target molecular properties from
input Morgan (Mor) (Rogers & Hahn, 2010), functional-class (FC) (Rogers & Hahn, 2010), and
MACCS Key (MK) (Singh et al., 2009) fingerprints, respectively. Even though the XGB-based
ensemble methods with the molecular fingerprints are simple and trivial, they have shown state-of-
the-art prediction accuracy in various chemical applications (Ding et al., 2021; Li et al., 2023b). 2)
For the 2D molecular graph, we employed five GNNs: GIN (Xu et al., 2018), EGCN (Tailor et al.,
2021), MPNN (Gilmer et al., 2017), D-MPNN (Yang et al., 2019), UniMP (Shi et al., 2021), and
AttFP (Xiong et al., 2019). 3) Although 3D-GNNs are not applicable to the experimental molecular
datasets, we calculated the 3D atomic coordinates based on FFSEC and evaluated five 3D-GNNs
for the input FFSEC-generated 3D graphs. The following 3D GNNs were employed as competi-
tor methods: SchNet (Schütt et al., 2017), DimeNet++ (Gasteiger et al., 2020), PhysChem (Yang
et al., 2021), M3GNet (Chen & Ong, 2022), FAENet (Duval et al., 2023), and ConAN (Nguyen
et al., 2024). However, we were not able to execute or evaluate several 3D-GNNs (Schütt et al.,
2021; Gasteiger et al., 2021; Liao & Smidt, 2022) due to out-of-memory problems or additional
requirements on input data. Appendix E provides brief descriptions of the competitor methods.

Implementations. We used MPNN and GIN for the GNN-based embedding network of G and
GT in DELID, respectively. The hyperparameters of DELID and competitor methods were op-
timized by a grid search on commonly used hyperparameter sets. Also, we followed the orig-
inal implementation of the competitor methods to set method specific hyperparameters. The
hyperparameter settings of DELID for each benchmark datasets are given in Appendix F. For
the information retrieval of DELID in Section 3.3, we used the QM9 dataset (Ramakrishnan
et al., 2014) generated by a high-throughput quantum mechanical calculation on small organic
molecules. Instead of the original QM9 dataset, we used a subset of the QM9 dataset contain-
ing the molecules with maximum six atoms as Dqm because too large molecules are redundant in
matching the decomposed small substructures. The source code of DELID is publicly available at
https://github.com/ngs00/DELID.
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Table 1: The R2-scores of the competitor methods and DELID on benchmark experimental molec-
ular datasets. N/R and N/A mean a negative R2-score indicating a failure of regression and an
execution failure related to out of memory or numerical errors, respectively.

Input Type Method Lipop ESOL ADMET IGC50 LD50 LC50 LMC-H CH-DC CH-AC

Molecular
Fingerprint

XGB-Mor 0.531
(0.024)

0.659
(0.045)

0.717
(0.021)

0.621
(0.040)

0.390
(0.133)

0.497
(0.016)

0.505
(0.018) N/R N/R

XGB-FC 0.578
(0.018)

0.686
(0.052)

0.720
(0.009)

0.628
(0.023)

0.501
(0.052)

0.519
(0.025)

0.503
(0.007) N/R N/R

XGB-MK 0.542
(0.041)

0.764
(0.047)

0.761
(0.020)

0.680
(0.037)

0.486
(0.112)

0.526
(0.021)

0.471
(0.019) N/R N/R

3D Molecular
Graph

SchNet 0.667
(0.021)

0.881
(0.026)

0.834
(0.012)

0.765
(0.034)

0.527
(0.062)

0.467
(0.025)

0.456
(0.024)

0.713
(0.050)

0.702
(0.037)

DimeNet++ N/R 0.878
(0.025) N/R 0.779

(0.019)
0.541
(0.045) N/A 0.352

(0.101) N/A N/A

PhysChem 0.694
(0.024)

0.848
(0.032) N/A 0.814

(0.017)
0.511
(0.053) N/A N/A N/A N/A

M3GNet N/A 0.857
(0.025) N/A 0.697

(0.029)
0.531
(0.034) N/A N/A N/A N/A

FAENet 0.670
(0.036)

0.869
(0.013)

0.788
(0.020)

0.708
(0.015)

0.474
(0.020)

0.528
(0.094)

0.437
(0.025)

0.437
(0.132)

0.310
(0.136)

ConAN 0.738
(0.018)

0.909
(0.015)

0.845
(0.028)

0.819
(0.007)

0.531
(0.041)

0.572
(0.070)

0.466
(0.028)

0.405
(0.108)

0.388
(0.115)

2D Molecular
Graph

GIN 0.709
(0.019)

0.808
(0.017)

0.807
(0.023)

0.792
(0.015)

0.545
(0.016)

0.525
(0.080)

0.472
(0.033)

0.242
(0.010) N/R

EGCN 0.716
(0.021)

0.822
(0.029)

0.814
(0.021)

0.777
(0.020)

0.550
(0.018)

0.503
(0.080)

0.497
(0.038)

0.226
(0.086) N/R

MPNN 0.727
(0.018)

0.810
(0.042)

0.801
(0.028)

0.764
(0.027)

0.502
(0.022)

0.487
(0.108)

0.461
(0.032)

0.385
(0.023) N/R

D-MPNN 0.726
(0.037)

0.879
(0.013)

0.820
(0.018)

0.787
(0.008)

0.521
(0.011)

0.566
(0.098)

0.494
(0.011) N/R N/R

UniMP 0.718
(0.010)

0.810
(0.036)

0.817
(0.018)

0.756
(0.040)

0.512
(0.026)

0.531
(0.078)

0.478
(0.026)

0.166
(0.051) N/R

AttFP 0.710
(0.021)

0.909
(0.018)

0.851
(0.027)

0.807
(0.013)

0.513
(0.016)

0.642
(0.079)

0.456
(0.031)

0.441
(0.099)

0.296
(0.370)

