
A Proofs

A.1 Correctness of MST (Alg. 1)

As x̄, z̄ are quantized to k-precision, x̂ and x̄ form a bijection, and so do ẑ and z̄. Thus MST is
correct if and only if x̂ and ẑ are valid bijections. In particular, denoting x̂d = b(S · ẑ+ re)/Rc, rdd =
(S · ẑ + re) mod R, we will show x̂d ≡ x̂, rdd ≡ rd.

In fact, according to forward MST, ẑ = b(R · x̂ + rd)/Sc, re = (R · x̂ + rd) mod S, thus
S · ẑ + re = R · x̂+ rd. Considering re is first accurately decoded by inverse MST (in Line 2), it is
clear that x̂d = b(S ·ẑ+re)/Rc = b(R·x̂+rd)/Rc = x̂, and rdd = (S ·ẑ+re) mod R = (R·x̂+rd)
mod R = rd. Thus the correctness of MST is proven.

A.2 Propositions 1-2 in MST (Alg. 1)

Firstly, as S · a − 0.5 ≤ R < S · a + 0.5, we have |a − R
S | ≤

0.5
S = O(S−1). Secondly,

as z̄ = b(R · 2k · x̄ + rd)/Sc/2k where rd ∈ [0, R), we have z̄ < (R · 2k · x̄ + R)/(S · 2k) =
R/S ·x̄+(R−1)/(S ·2k) and z̄ > (R·2k ·x̄/S−1)/2k = R/S ·x̄−2−k, thus |z̄−R/S ·x̄| < O(2−k).
Then the error between z̄ and f(x̄) is |z̄ − a · x̄| ≤ |z̄ −R/S · x̄|+ |(a−R/S) · x̄| = O(S−1, 2−k);
therefore, Proposition 1 holds.

For Proposition 2, decoding from U(0, R) involves− logR bits, and encoding U(0, S) involves logS
bits. As |a−R/S| < O(S−1) and f ′(x̄) = a, the codelength of MST is Lf (x̄, z̄) = logS− logR =
− log |a+O(S−1)| = − log |f ′(x̄)|+O(S−1) ≈ − log |f ′(x̄)|. Thus Proposition 2 holds.

A.3 Correctness of our Invertible Non-linear Flows (Alg. 2)

If the interpolation interval [x̄l, x̄h) and [z̄l, z̄h)(z̄l = f(x̄l), z̄l = f(x̄h)) are identical in both the
forward and inverse processes, finp is additionally identical in both the forward and inverse processes.
Consequently, an exact bijection with MST algorithm is trivially achieved. Thus we principally seek
to show that the interpolation interval can be correctly determined. Before the proof, it must be
emphasised that the interpolation interval should demonstrate the following properties:

1. The interpolation interval is counted and covers the domain/co-domain. x̄l, x̄h must be
within the discretized set such that x̄l, x̄h ∈ Xinp (e.g. Xinp = {2−h · n, n ∈ Z});

2. The interpolation interval must be not intersected. There does not exist x such that x ∈
[x̄l, x̄h) and x ∈ Xinp \ {x̄l}.

Firstly, we show that in the forward computation, z̄ will always be within [z̄l, z̄h). In fact, z̄ =

bR·2
k(x̄−x̄l)+rd

S c/2k+z̄l where rd ∈ [0, R). As x̄ ≥ x̄l, z̄ ≥ bR·0+0
S c/2k+z̄l = z̄l. As x̄ ≤ x̄h−2−k,

z̄ ≤ bR·2
k(x̄h−x̄l−2−k)+R−1

S c/2k+z̄l, following from Eq. (4) it is clear that z̄ ≤ z̄h−2−k. Therefore,
it holds that z̄ ∈ [z̄l, z̄h).

Secondly, we show that during the inverse computation, the interpolation intervals [x̄l, x̄h) and
[z̄l, z̄h) are the same as that in the forward process. In other words, if the interpolation interval is
[x̄dl , x̄

d
h), [z̄dl , z̄

d
h) given z̄, it holds that x̄dl ≡ x̄l, x̄

d
h ≡ x̄h. In fact, x̄dl ≥ x̄h is not preserved, as

f(x̄dl) ≥ z̄. It then follows that z̄ could not be in [z̄dl , z̄
d
h). Similarly, x̄h ≤ x̄l is not preserved –

otherwise f(x̄dh) ≤ z̄ and z̄ could not be in [z̄dl , z̄
d
h). Overall, x̄dl < x̄h and x̄dh > x̄l, such that only

x̄dl = x̄l, x̄
d
h = x̄h satisfy this condition.