DELID 0.782
(0.013)

0.912
(0.014)

0.834
(0.042)

0.844
(0.006)

0.566
(0.024)

0.644
(0.068)

0.532
(0.048)

0.886
(0.035)

0.885
(0.023)

4.1 MOLECULAR PROPERTY PREDICTION ON REAL-WORLD COMPLEX MOLECULES

We measured theR2-scores of DELID and the competitor methods on the nine benchmark molecular
datasets. In this experiment, we focused on evaluating the representation capabilities of DELID and
the competitor methods on the experimental datasets containing experimentally collected complex
and large molecules rather than the simulated datasets. Note that the R2-score is a normalized
metric to measure the regression accuracy. For all datasets, the R2-scores were measured by the 5-
fold cross-validation. Table 1 shows the measured R2-scores on the benchmark molecular datasets.
Although the 3D-GNNs were sophisticatedly designed to capture the inter-atomic interactions in
the 3D geometry and showed accuracy improvements on simulated molecular datasets, they were
not executable on many benchmark molecular datasets containing complex and large real-world
molecules. However, DELID showed reliable execution performances and achieved state-of-the-art
prediction accuracy on most benchmark datasets.

One of the main limitations of the 3D-GNNs is that their generalization capabilities are limited on
large molecular graphs due to the impractical time complexities and the easily overfitted embedding
schemes (Li et al., 2023a). In the experiments, the R2-scores of the 3D-GNNs were also lower
than those of the 2D-GNNs on the Lipop and LMC-H datasets containing many large molecules,
even though the 3D-GNNs employ sophisticatedly designed embedding methods with more model
parameters. This experimental results directly show the limitations of the 3D-GNNs on real-world
complex and large molecules. However, DELID achieved the highest R2-scores on the Lipop and
LMC-H datasets. These results show the practical potential of DELID in real-world chemical appli-
cations where complex and large molecules commonly appear.

We investigated the reasons for the failure of the competitor methods on the CH-DC and CH-AC
datasets. Fig. 3 shows the data distributions of the CH-DC and CH-AC datasets. We also presented
the data distributions of the ESOL and IGC50 datasets where most competitor methods success-
fully learned the relationships between the molecules and the target properties. Additionally, we
plotted the data distribution of the QM9 dataset together with the data distributions of the bench-
mark datasets for comparative analysis on the simulated and experimental molecular datasets. The
molecules in the datasets were projected to the 2D space through randomly initialized MPNN to
preserve the density of the data.

We observed two major results in Fig. 3. First, the data distribution of the simulated dataset was
biased, whereas the data distribution of the experimental datasets covered larger chemical spaces
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Benchmark datasets that were easy to regression

IGC50 CH-DC CH-ACESOL

Benchmark datasets that were difficult to regression

QM9

dataset

QM9

dataset

Figure 3: Data Distributions of the benchmark molecular datasets. Black: molecular emebeddings
of a simulated dataset called the QM9 dataset. Red: molecular embeddings of an experimentally
generated dataset. Note that the data distribution of the QM9 dataset can be plotted differently
depending on the scale of the data distribution of the ESOL, IGC50, CH-DC, and CH-AC datasets.

DELIDGIN EGCN MPNN UniMP AttFP

Lipop ESOL ADMET IGC50 LD50

Figure 4: The R2-scores for different sizes of the training data on the Lipop, ESOL, ADMET,
IGC50, and LD50 datasets. X-axis: Ratio of the training data. Y-axis: Measured R2-score.

with many outlier molecules. This observation justifies why evaluating machine learning methods
on experimentally collected molecular datasets is crucial in validating their practical availability in
real-world chemical applications. Second, the CH-DC and CH-AC datasets where most competitor
methods failed to predict the target properties covered extremely larger chemical spaces compared
to the QM9, ESOL, and IGC50 datasets. Nevertheless, DELID successfully captured the underlying
relationships between the molecules and their optical properties on the CH-DC and CH-AC datasets.

4.2 PREDICTION ACCURACY ON VARIOUS SIZES OF TRAINING DATA

Since conducting chemical experiments to obtain the experimentally labeled data is time-consuming
and labor-intensive, the lack of training data remains one of the main challenges of machine learn-
ing in chemical applications (Dou et al., 2023a). As described in Section 3.3, DELID is flexible in
incorporating external electron-level features into molecular representation learning, which is ben-
eficial in constructing an accurate prediction model on small training datasets. In this experiment,
we compared the R2-scores of DELID and the competitor methods over different sizes of training
datasets to demonstrate the effectiveness of DELID on small training datasets.

Fig. 4 shows the R2-scores of DELID and the competitor methods for different sizes of training
datasets. We measured the R2-scores on the Lipop, ESOL, ADMET, IGC50, and LD50 datasets
in which DELID and most competitor methods achieved the R2-scores greater than 0.5. However,
We did not compare the R2-scores of the XGB- and 3D structure-based methods because most of
them failed on small training datasets. Obviously, we were able to observe that the prediction ac-
curacy tends to be improved as the size of the training dataset increases for most methods. Among
the competitor methods, AttFP showed comparable generalization capabilities to those of DELID
on the ESOL and ADMET datasets. However, the accuracy improvements by AttFP were marginal
compared to GIN, EGCN, MPNN, and UniMP on the Lipop, IGC50, and LD50 datasets. By con-
trast, DELID consistently showed better generalization performances regardless of the benchmark
datasets compared to GIN, EGCN, MPNN, and UniMP. Furthermore, DELID outperformed AttFP
on the Lipop, IGC50, and LD50 datasets. These experimental results show the practical potential of
DELID in real-world chemical applications, which usually suffer from the lack of training data.