A.4 Propositions 1-2 in Invertible Non-linear Flows (Alg. 2)

In general, f ′(x), f ′′(x) is bounded for all x. Consider f(x̄) in the small interval such that x̄h− x̄l ≤
2−h or z̄h − z̄l ≤ 2−h (k � h). We first prove the following two propositions in [x̄l, x̄h):

1. |f ′(x̄)− z̄h−z̄l
x̄h−x̄l

| < O(2−h, 2h−k);

2. |finp(x̄)− f(x̄)| < O(2−2h, 2−k)

13

In fact, by performing the Taylor expansion at x̄, we have f(x̄l) = f(x̄)+(x̄l− x̄) ·f ′(x̄)+ (x̄l−x̄)2

2 ·
f ′′(ξl) and f(x̄h) = f(x̄) + (x̄h − x̄) · f ′(x̄) + (x̄h−x̄)2

2 · f ′′(ξh), where ξh, ξl ∈ (x̄l, x̄h).

Firstly, f(x̄h)− f(x̄l) = (x̄h− x̄l) · f ′(x) + [(x̄h−x̄)2

2 · f ′′(ξh)− (x̄l−x̄)2

2 · f ′′(ξl)]. As f ′(x), f ′′(x)

are bounded, x̄h − x̄l ≤ O(2−h), and we have f(x̄h)− f(x̄l) = (x̄h − x̄l) · f ′(x) +O(2−2h). As
|z̄l− f(x̄l)| < 2−k, |z̄l− f(x̄l)| < 2−k, then |z̄h− z̄l− (x̄h− x̄l) · f ′(x)| < O(2−k, 2−2h). Finally,
|f ′(x̄)− z̄h−z̄l

x̄h−x̄l
| < O(2−h, 2h−k).

Secondly, by denoting g(x̄) = f(x̄h)−f(x̄l)
x̄h−x̄l

(x̄−x̄l)+f(x̄l) and replacing f(x̄l), f(x̄h) with its Taylor
expansion, we have g(x̄) = f(x̄)+ 1

2(x̄h−x̄l)
(x̄h− x̄)(x̄− x̄l)[(x̄h− x̄)f ′′(ξh)+(x̄− x̄l)f ′′(ξl)]. As

f ′′(x) is bounded, |g(x̄)− f(x̄)| < O(2−2h). Moreover, it is clear that |finp(x̄)− g(x̄)| < O(2−k),
and as such it finally holds that |finp(x̄)− f(x̄)| < O(2−2h, 2−k).

For Proposition 1, with MST, we have z̄ − z̄l = bR·2
k·(x̄−x̄l)+rd

S c/2k where rd ∈ [0, R), thus

|z̄−z̄l−R
S ·(x̄−x̄l)| < O(2−k). Moreover, with Eq. (4), it is easy to arrive at that z̄h−z̄l−2−k(1−S−1)

x̄h−x̄l
−

S−1 < R
S ≤

z̄h−z̄l−2−k(1−S−1)
x̄h−x̄l

, and therefore |RS −
z̄h−z̄l
x̄h−x̄l

| < O(S−1, 2h−k). Overall, |z̄ −
finp(x̄)| = |(z̄ − z̄l − R

S · (x̄ − x̄l)) + ((R
S −

z̄h−z̄l
x̄h−x̄l

) · (x̄ − x̄l))| < O(S−1, 2−k), and finally
|z̄ − f(x̄)| ≤ |z̄ − finp(x̄)|+ |finp(x̄)− f(x̄)| < O(S−1, 2−k, 2−2h).

For Proposition 2, with |RS −
z̄h−z̄l
x̄h−x̄l

| < O(S−1, 2h−k), it is clear that the expected codelength is
Lf (x̄, z̄) = − log(R/S) = − log z̄h−z̄l

x̄h−x̄l
+ O(S−1, 2h−k) = − log |f ′(x̄)| + O(S−1, 2h−k, 2−h).

Overall, Lf (x̄, z̄) ≈ − log |f ′(x̄)| if S, k, h are large and k � h.