4.3 PREDICTION ACCURACY FOR DIFFERENT ELECTRON-LEVEL FEATURES

The choice of the electron-level features in the information retrieval can affect the representation
capabilities of DELID. To evaluate the prediction capability of DELID for different electron-level
features, we measured the R2-scores of DELID for different electron-level features provided in the
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Table 2: The R2-scores of DELID for different electron-level features.
Category of Features Lipop ESOL ADMET IGC50 LD50 LC50 LMC-H CH-DC CH-AC

Energy-related features 0.776
(0.015)

0.911
(0.013)

0.835
(0.036)

0.842
(0.013) N/R 0.642

(0.080)
0.538
(0.029)

0.784
(0.149)

0.832
(0.097)

Polarity-related features 0.778
(0.006)

0.908
(0.011)

0.755
(0.196)

0.840
(0.016)

0.569
(0.020)

0.632
(0.091)

0.525
(0.035)

0.886
(0.008)

0.877
(0.013)

Other features 0.785
(0.012)

0.910
(0.012)

0.711
(0.217)

0.849
(0.012)

0.556
(0.018)

0.632
(0.070)

0.534
(0.024)

0.773
(0.147)

0.861
(0.010)

All features (DELID) 0.782
(0.013)

0.912
(0.014)

0.834
(0.042)

0.844
(0.006)

0.566
(0.024)

0.644
(0.068)

0.532
(0.048)

0.886
(0.035)

0.885
(0.023)

Table 3: The R2-scores of DELID and its three variants in the Ablation study.

Method Atom-Level
Information

Electron-Level
Information

Information
Diffusion Lipop ESOL ADMET IGC50 LD50 LC50 LMC-H CH-DC CH-AC

DELIDat ✓ 0.727
(0.018)

0.810
(0.042)

0.801
(0.028)

0.764
(0.027)

0.502
(0.022)

0.487
(0.108)

0.461
(0.032)

0.385
(0.023) N/R

DELIDet ✓ 0.220
(0.014)

0.445
(0.060)

0.537
(0.022)

0.419
(0.017)

0.200
(0.024)

0.226
(0.094)

0.243
(0.043)

0.600
(0.038)

0.548
(0.032)

DELIDqm ✓ ✓ 0.775
(0.005)

0.908
(0.014)

0.824
(0.005)

0.828
(0.011)

0.537
(0.030)

0.616
(0.085)

0.502
(0.046)

0.846
(0.026)

0.875
(0.013)

DELID ✓ ✓ ✓ 0.782
(0.013)

0.912
(0.014)

0.834
(0.042)

0.844
(0.006)

0.566
(0.024)

0.644
(0.068)

0.532
(0.048)

0.886
(0.035)

0.885
(0.023)

QM9 dataset. We categorized the provided electron-level features into the following three classes:
1) energy-related features, 2) polarity-related features, 3) other features. Note that DELID used all
electron-level features in representation learning. Table 2 shows the R2-scores of DELID for differ-
ent kinds of the electron-level features. DELID showed significant improvements on the ADMET
and CH-DC datasets by using the energy- and polarity-related electron-level features respectively,
because of the direct relationships between the target molecular properties and these electron-level
features (Dong et al., 2018; Joung et al., 2020). However, DELID exploiting all electron-level fea-
tures showed the prediction accuracy comparable to the best models for all datasets, and this result
shows that DELID can select important electron-level features for a given target task.

4.4 ABLATION STUDY ON DELID

We conducted an ablation study to evaluate the effectiveness of the electron-level information and
self-supervised diffusion of DELID. We generated three variants of DELID for the ablation study. 1)
DELIDat is a model that learns the molecular representations using only the atom-level molecular
descriptor G, which is the same as MPNN. 2) DELIDet learns the molecular representations using
only the fragmented information defined as GT and sT . 3) DELIDqm predicts the target molecular
property based on Eq. (3) without the self-supervised diffusion on s, i.e., DELIDqm predicts the tar-
get molecular property by y = f(G)+ψ(GT , sT ;G). Table 3 shows theR2-scores of DELID and its
three variants for the ablation study. The R2-scores were measured by the 5-fold cross-validation.
The R2-scores of DELIDet shows that the incomplete electron-level features is not sufficient to
predict the molecular properties of the original molecules. The accuracy improvements were re-
markable in DELIDqm compared to DELIDat and DELIDet, and this result shows that integrating
the atom-level and electron-level information is crucial for accuracy molecular property prediction.
However, we were able to observe further improvements by DELID for all benchmark molecular
datasets. These results demonstrate the effectiveness of the electron-aware molecular representation
learning based on the self-supervised diffusion.

5 CONCLUSION

This paper proposed DELID to learn informative molecular representations of real-world complex
and large molecules based on the self-supervised diffusion process on the electron-level informa-
tion. In this paper, we mathematically showed that DELID can learn the electron-aware molecular
representations by approximating the diffusion process started from the fragmented electron-level
information to the diffusion process started from the decomposed substructures, even though the
complete electron-level information about the molecules is not known. By employing the self-
supervised diffusion, DELID achieved state-of-the-art prediction accuracy on extensive benchmark
datasets containing experimentally collected molecules and their molecular properties. The exper-
imental results showed the practical potentials of DELID in real-world chemical applications. As
a future work, an efficient method to construct the calculation databases at an accurate calculation
level for the coarse-graining representation learning of DELID needs to be considered to provide
more accurate electron-level features to DELID.
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Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. NeurIPS, 30, 2017.
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A SAMPLING METHOD FOR PARAMETERIZED BERNOULLI DISTRIBUTION

Unlike the conventional diffusion models, DELID assumes the parameterized Bernoulli distribution
on A0 and AT because each element of them should be in the binary domain {0, 1}. Hence, we need
to generate sample from reparameterized Bernoulli distribution. By the existing work on categorical
reparameterization (Jang et al., 2016; Maddison et al., 2016), we can sample a random variable
following the Bernoulli distribution under the reparameterized distribution as:

z = σ(log ϵ− log(1− ϵ) + log ϕ(x)− log(1− ϕ(x))), (11)
where σ is the sigmoid function, ϕ ∈ (0, 1) is a trainable shape parameter of Bernoulli distribution,
and ϵ ∼ U(0, 1) is a random number from an uniform distribution U(0, 1).

B DERIVATION OF THE CONDITIONAL DIFFUSION PROCESS ON S

In this section, we present a detailed derivation of the conditional diffusion process on s. Since the
second term p(s|G) in Eq. (2) is not directly computable, we derive the lower bound of log p(s|G)
based on a diffusion process started from sT as follows.

log p(s|G) = log p(sT |G) +
T∑

t=1

log p(st−1|st) (12)

We can marginalize the second term in Eq. (12) for Gt−1 and calculate its lower bound as follows.
T∑

t=1

log p(st−1|st) =
T∑

t=1

log

(∫
Gt−1

p(st−1|st, Gt−1)p(Gt−1|st)dGt−1

)

=

T∑
t=1

log

{∫
Gt−1

(
p(st−1|st, Gt−1)p(Gt−1|st)

q(Gt−1|Gt)

)
q(Gt−1|Gt)dGt−1

}

≥
T∑

t=1

∫
Gt−1

log

(
p(st−1|st, Gt−1)p(Gt−1|st)

q(Gt−1|Gt)

)
q(Gt−1|Gt)dGt−1

=

T∑
t=1

Eq(Gt−1|Gt) [log p(st−1|st, Gt−1)]−
T∑

t=1

DKL(q(Gt−1|Gt)||p(Gt−1|st)). (13)

Finally, the lower bound of log p(s|G) is given by:

log p(s|G) ≥ log p(sT |G) +
T∑

t=1

Eq(Gt−1|Gt) [log p(st−1|st, Gt−1)]

−
T∑

t=1

DKL(q(Gt−1|Gt)||p(Gt−1|st)). (14)

If GT is generated through the complete graph decomposition, we also rewrite the lower bound of
log p(s|G) as follows.

log p(s|G) ≥ log p(sT |A0;R0) +

T∑
t=1

Eq(At−1|At;R0)[log p(st−1|st,At−1;R0)]

−
T∑

t=1

DKL(q(At−1|At;R0)||p(At−1|st;R0)). (15)

C ALGORITHMIC DESCRIPTION OF DELID

Algorithm 1 shows an algorithmic description of the forward and training processes of DELID.

D STATISTICS OF THE BENCHMARK EXPERIMENTAL DATASETS

Table 4 shows the statistics and target molecular properties of the nine benchmark molecular datasets
used for the experimental evaluations.
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Algorithm 1 Training Process of DELID
Input: Dtrain: a training dataset;

Dqm: a dataset for the information retrieval;
η: an initial learning rate of the optimizer;

Output: θ∗: optimized model parameters;
repeat

for (G, y) ∈ Dtrain do
// Decomposition of an atom-level molecular graph.
F1,F2, ...,FK ← EFGDecomposition(G)
// Information retrieval to obtain sT .
for k = 1; k ≤ K do

i∗ = argmaxi∈{1,2,...,|Dqm|} ϕ(Fk, Gqm,i)

Qk = sqm,i∗

end for
// Model parameter optimization.
Calculate Jθ = log pθ(y, s, G) by Eqs. (3), (5), (8).
θ ← θ + η∇Jθ

end for
until θ is converged

Table 4: Statistics and target molecular properties of the benchmark molecular datasets that contain
the atom-level molecular structures and their experimentally observed target properties.

Application
Category Dataset Target Molecular Property # of Molecules Average Number

of Atoms

Physicochemistry
Lipop (Mendez et al., 2019) Lipophilicity 4,200 48.51
ESOL (Delaney, 2004) Aqueous solubility 1,128 25.64
ADMET (Dong et al., 2018) Aqueous solubility 4,801 26.76

Toxicity
IGC50 (Wu & Wei, 2018) Tetrahymenapyriformis toxicity 1,791 19.29
LC50 (Wu & Wei, 2018) Fathead minnow toxicity 822 22.32
LD50 (Wu & Wei, 2018) Oral rat toxicity 7,412 31.30

Pharmacokinetics LMC-H (Mendez et al., 2019) Liver microsomal clearance in human 5,347 54.53

Optics CH-DC (Joung et al., 2020) Absorption max in Dichloromethane 2,429 28.95
CH-AC (Joung et al., 2020) Absorption max in Acetonitrile 1,781 29.71

E COMPETITOR METHODS

In the experiments, we compared the prediction capabilities of DELID with a baseline tree method
and ten state-of-the-art GNNs, which have been widely used in chemical applications. The competi-
tor methods are briefly described as:

• XGB-Mor: XGBoost (XGB) (Chen & Guestrin, 2016) is a tree-based gradient boosting
model, and it showed state-of-the-art performances in various scientific applications. For
the experimental evaluations, we generated XGB-Mor that predicts the target molecular
properties for the Morgan (Mor) fingerprints of the atom-level molecular structures (Rogers
& Hahn, 2010).

• XGB-FC: We generated XGB-FC by combining XGB with the functional-class (FC) fin-
gerprints of the input molecules (Rogers & Hahn, 2010). The FC fingerprint represents the
atom-level molecular structures based on their functional substructures and atoms.

• XGB-MK: We also generated XGB-MK based on the MACCS Key (MK) fingerprint
(Singh et al., 2009), which is one of the most commonly used molecular representations.
MACCS key encodes the atom-level molecular structures based on 166-bits binary patterns.

• GIN (Xu et al., 2018): Graph isomorphism network (GIN) is an effective framework for
graph representation learning based on graph isomorphism test.

• EGCN (Tailor et al., 2021): Efficient graph convolution (EGC) is an isotropic GNN
based on adaptive filters and aggregation fusion in the node aggregation phase. EGC out-
performed common anisotropic GNNs, such as graph attention networks, on benchmark
datasets.