A.5 Theorem 3 in UBCS (Alg. 5)

P1. We begin by showing that ci ∈ [2M , 2K+M) for all i = 0, ..., n with mathematical induction.
In fact, when i = 0, c0 = 2M ∈ [2M , 2K+M). When i = k and ck ∈ [2M , 2K+M), denote c◦k+1 =

ck ·Rk+1 +sk+1. It is therefore clear that c◦k+1 = [2M ·Rk+1, 2
M+K ·Rk+1). Note thatRk+1 < 2K

and therefore 2M · Rk+1 < 2M+K . If c◦k+1 < 2K+M , ck+1 = c◦k+1 ∈ [2M · Rk+1, 2
M+K), it

follows that c◦k+1 ≥ 2K+M , ck+1 = bc◦k+1/2
Kc ∈ [2M , 2K ·Rk+1). Overall, ck+1 ∈ [2M , 2K+M).

Thus ci ∈ [2M , 2K+M) for all i = 1, ..., n such that

ci =

{
ci−1 ·Ri + si ∈ [2M ·Ri, 2

K+M), ci−1 ·Ri + si < 2K+M

b ci−1·Ri+si
2K c ∈ [2M , 2M ·Ri), ci−1 ·Ri + si ≥ 2K+M (10)

We will now demonstrate that s′i = si+1, c
′
i = ci,bs

′
i = bsi for all i = 0, ..., n − 1. Denote

c◦i = ci−1 ·Ri + si.

(i) Consider i = n− 1. (a) If cn < 2M ·Rn, the last K bits (denoted by rn) will be popped from bsn

and added to cn. In this case, according to Eq. (10), rn = bc◦n mod 2Kc must be encoded to form
bsn. Thus in the decoding process, rn is popped from bsn, and therefore bs′n−1 = bsn−1, c′n−1 =

b(2K ·cn+rn)/Rnc = bc◦n−1/Rnc = b(cn−1 ·Rn+sn−1)/Rnc = cn−1, and s′n−1 = (2K ·cn+rn)

mod Rn = (cn−1 ·Rn +sn−1) mod Rn = sn−1. (b) If cn ≥ 2M ·R, no bits are popped from bsn

such that bs′n−1 = bsn. In this case, according to Eq. (10), no bits are pushed to bsn−1 and therefore
bsn−1 = bsn = bs′n−1. In the decoding process, c′n−1 = bc◦n−1/Rnc = cn−1, s

′
n−1 = c◦n−1

mod Rn = s′n−1. Overall, P1 holds for i = n− 1.

(ii) If P1 holds for i = k, we will prove that P1 holds for i = k − 1. (a) If c′k < 2M · Rk, the
last K bits will be popped from bs′k and added to c′k. In this case, in the encoding process, as
ck = c′k, according to Eq. (10), rk = bc◦k mod 2Kc must be encoded to form bsk to obtain
ck. In the decoding process, as bs′k = bsk, rk is popped from bs′k in the decoding process,
it is therefore seen that bs′k−1 = bsk−1. Finally we obtain c′k−1 = b(2K · c′k + rk)/Rkc =

b(2K ·ck+rk)/Rkc = bc◦k−1/Rkc = ck−1, and s′k−1 = (2K ·c′k+rk) mod Rk = (ck−1·Rn+sk−1)

mod Rn = sk−1. (b) If c′k ≥ 2M · R, no bits are popped from bs′k such that bs′k−1 = bs′k. In
this case, in the encoding process, as c′k = ck, according to Eq. (10), no bits are pushed to

14

bsk−1 to obtain ck and therefore bsk−1 = bsk = bs′k = bs′k−1. In the decoding process,
we have c′k−1 = b(c′k−1 · Rk + sk−1)/Rkc = bc◦k−1/Rkc = ck−1, s

′
k−1 = (c′k−1 · Rk + sk−1)

mod Rk = sk−1. Overall, P1 holds for i = k − 1.

From (i)(ii), it is concluded that P1 holds by proof of mathematical induction.

P2. Denote that the lower K bits of ci need to be push to bsi at i = m1, ...,mT (mt < mt+1,mt ∈
{1, ..., n− 1} for all t = 1, ..., T − 1). In other words, we have

ci =

{
b ci−1·Ri+si

2K c, i ∈ {m1, ...,mT }
ci−1 ·Ri + si, otherwise

(11)

Firstly, it is clear that len(bsmt+1
) = len(bsmt

)+K. Secondly, for any i ∈ {mt+1, ...,mt+1−
1}, as ci = ci−1 · Ri + si, si ∈ [0, Ri), it is clear that ci−1 · Ri ≤ ci ≤ ci−1 · Ri + Ri − 1. Thus
cmt
·
∏mt+1−1

i=mt+1Ri ≤ cmt+1−1 ≤ (cmt
+ 1) ·

∏mt+1−1
i=mt+1Ri − 1, and therefore

⌊cmt
·
∏mt+1

i=mt+1Ri

2K
⌋
≤ cmt+1 ≤

⌊ (cmt
+ 1) ·

∏mt+1

i=mt+1Ri − 1

2K
⌋
. (12)

Note that the above inequality also holds for t = 0 in which m0 = 0. With Eq. (12), log cmt+1
≤

log
⌊ (cmt+1)·

∏mt+1
i=mt+1 Ri−1

2K

⌋
< log

((cmt+1)·
∏mt+1

i=mt+1 Ri

2K

)
= log cmt

+
∑mt+1

i=mt+1 logRi + log(1 +

c−1
mt

)−K < log cmt
+
∑mt+1

i=mt+1 logRi + (ln 2 · cmt
)−1 −K. As cmt

∈ [2M , 2M ·Rmt
), it holds

that

log cmt+1
+ len(bsmt+1

) < log cmt
+ len(bsmt

) +

mt+1∑
i=mi+1

logRi + (ln 2 · 2M)−1 (13)

IfmT = n, log cn+len(bsn) = log cmT
+len(bsmT

); otherwise, len(bsn) = len(bsmT
)

and log cn ≤ log(cmT
+ 1) +

∑n
i=mT +1Ri < log cmT

+
∑n

i=mT +1Ri + (ln 2 · 2M)−1. Overall,
we finally obtain

log cn + len(bsn) < log c0 + len(bs0) +

n∑
i=1

logRi + (T + 1) · (ln 2 · 2M)−1 (14)

Note that as cn ≥ 2M = c0,len(bsn) = TK and l0 = M = log c0 + len(bs0), it is clear that
log cn + len(bsn) > TK + l0. With Eq. (14), the codelength is finally computed as

ln− l0 ≤ log cn +len(bsn)− l0 +1 <
1

1− 1/(ln 2 · 2M ·K)

[n∑
i=1

Ri +1+(ln 2 ·2M)−1
]

(15)

which completes the proof.

B Details of Alg. 2 in iFlow

The main difficulty is in determining the interpolation interval [x̄l, x̄h), [z̄l, z̄h) given x̄ or z̄. The
main paper discusses two interpolation tricks: (1) interpolating uniform intervals in domain x and (2)
interpolating uniform intervals in co-domain z.

Interpolating uniform intervals in x. This usually applies in the case that f ′ is large (e.g. inverse
sigmoid). The uniform interval in domain x is defined as x̄l = b(2h · x̄)/2hc, x̄h = x̄l + 2−h.
The corresponding interval in the co-domain is z̄l = f(x̄l), z̄h = f(x̄h). For the forward pass,
given x̄, the interval can be obtained as above. For the inverse pass, we first compute x′ = f−1(z̄)
and then compute x̄′m = round(2h · x′)/2h, x̄′l = x̄′m − 2−h, x̄′h = x̄′m + 2−h. Finally, we
have z̄{l,m,h} = f(x̄′{l,m,h}). If z̄ < z̄m, we set the interval x̄l = x̄′l, x̄h = x̄′m; otherwise
x̄l = x̄′m, x̄h = x̄′h. The method is summarized in Alg. 6.

The correctness of the algorithm is guaranteed provided that f is Lipchitz continuous and the
numerical error between f−1(f(x̄)) and x is limited. Let |f−1(f(x)) − x| < ε for all x and

15

Algorithm 6 Uniform interpolating interval x in numerically invertible element-wise flows.

Determine x̄l, x̄h, z̄l, z̄h given x̄.
1: x̄l = b(2h · x̄)/2hc, x̄h = x̄l + 2−h;
2: z̄l = f(x̄l), z̄h = f(x̄h);
3: return x̄l, x̄h, z̄l, z̄h.