17



Published as a conference paper at ICLR 2025

• MPNN (Gilmer et al., 2017): Message passing neural network is a unified framework of
node and edge convolution methods for learning molecular representations on quantum
chemistry.

• D-MPNN (Yang et al., 2019): Directed MPNN (D-MPNN) is an extension of the origi-
nal MPNN for the directed molecular graphs. It employs a message passing scheme via
directed edges (bonds).

• UniMP (Shi et al., 2021): Unified message passing (UniMP) is a transformer-based GNN.
UniMP showed state-of-the-art prediction capabilities by incorporating feature and label
propagation at both training and inference time based on the transformer architecture.

• AttFP (Xiong et al., 2019): AttFP is a network that uses a graph self-attention mechanism
to learn molecular representations for drug discovery. AttFP was designed to learn non-
local intra-molecular interactions to extract informative molecular representations.

• SchNet (Schütt et al., 2017): It is a convolutional neural network for learning molecular
representations based on quantum interactions in molecules. It has been widely used as a
baseline model in various chemical applications (Schütt et al., 2017; 2018).

• DimeNet++ (Gasteiger et al., 2020): DimeNet aims to learn molecular representations
based on the directional embedding that extracts inter-atomic 3D geometry. DimNet++
is an advanced version of DimeNet to learn the molecular representatios based on the
uncertainty-aware directional embedding.

• PhysChem (Yang et al., 2021): PhysChem is a neural architecture that learns molecular
representations via fusing the information about the inter-atomic geometry and message
passing through chemical bonds. PhysChem showed state-of-the-art prediction accuracy
on various simulated molecular datasets.

• M3GNet (Chen & Ong, 2022): Graph neural networks with three-body interactions
(M3GNet) is a neural network to learn molecular representations based on the three-body
inter-atomic interactions. Although M3GNet requires large computational costs to calcu-
late the three-body interactions, it showed state-of-the-art prediction accuracy on various
molecular and materials datasets.

• FAENet (Duval et al., 2023): Frame averaging equivariant GNN (FAENet) is simple and
fast GNN optimized for stochastic frame-averaging. FAENet can learn molecular repre-
sentations by processing atom-relative positions with full flexibility without symmetry-
preserving requirements.

• ConAN (Nguyen et al., 2024): Conformer aggregation network (ConAN) is an E(3)-
invariant molecular conformer aggregation network to learn molecular representations
based on ensembles methods on molecular conformers. It showed state-of-the-art predic-
tion accuracy on several molecular datasets by employing a 2D–3D aggregation mechanism
based on a differentiable solver for the Fused Gromov-Wasserstein Barycenter problem.

F IMPLEMENTATION DETAILS AND HYPERPARAMETER SETTINGS

We followed a common graph-based descriptor to convert an atom-level molecular structure into an
attributed graph G = (V,U ,A,X,R), where V is a set of nodes (i.e., atoms), U is a set of edges
(i.e., chemical bonds), A ∈ {0, 1}|V|×|V| is an adjacency matrix, X ∈ R|V|×d is a d-dimensional
node-feature matrix, and R ∈ R|U|×r is an r-dimensional edge-feature matrix (Wieder et al., 2020).
We used the pre-defined 200-dimensional atomic embeddings (Goodall & Lee, 2020) to construct
the node-feature matrix X. We defined the edge features as an one-hot encoding of 22 bond types
(Wieder et al., 2020; Chen et al., 2019). The pre-defined bond types were provided in RDKit1, which
is a popular cheminformatics library in computational chemistry.

The model parameters of DELID were optimized by the AdamW optimizer (Loshchilov & Hutter,
2017) for all experiments in this paper. The initial learning rate and L2 regularization coefficients
were fixed to 5e-4 and 5e-6 for all benchmark datasets, respectively. Batch size is also fixed to 64
for all benchmark datasets. The GNN-based embedding networks were constructed by two node

1https://www.rdkit.org
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Table 5: Electron-level features used for the retrieval process of DELID on the QM9 dataset.
Category Feature Name Unit

Energy-related feature

HOMO eV
LUMO eV

HOMO-LUMO gap eV
Zero point vibrational energy eV

Internal energy at 0 K eV
Internal energy at 298.15 K eV

Enthalpy at 298.15 K eV
Free energy at 298.15 K eV

Heat capacity at 298.15 K eV

Polarity-related feature
Dipole moment Debye

Isotropic polarizability Bohr3

Electronic spatial extent Bohr2

Other features
Rotational constant A GHz
Rotational constant B GHz
Rotational constant C GHz

aggregation layers and one dense layer with 64 output channels. DELID and experiment scripts
were implemented with PyTorch 2.0.0+cu1172 and PyTorch Geometric 2.3.13 under Python 3.9.

In the implementation of the information retrieval on s, we used a subset of the QM9 dataset (Ra-
makrishnan et al., 2014) containing the molecules of maximum six atoms as an external quantum
mechanics dataset Dqm. We used 15 electron-level features in the QM9 dataset to construct the fea-
ture matrix of the fragmented electron-level information S. The selected 15 electron-level features
of the QM9 dataset are shown in Table 5.

G PREDICTION ACCURACY FOR DIFFERENT DECOMPOSITION METHODS
DELID employs the EFG-based decomposition method for generating the decomposed substruc-
tures GT from the input molecule G. Table 6 shows the R2-scores of two variants of DELID that
use two well-known molecular decomposition methods: BRICS (Liu et al., 2017) decomposition
and junction tree method (Jin et al., 2018). Although the R2-scores of DELID were not signifi-
cantly changed for the implementations of the molecular decomposition methods, DELID with the
EFG-based decomposition showed higher R2-scores for most benchmark experimental datasets.

Table 6: The R2-scores of DELID for different molecular decomposition methods.