Determine x̄l, x̄h, z̄l, z̄h given z̄.
1: x′ = f−1(z̄);

2: x̄′m = round(2h ·x′)/2h, x̄′l = x̄′m−2−h, x̄′h =
x̄′m + 2−h;

3: z̄′{l,m,h} = f(x̄′{l,m,h});
4: if z̄ < z̄′m then
5: x̄l = x̄′l, x̄h = x̄′m, z̄l = z̄′l, z̄h = z̄′m;
6: else
7: x̄l = x̄′m, x̄h = x̄′h, z̄l = z̄′m, z̄h = z̄′h
8: end if
9: return x̄l, x̄h, z̄l, z̄h.

|f−1(x1) − f−1(x2)| < µ|x1 − x2| for all x1, x2. We will show that Alg. 6 is correct if ε =
2−kµ + ε < 2−h−1. In fact, it is clear that |f−1(z̄l) − x̄l| ≤ |f−1(z̄l) − f−1(f(x̄l))| + |x̄l −
f−1(f(x̄l))| < 2−kµ+ ε = ε. Similarly, |f−1(z̄h)− x̄h| < ε. As f−1 is monotonically increasing
and z̄ ∈ (z̄l, z̄h), it is clear that x′ = f−1(z̄) ∈ [x̄l − ε, x̄h + ε). As |x̄′m − x′| ≤ 2−h−1, we
have x̄′m ∈ (x̄l − ε − 2−h−1, x̄h + ε + 2−h−1). (i) When z̄ < z̄′m, it corresponds to x̄ < x̄′m. As
x̄ ∈ [x̄l, x̄h), it is clear that x̄′m ∈ (x̄l, x̄h + ε+ 2−h−1) = (x̄h − 2−h, x̄h + ε+ 2−h−1). Note that
x̄′m, x̄h ∈ {2−h · n, n ∈ Z} when ε < 2−h−1; therefore, it must hold that x̄′m = x̄h. (ii) When z̄ ≥
z̄′m, it corresponds to x̄ ≥ x̄′m. It is clear that x̄′m ∈ (x̄l−ε−2−h−1, x̄h) = (x̄l−ε−2−h−1, x̄l+2−h)
– thus it must hold that x̄′m = x̄l. In fact, as h � k, µ is bounded and ε is rather small, such that
ε < 2−h−1, the correctness of Alg. 6 follows.

Algorithm 7 Uniform interpolating interval z in numerically invertible element-wise flows.

Determine x̄l, x̄h, z̄l, z̄h given x̄.
1: z = f(z̄);
2: z̄′m = round(2h · z′)/2h, z̄′l = z̄′m − 2−h, z̄′h =
z̄′m + 2−h;

3: x̄′{l,m,h} = f−1(z̄′{l,m,h});
4: if x̄ < x̄′m then
5: x̄l = x̄′l, x̄h = x̄′m, z̄l = z̄′l, z̄h = z̄′m;
6: else

7: x̄l = x̄′m, x̄h = x̄′h, z̄l = z̄′m, z̄h = z̄′h
8: end if
9: return x̄l, x̄h, z̄l, z̄h.

Determine x̄l, x̄h, z̄l, z̄h given z̄.
1: z̄l = b(2h · z̄)/2hc, z̄h = z̄l + 2−h;
2: x̄l = f−1(x̄l), x̄h = f−1(z̄h);
3: return x̄l, x̄h, z̄l, z̄h.

Interpolating uniform intervals in z. This usually applies in the case that f ′ is small (e.g.
sigmoid). The uniform interval in co-domain z is defined as z̄l = b(2h · z̄)/2hc, z̄h = z̄l + 2−h.
The corresponding interval in the domain is x̄l = f−1(z̄l), x̄h = f−1(z̄h). For the inverse pass given
z̄, the interval can be obtained as above. For the forward pass, we first compute z′ = f(x̄), and then
compute z̄′m = round(2h · z′)/2h, z̄′l = z̄′m − 2−h, z̄′h = z̄′m + 2−h, and x̄{l,m,h} = f−1(z̄′{l,m,h}).
If x̄ < x̄m, we set the interval z̄l = z̄′l, z̄h = z̄′m; otherwise z̄l = z̄′m, z̄h = z̄′h. The method is
summarized in Alg. 7.

Similarly as in Alg. 6, the correctness of Alg. 7 is ensured by h� k and the limited numerical errors.
The proof is very similar as to that of Alg. 6.

C Extensions of iFlow

Algorithm 8 Lossless Compression with Flows.

Encode x◦.
1: Decode v̄ using q(v̄|x◦)δ;
2: z̄← f̄(v̄);
3: Encode z̄ using pZ(z̄)δ;
4: Encode x◦ using P (x◦|v̄).

Decode.
1: Decode z̄ using pZ(z̄)δ;
2: v̄← f̄−1(z̄);
3: Decode x◦ using P (x◦|v̄);
4: Encode v̄ using q(v̄|x◦)δ;
5: return x◦.

16

The extension of iFlow for lossless compression is summarized in Alg. 8. Note that for Variational
Dequantization Flow [19, 17] (Alg. 4), v = x◦ + u(u ∈ [0, 1)d), q(v|x◦) = q(u|x◦), P (x◦|v) =
1. Thus the above coding procedure reduces to Alg. 4.

D Dynamic Uniform Entropy Coder in AC, ANS and UBCS

In this section we will demonstrate the effectiveness of UBCS compared with AC and ANS. Both
AC and ANS use probability mass function (PMF) and cumulative distribution function (CDF) for
encoding and inverse CDF for decoding. For ease of coding, the PMF and CDF are all mapped to
integers in [0,m). For uniform distribution U(0, R) in which P (s) = 1/R, s ∈ {0, 1, ..., R− 1}, the
most simple way to compute PMF and CDF are

ls = PMF(s) =

{
bm/Rc, s < R− 1

m− (R− 1) · bm/Rc, s = R− 1
,

bs = CDF(s− 1) = bm/Rc · s
(16)

Given b ∈ [0,m), the output of inverse CDF s = CDF−1(b), should be exactly b ∈ [bs, bs + ls).
The general way to determine CDF−1 is binary search. But for uniform distribution, we can directly
obtain the inverse CDF such that

s = CDF−1(b) = min(bb/lc, R− 1), l = bm/Rc (17)

We summarize uniform entropy coder AC, rANS and UBCS as follows:

For AC:

• Initial state: interval [lo, hi);
• Encoding: get m = hi − ho, get ls, bs with Eq. (16), update interval [lo′, hi′) such that
lo′ = lo+ bs, hi

′ = lo′ + ls, get c′ ∈ [lo′, hi′) as the encoded bits;
• Decoding: for encoded bits c′ ∈ [lo, hi) and current interval [lo, hi), get m = hi −
lo, b = c′ − lo, decode s = CDF−1(b) with Eq. (17), update interval [lo′, hi′) such that
lo′ = lo+ bs, hi

′ = lo′ + ls;
• Number of atom operations in encoding: one division, one multiplication3;
• Number of atom operations in decoding: two divisions, one multiplication. Binary search

may involve if Eq. (17) is not used.

For rANS:

• Initial state: number c;
• Encoding: set m = 2K , get ls, bs with Eq. (16), update c′ = bc/lsc ·m+(c mod ls)+ bs;

• Decoding: set m = 2K , for encoded bits c′, get b = c′ mod m, decode s = CDF−1(b)
with Eq. (17), update c = ls · bc′/mc+ (c′ mod m)− bs;

• Number of atom operations in encoding: two divisions, two multiplications4;
• Number of atom operations in decoding: two divisions, one multiplication. Binary search

may involve if Eq. (17) is not used.

For UBCS:

• Initial state: number c;
• Encoding: update c′ = c ·R+ s;
• Decoding: for encoded bits c′, decode s = c′ mod R, update c = bc′/Rc;
• Number of atom operations in encoding: one multiplication;

3We omit add/sub operations as they are negligible compared with multiplication/division.
4The multiplication/division/mod with m = 2K only involve bit operations. With the result of bc/lsc, c

mod ls only involve one multiplication.

17

Table 4: More results on coding bandwidth (M symbol/s) of UBCS and rANS coder. We use the
implementations in [17] for evaluating rANS.

threads rANS UBCS

Encoder

1 5.1±0.3 380±5

4 10.8±1.9 709±56

8 15.9±1.4 1297±137

16 21.6±1.1 2075±353

Decoder

1 0.80±0.02 66.2±1.7

4 2.8±0.1 248±8

8 5.5±0.2 460±16

16 7.4±0.5 552±50

• Number of atom operations in decoding: one division with remainder.

Overall, UBCS uses the least number of atom operations, which conveys that UBCS performs the
best. Moreover, with PMF and CDF in Eq. (16), the optimal entropy coder cannot be guaranteed.

E More Experiments

In this section we will demonstrate our performance attributes across more benchmarking datasets.
All experiments are conducted in PyTorch framework on one NVIDIA Tesla P100 GPU and Intel(R)
Xeon(R) CPU E5-2690 @ 2.60GHz CPU. The code for LBB and the Flow++ model is directly taken
from the original paper under MIT license.