Decomposition Method Lipop ESOL ADMET IGC50 LD50 LC50 LMC-H CH-DC CH-AC

BRICS (Liu et al., 2017) 0.763
(0.018)

0.908
(0.008)

0.811
(0.050)

0.824
(0.008)

0.516
(0.031)

0.635
(0.058)

0.515
(0.040)

0.865
(0.047)

0.863
(0.031)

Junction Tree (Jin et al., 2018) 0.770
(0.012)

0.905
(0.013)

0.808
(0.033)

0.823
(0.005)

0.518
(0.023)

0.622
(0.057)

0.518
(0.038)

0.866
(0.053)

0.867
(0.031)

EFG (Lu et al., 2021) 0.782
(0.013)

0.912
(0.014)

0.834
(0.042)

0.844
(0.006)

0.566
(0.024)

0.644
(0.068)

0.532
(0.048)

0.886
(0.035)

0.885
(0.023)

H PREDICTION ACCURACY ON LARGE SIMULATED DATASETS

Although the calculated physical and chemical properties of the molecules are not reliable in real-
world complex molecules, we conducted an experiment of predicting molecular properties on a large
simulated dataset to evaluate the prediction capabilities of DELID on large molecular datasets. For
the evaluation, we used the QM-GW dataset (Fediai et al., 2023) containing the GW-level HOMO-
LUMO gaps of 133,885 molecules. The GW method (Reining, 2018) is an approximation method
for the density functional theory calculations. The GW method is computationally expensive but
accurate in calculating the molecular properties related to the electronic energies. Thus, the machine
learning methods should be able to learn the GW-level calculations on a huge number of molecules
in order to build an accurate prediction model on the QM-GW dataset.

2https://pytorch.org
3https://pytorch-geometric.readthedocs.io
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Table 7: The R2-scores of DELID and the competitor 2D GNNs on the QM-GW dataset containing
13k molecules and their calculated properties.

GIN EGCN MPNN D-MPNN UniMP AttFP DELID
0.863
(0.008)

0.880
(0.004)

0.880
(0.005)

0.879
(0.003)

0.878
(0.006)

0.862
(0.002)

0.885
(0.003)

Table 7 shows the R2-scores of DELID and the competitor methods on the QM-GW dataset (Fediai
et al., 2023) containing the GW-level HOMO-LUMO gaps of 133,885 molecules. In this experiment,
DELID and all competitor 2D GNNs easily achieved the R2-scores greater than 0.85 because the
simulated datasets are generated by the simple and consistent methods. In particular, although some
GNNs failed to predict the molecular properties on the experimental datasets, they also achieved
the R2-scores greater than 0.85 on the large simulated dataset. This result demonstrates our main
argument that the prediction capabilities of the machine learning models on the simulated datasets do
not tell us the actual prediction capabilities of the machine learning models in real-world chemical
applications.

I PREDICTION ACCURACY IN CLASSIFICATION TASKS

In the experiments, we focused on evaluating the prediction performances of the machine learning
methods in regression problems due to the following two reasons: 1) The regression problems is a
generalized problem of the classification problem, i.e., the classification problem is a specific case
of the regression problem, where the number of possible classes in the target variable is fixed to a
countable natural number. 2) Most classification problems in physical and chemical applications are
fundamentally the downstream tasks of the regression problem.

Table 8: The F1-scores of DELID and the competitor 2D GNNs in the classification tasks of the
BACE and BBBP datasets.

Dataset GIN EGCN MPNN D-MPNN CGCNN UniMP AttFP DELID

BACE 0.777
(0.019)

0.765
(0.026)

0.771
(0.027)

0.769
(0.027)

0.770
(0.024)

0.773
(0.017)

0.773
(0.013)

0.805
(0.014)

BBBP 0.908
(0.012)

0.911
(0.009)

0.897
(0.020)

0.894
(0.014)

0.894
(0.009)

0.912
(0.010)

0.905
(0.008)

0.924
(0.004)

There is no implementation issue of DELID in the classification tasks. Eq. (2) is generally applicable
to both regression and classification tasks. In this experiment, we measured the F1-scores of DELID
and the competitor 2D-GNNs in the classification tasks. We used two experimentally collected
molecular datasets called BACE (Yan & Vassar, 2014) and BBBP (Wu et al., 2018). The BACE and
BBBP dataset contain experimentally measured biological activities of 1,513 and 2,050 molecules,
respectively. Table 8 shows the measured F1-scores on the BACE and BBBP datasets, and DELID
still showed the highest prediction accuracy.

J PREDICTION ACCURACY FOR DIFFERENT MOLECULAR SCALES OF
EXTERNAL CALCULATION DATASETS

We measured the R2-scores of DELID for different Dqm containing different sizes of small
molecules. We generated Dqm,c for c = {4, 5, 6, 7}, where c is the maximum number of atoms.
For example, Dqm,c is constructed from the QM9 dataset by collecting small molecules containing
the atoms less than or equal to c. Table 9 presents the measured R2-scores of DELID for different
values of c. DELID showed consistentR2-scores for different sizes of the molecules in Dqm because
the input complex and large molecules are already decomposed into the small substructures by the
EFG-based decompsotion. This result shows that DELID is robust to the volume of Dqm required
for the information retrieval.
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Table 9: TheR2-scores of DELID on the benchmark molecular datasets for different Dqm containing
different sizes of small molecules.