E.1 Coding Efficiency of UBCS

Table 5: Detailed results on the coding performance of iFlow and LBB on ImageNet32. We use a
batch size of 64.

flow compression encoding time (ms) decoding time (ms)
arch. technique nll bpd aux. bits inference coding inference coding

Flow++ LBB [17] 3.871 3.875 45.96 58.7±0.1
176±2.8 83.2±0.4

172±4.7

iFlow (Ours) 3.873 34.40 66.6±0.3 95.3±0.3

Table 6: Detailed results on the coding performance of iFlow and LBB on ImageNet64. We use a
batch size of 64.

flow compression encoding time (ms) decoding time (ms)
arch. technique nll bpd aux. bits inference coding inference coding

Flow++ LBB [17] 3.701 3.703 38.00 24.4±0.0
284±2.5 35.7±0.1

281±2.2

iFlow (Ours) 3.703 34.42 45.0±1.7 57.0±1.4

The detailed experiments is shown in Table 4.

E.2 Compression Performance

Detailed experimental results on ImageNet32 and ImageNet64 datasets are displayed in Tables 5 and
6. Note that we further report the decoding time, which we observe is close to the model inference
time.

E.3 Hyper-parameters

As discussed in Sec. 2.4, the codelength will be affected by the choices of h, k and S. As S is set to
a large value – and will minimally affect the codelength resulting from MST – we mainly discuss
h and k. Tables 7, 8 and 9 illustrate the codelength and auxiliary bits (in bpd) for differing choices

18

of h and k. It is clear that, for large k, the codelength decreases with a larger h. This is expected as
larger h corresponds to a greater numerical precision of our linear interpolation. On the other hand,
for a fixed h, the codelength becomes larger with a smaller k, as a smaller k corresponds to a greater
quantization error. A smaller k may even lead to the failure of iFlow entirely – especially if k is close
to h, which would result in the potential of a zero-valued R in Eq. (4) for sufficiently small |f ′(x̄)|.
On the other hand, the auxiliary bits are principally affected by k and not h. Therefore we note that a
smaller k is preferred. To conclude, we can nonetheless achieve a near-optimal codelength with a
considered choice of hyper-parameters. Thus we set k = 28 and h = 12 for the experiments.

Table 7: Codelengths in terms of bpd and auxiliary length on different h and k on the CIFAR10
dataset. N/A denotes the failure of the compression procedure. The theoretical bpd (nll) is 3.116.

h
6 8 10 12 14

bpd

k

18 3.229±0.000 N/A N/A N/A N/A
20 3.225±0.000 3.152±0.000 N/A N/A N/A
22 3.224±0.000 3.147±0.000 3.130±0.000 N/A N/A
24 3.224±0.000 3.146±0.000 3.126±0.000 3.124±0.000 N/A
26 3.224±0.000 3.146±0.000 3.125±0.000 3.119±0.000 3.122±0.000

28 3.224±0.000 3.146±0.000 3.124±0.000 3.118±0.000 3.118±0.000

30 3.224±0.000 3.146±0.000 3.124±0.000 3.118±0.000 3.116±0.000

32 3.224±0.000 3.146±0.000 3.124±0.000 3.118±0.000 3.116±0.000

auxiliary length

k

18 24.25±0.01 N/A N/A N/A N/A
20 26.25±0.01 26.27±0.01 N/A N/A N/A
22 28.26±0.01 28.27±0.01 28.27±0.01 N/A N/A
24 30.25±0.01 30.27±0.01 30.27±0.01 30.27±0.01 N/A
26 32.25±0.01 32.27±0.01 32.27±0.01 32.27±0.01 32.27±0.01

28 34.25±0.01 34.27±0.01 34.27±0.01 34.27±0.01 34.27±0.01

30 36.25±0.01 36.26±0.01 36.27±0.01 36.27±0.01 36.27±0.01

32 38.25±0.01 38.26±0.01 38.27±0.01 38.27±0.01 38.27±0.01

Table 8: Codelengths in terms of bpd and auxiliary length on different h and k on a SUBSET of
ImageNet32 dataset. N/A denotes the failure of the compression procedure. The theoretical bpd (nll)
is 3.883.

h
6 8 10 12 14

bpd

k

18 3.994±0.000 3.953±0.000 N/A N/A N/A
20 3.985±0.000 3.919±0.000 N/A N/A N/A
22 3.983±0.000 3.910±0.000 3.900±0.000 N/A N/A
24 3.983±0.000 3.908±0.000 3.892±0.000 3.896±0.000 3.928±0.000

26 3.983±0.000 3.908±0.000 3.890±0.000 3.887±0.000 3.894±0.000

28 3.983±0.000 3.908±0.000 3.889±0.000 3.885±0.000 3.886±0.000

30 3.982±0.000 3.908±0.000 3.889±0.000 3.885±0.000 3.884±0.000

32 3.983±0.000 3.908±0.000 3.889±0.000 3.885±0.000 3.884±0.000

auxiliary length

k

18 24.37±0.01 24.37±0.01 N/A N/A N/A
20 26.38±0.01 26.39±0.01 N/A N/A N/A
22 28.38±0.01 28.39±0.01 28.39±0.01 N/A N/A
24 30.38±0.01 30.39±0.01 30.40±0.01 30.39±0.01 30.38±0.01

26 32.38±0.01 32.39±0.01 32.40±0.01 32.40±0.01 32.39±0.01

28 34.38±0.01 34.39±0.01 34.40±0.01 34.40±0.01 34.40±0.01

30 36.38±0.01 36.39±0.01 36.39±0.01 36.40±0.01 36.40±0.01

32 38.38±0.01 38.39±0.01 38.39±0.01 38.39±0.01 38.39±0.01

19

Table 9: Codelengths in terms of bpd and auxiliary length on different h and k on a SUBSET of
ImageNet64 dataset. N/A denotes the failure of the compression procedure. The theoretical bpd (nll)
is 3.718.

h
6 8 10 12 14

bpd

k

18 3.829±0.000 3.779±0.000 3.867±0.000 N/A N/A
20 3.823±0.000 3.753±0.000 3.760±0.000 3.863±0.000 N/A
22 3.821±0.000 3.746±0.000 3.733±0.000 3.755±0.000 3.861±0.000

24 3.821±0.000 3.744±0.000 3.727±0.000 3.729±0.000 3.754±0.000

26 3.821±0.000 3.744±0.000 3.725±0.000 3.722±0.000 3.727±0.000

28 3.821±0.000 3.744±0.000 3.725±0.000 3.720±0.000 3.721±0.000

30 3.821±0.000 3.744±0.000 3.725±0.000 3.720±0.000 3.719±0.000

32 3.821±0.000 3.744±0.000 3.725±0.000 3.720±0.000 3.719±0.000

auxiliary length

k

18 24.40±0.01 24.41±0.01 24.39±0.01 N/A N/A
20 26.40±0.01 26.41±0.01 26.41±0.01 26.39±0.01 N/A
22 28.40±0.01 28.42±0.01 28.42±0.01 28.41±0.01 28.39±0.01

24 30.40±0.01 30.42±0.01 30.42±0.01 30.42±0.01 30.41±0.01

26 32.40±0.01 32.42±0.01 32.42±0.01 32.42±0.01 32.42±0.01

28 34.40±0.01 34.42±0.01 34.42±0.01 34.42±0.01 34.42±0.01

30 36.40±0.01 36.42±0.01 36.42±0.01 36.42±0.01 36.42±0.01

32 38.40±0.01 38.42±0.01 38.42±0.01 38.42±0.01 38.42±0.01

20

	Introduction
	Numerically Invertible Flows and Lossless Compression
	Invertibility of Flows in Discrete Space
	Numerically Invertible Element-Wise Flows
	Scale Flow
	General Element-wise Flow

	Practical Numerically Invertible Flow Layers
	Autoregressive and Coupling Flows
	1 1 Convolutional Flow

	Building Numerically Invertible Flows
	Lossless Compression with Flows via Bits-back Dequantization
	Extensions

	Uniform Base Conversion Systems
	Experiments
	Flow Architectures and Datasets
	Compression Performance
	Comparison with the State-of-the-Art

	Related Work
	Conclusions and Discussions
	Proofs
	Correctness of MST (Alg. 1)
	Propositions 1-2 in MST (Alg. 1)
	Correctness of our Invertible Non-linear Flows (Alg. 2)
	Propositions 1-2 in Invertible Non-linear Flows (Alg. 2)
	Theorem 3 in UBCS (Alg. 5)

	Details of Alg. 2 in iFlow
	Extensions of iFlow
	Dynamic Uniform Entropy Coder in AC, ANS and UBCS
	More Experiments
	Coding Efficiency of UBCS
	Compression Performance
	Hyper-parameters