Max. Num.
Atoms (= c)

Num. Molecules
in Dqm

Lipop ESOL ADMET IGC50 LD50 LC50 LMC-H CH-DC CH-AC

c = 4 45 0.780
(0.010)

0.921
(0.009)

0.843
(0.029)

0.863
(0.004)

0.565
(0.018)

0.636
(0.093)

0.533
(0.020)

0.876
(0.012)

0.841
(0.066)

c = 5 175 0.776
(0.013)

0.912
(0.010)

0.680
(0.366)

0.848
(0.010)

0.586
(0.022)

0.641
(0.071)

0.538
(0.041)

0.873
(0.015)

0.880
(0.014)

c = 6 682 0.782
(0.013)

0.912
(0.014)

0.834
(0.042)

0.844
(0.006)

0.566
(0.024)

0.644
(0.068)

0.532
(0.048)

0.886
(0.035)

0.885
(0.023)

c = 7 3,990 0.781
(0.016)

0.916
(0.012)

0.843
(0.023)

0.844
(0.015)

0.574
(0.020)

0.658
(0.061)

0.530
(0.033)

0.872
(0.022)

0.882
(0.012)

K EXECUTION TIME OF THE TRAINING AND INFERENCE PROCESSES OF
DELID

Compared to the conventional GNNs, DELID requires additional computation to execute the infor-
mation retrieval and the self-supervised diffusion. In this experiment, we compared the execution
time of DELID with those of the competitor GNNs. We separated the entire execution process of
machine learning methods into data pre-processing, training, and inference steps. We measured the
entire execution time of the data pre-processing and inference processes, whereas we measured the
execution time of one epoch for the training process. We compared the execution time of GIN,
MPNN, UniMP, SchNet, PhysChem, and DELID, as shown in Table 10. The execution time was
measured in a machine with Intel i9-12900K CPU, 128G memory, and NVIDIA GeForce RTX 3090
Ti GPU.

Table 10: Execution time of DELID and the competitor methods on the Lipop dataset. The execution
time was measured in seconds.

Category Method Data Pre-processing Training Inference Total

3D-GNN SchNet 119.937 1,109.350 0.172 1,229.459
PhysChem 59.453 109,271.543 10.289 109,341.285

2D-GNN
GIN 3.109 152.504 0.031 155.644

MPNN 3.109 429.524 0.062 432.695
AttFP 3.109 125.273 0.031 128.413

DELID 50.875 562.549 0.124 613.548

The 2D-GNNs were the most efficient among the competitor methods and DELID because they do
not use additional molecular descriptors and complex node aggregation mechanisms. In contrast, the
3D-GNNs required the most execution time. In particular, the total execution time of PhysmChem
was 109,341 seconds, which is 178 times greater than the total execution time of DELID. Although
DELID requires more execution time in the data pre-processing and the conditional diffusion pro-
cess, it showed comparable execution time with vanilla MPNN, which was employed to implement
the atom-level embedding network of DELID.

L EMBEDDING RESULTS AND MOLECULAR WEIGHT

We visualized the electron-aware representation s for the molecular weight, which can be one of the
underlying variable determining several target molecular properties. We plotted s for the molecular
weight on the Lipop, ESOL, and ADMET datasets, where the target molecular properties are related
to the molecular weight. As shown in Fig. 5, even though the molecular weight was not provided
for training DELID, DELID generated s that roughly describes the underlying molecular weight.

M MEAN ABSOLUTE ERRORS IN MOLECULAR PROPERTY PREDICTION

Table 11 shows maen absolute error (MAE) of the competitor methods and DELID in predicting
molecular properties on the experimental molecular datasets. The evaluation results of DELID were
consistent with the evaluation reulsts in Talbe 1.
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Lipop ESOL ADMET

Low molecular weight High molecular weight

Figure 5: Visualization of the electron-aware representation s for the underlying molecular weight.

Table 11: MAEs of the competitor methods and DELID in predicting molecular properties.

Method Lipop ESOL ADMET IGC50 LD50 LC50 LMC-H CH-DC CH-AC
GIN 0.456

(0.010)
0.597
(0.042)

0.628
(0.026)

0.330
(0.020)

0.443
(0.007)

0.717
(0.029)

0.349
(0.006)

37.268
(2.818)

33.125
(2.835)

EGCN 0.447
(0.014)

0.594
(0.045)

0.602
(0.022)

0.331
(0.021)

0.446
(0.009)

0.722
(0.050)

0.337
(0.008)

33.469
(1.462)

34.578
(2.876)

MPNN 0.434
(0.012)

0.603
(0.048)

0.649
(0.022)

0.351
(0.004)

0.460
(0.007)

0.704
(0.073)

0.342
(0.007)

31.257
(1.570)

32.765
(2.870)

D-MPNN 0.422
(0.011)

0.507
(0.031)

0.636
(0.019)

0.327
(0.018)

0.472
(0.010)

0.645
(0.056)

3.332
(0.009)

40.549
(2.524)

33.574
(3.042)

UniMP 0.453
(0.020)

0.609
(0.044)

0.619
(0.019)

0.335
(0.020)

0.450
(0.005)

0.707
(0.051)

0.352
(0.010)

38.546
(2.547)

35.896
(3.204)

AttFP 0.466
(0.006)

0.441
(0.034)

0.577
(0.024)

0.315
(0.011)

0.472
(0.004)

0.635
(0.062)

0.335
(0.006)

54.234
(3.334)

46.211
(3.303)

DELID 0.395
(0.011)

0.425
(0.027)

0.562
(0.028)

0.279
(0.004)

0.443
(0.007)

0.592
(0.037)

0.310
(0.007)

20.430
(2.203)

19.503
(1.860)

N DIFFUSION PROCESS ON S IN UNSUPERVISED SETTINGS

In our problem setting in Eq. (2), the entire model parameters of DELID is optimized to maximize
log p(y, s, G). For this reason, although the diffusion model on s is trained by the self-supervised
scheme guided by the diffusion model on G, the embedding results on s are finally affected by the
target molecular property y. To investigate the representation learning capabilities of DELID in
unsupervised settings, we re-implemented DELID to maximize log p(s, G) by removing the predic-
tion layers in DELID and measured the Wasserstein distance between the data distributions of the
original molecular graph G and the diffusion output s0 on the ESOL dataset. G was projected into
the vector space through randomly initialized GNNs to preserve the data distribution of the original
molecular graphs Schneider & Vlachos (2017); Bingham & Mannila (2001).
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Figure 6: Wasserstein distance between the data distributions of G and s0 on the ESOL dataset.

As shown Fig. 6, the Wasserstein distance between G and s0 consistently decreased as the diffusion
model on s was optimized. This result shows that the diffusion models of DELID worked well
in the unsupervised setting. Furthermore, this result is worth noting because the diffusion model
on s successfully learned the data distribution of G with only the fragmented information about
decomposed substructures and their electron-level features.
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Table 12: The R2-scores of the competitor methods, DELID, and NN-DELID on benchmark exper-
imental molecular datasets.

Input Type Method Lipop ESOL ADMET IGC50 LD50 LC50 LMC-H CH-DC CH-AC

Molecular
Fingerprint

XGB-Mor 0.531
(0.024)

0.659
(0.045)

0.717
(0.021)

0.621
(0.040)

0.390
(0.133)

0.497
(0.016)

0.505
(0.018) N/R N/R

XGB-FC 0.578
(0.018)

0.686
(0.052)

0.720
(0.009)

0.628
(0.023)

0.501
(0.052)

0.519
(0.025)

0.503
(0.007) N/R N/R

XGB-MK 0.542
(0.041)

0.764
(0.047)

0.761
(0.020)

0.680
(0.037)

0.486
(0.112)

0.526
(0.021)

0.471
(0.019) N/R N/R

3D Molecular
Graph

SchNet 0.667
(0.021)

0.881
(0.026)

0.834
(0.012)

0.765
(0.034)

0.527
(0.062)

0.467
(0.025)

0.456
(0.024)

0.713
(0.050)

0.702
(0.037)

DimeNet++ N/R 0.878
(0.025) N/R 0.779

(0.019)
0.541
(0.045) N/A 0.352

(0.101) N/A N/A

PhysChem 0.694
(0.024)

0.848
(0.032) N/A 0.814

(0.017)
0.511
(0.053) N/A N/A N/A N/A

M3GNet N/A 0.857
(0.025) N/A 0.697

(0.029)
0.531
(0.034) N/A N/A N/A N/A

FAENet 0.670
(0.036)

0.869
(0.013)

0.788
(0.020)

0.708
(0.015)

0.474
(0.020)

0.528
(0.094)

0.437
(0.025)

0.437
(0.132)

0.310
(0.136)

ConAN 0.738
(0.018)

0.909
(0.015)

0.845
(0.028)

0.819
(0.007)

0.531
(0.041)

0.572
(0.070)

0.466
(0.028)

0.405
(0.108)

0.388
(0.115)

2D Molecular
Graph

GIN 0.709
(0.019)

0.808
(0.017)

0.807
(0.023)

0.792
(0.015)

0.545
(0.016)

0.525
(0.080)

0.472
(0.033)

0.242
(0.010) N/R

EGCN 0.716
(0.021)

0.822
(0.029)

0.814
(0.021)

0.777
(0.020)

0.550
(0.018)

0.503
(0.080)

0.497
(0.038)

0.226
(0.086) N/R

MPNN 0.727
(0.018)

0.810
(0.042)

0.801
(0.028)

0.764
(0.027)

0.502
(0.022)

0.487
(0.108)

0.461
(0.032)

0.385
(0.023) N/R

D-MPNN 0.726
(0.037)

0.879
(0.013)

0.820
(0.018)

0.787
(0.008)

0.521
(0.011)

0.566
(0.098)

0.494
(0.011) N/R N/R

UniMP 0.718
(0.010)

0.810
(0.036)

0.817
(0.018)

0.756
(0.040)

0.512
(0.026)

0.531
(0.078)

0.478
(0.026)

0.166
(0.051) N/R

AttFP 0.710
(0.021)

0.909
(0.018)

0.851
(0.027)

0.807
(0.013)

0.513
(0.016)

0.642
(0.079)

0.456
(0.031)

0.441
(0.099)

0.296
(0.370)

NN-DELID 0.773
(0.019)

0.908
(0.009)

0.823
(0.027)

0.837
(0.010)

0.574
(0.026)

0.634
(0.072)

0.517
(0.031)

0.829
(0.057)

0.860
(0.027)

DELID 0.782
(0.013)

0.912
(0.014)

0.834
(0.042)

0.844
(0.006)

0.566
(0.024)

0.644
(0.068)

0.532
(0.048)

0.886
(0.035)

0.885
(0.023)

O REPRESENTATION LEARNING CAPABILITIES OF DELID IN
UNSUPERVISED SETTINGS

DELID is designed to learn electron-aware molecular representations for given molecular structures
G and target molecular properties y by maximizing log p(y, s, G), as described in Eq. (2). However,
the diffusion models on G and s can be trained without y by maximizing log p(s, G) instead of
log p(y, s, G). In other words, we can train the diffusion models with a fully unsupervised setting
and build a prediction model by transferring the diffusion models into the downstream prediction
task. In this experiment, we measured the R2-scores of a fully connected neural network (FCNN)
that employs the molecular representation of the unsupervised DELID as its input data in molecular
property prediction. We denote the FCNN following DELID by NN-DELID.

Table 12 shows the R2-scores of the competitor methods and NN-DELID. In this experiment, NN-
DELID also outperformed the competitor methods for most benchmark datasets. However, the
R2-scores of DELID were usually higher than those of NN-DELID.

P LIMITATIONS AND FUTURE WORK

Since the self-supervised diffusion processes of DELID start from the decomposed molecular sub-
structures and their electron-level features, the performances of DELID are basically dependent on
the molecular decomposition methods and the external calculation datasets. In particular, as shown
in Table 2, the input electron-level features can directly affect the prediction accuracy of the final
prediction models. However, we did not develop a molecular decomposition method and calculation
dataset specialized in the self-diffusion processes of DELID. For this reason, the improvements by
DLIED are essentially limited to the performances of the EFG-based decomposition method and the
QM9 dataset. Therefore, a molecular decomposition and calculation dataset specialized in DELID
need to be considered as future work.
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