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A The Details of our Datasets
A.1 OD/OC (Fundus) segmentation dataset
The OD/OC (Fundus) segmentation dataset is primarily utilized
for the segmentation of the optic disc (OD) and optic cup (OC),
comprising �ve public datasets collected from di�erent medical
centers. These are denoted as domain A (BinRushed [1]), domain B
(Magrabia [1]), domain C (REFUGE [39]), domain D (ORIGA [72]),
and domain E (Drishti-GS [49]). Following previous methods [8],
each image is center-cropped and resized to 256 ⇥ 256 and normal-
ized by min-max normalization. For the evaluation, we employ the
Dice Similarity Coe�cients (DSC) [%] (the higher the better) to
quantitatively assess the segmentation results.

A.2 The Prostate segmentation dataset
The Prostate segmentation dataset comprises 116 MRI instances
from six di�erent clinical centers, aggregated from three public
datasets, including NCI-ISBI13 [2], I2CVB [25], and PROMISE12
[30] datasets. Following the methodologies described in [32, 35],
the dataset is preprocessed to standardize the �eld of view for the
prostate region and resized to 384⇥ 384. The assessment of prostate
segmentation performance also employs the Dice Similarity Coe�-
cient (DSC) and Average Surface Distance (ASD).

A.3 The Natural image classi�cation dataset
PACS

The image classi�cation dataset PACS is a specialized dataset
for studying domain generalization in image classi�cation [26].
The PACS dataset contains 9,991 images across seven categories,
collected from four distinct domains: photo, sketch, cartoon, and
art painting. PACS poses a challenging scenario for single-source
domain generalization (SDG) due to the signi�cant shift between
domains. Following the methodology in [47, 57], we use a random
single domain as the source to train the model and evaluate its
performance on the remaining three domains.

We select the data from one organization as the source domain
for training and hold out the rest as the target domains for testing.
Taking Fundus dataset as a example, after training and validating
on domain ’A’, testing is conducted on the remaining four domains
(B,C,D,E) which denotes as ‘A to Rest’.

B Implementation Details
we employ the AdamW optimizer [36] on Optical Disc (OD) / Opti-
cal Cup (OC) segmentation tasks and Prostate segmentation tasks,
with V = [0.9, 0.999] and utlize the SGD optimizer on natural image
classi�cation tasks. The initial learning rates are set as follows:
for prostate segmentation, ;0 = 0.01, for OD/OC segmentation,
;0 = 0.001 and for natural image classi�cation, ;0 = 0.01. These
rates decay according to the polynomial rule ;C = ;0 ⇥ (1 � C

) )0.9,
where ;C denotes the learning rate at epoch C , and ) represents the
total number of epochs, which are set to 200 for prostate segmen-
tation and 100 for the joint segmentation of OD and OC, with the
batch size set as 8. For natural image classi�cation tasks, we follow
[46] to train our model 40 epochs.

Figure 8: Comparison between �xed-parameter low-frequency per-
turbation schemes and our LSP method.

Table 8: Experiments on the Fundus dataset w.r.t di�erent
loss terms.

_B46 _038 _2>= _BC~ _342 Fundus Dataset
1.0 1.0 1.0 1.0 1.0 84.39
1.0 1.0 1.0 1.0 0.5 84.96
1.0 1.0 1.0 0.5 1.0 84.40
1.0 1.0 0.5 1.0 1.0 83.29
1.0 1.0 1.0 1.0 2.0 83.96
1.0 1.0 1.0 2.0 1.0 83.30
1.0 1.0 2.0 1.0 1.0 83.37
1.0 0.5 1.0 0.5 0.5 84.87
0.5 1.0 1.0 0.5 0.5 84.32
1.0 2.0 1.0 0.5 0.5 84.78
2.0 1.0 1.0 0.5 0.5 85.12
1.0 1.0 1.0 0.5 0.5 85.31

C Extended experiments about the UniFreqSDG
framework

C.1 The impact of hyperparameters for loss
terms

We also present the results for detailed weight settings for loss
terms to Tab. 8. Based on these results, our UniFreqSDG method is
not particularly sensitive to the hyperparameters for loss terms. In
this work, we select a set of hyperparameters that exhibit the best
performance as the default settings.

C.2 Fixed v.s. Learnable Parameters in LSP
Module

In this section, we analyze the low-frequency perturbation scheme
with �xed parameters in LSP and demonstrate the advantages of our
adaptive spectral perturbation scheme. Speci�cally, we conduct de-
tailed ablation experiments on two adaptive parameters in LSP: the
low-frequency (LF) radius (A ) and the spectral perturbation strength
(U). When determining the optimal value of a parameter, such as the
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Figure 9: Visualization of the learned low-frequency(LF) masks. We
visualized the process when FreqUniFreqSDG was trained on the
Fundus dataset. Speci�cally, we visualized the features after the �rst
block of the model’s encoder during the training process. The �rst
column represents the early stage of training, where the learned
LF masks showed little di�erence; the second column shows that
after su�cient training, the model began to capture the LF masks of
di�erent samples in a personalized manner.

Table 9: Comparisons with existing augmentation methods on Fun-
dus with as the backbone. The baseline is the vanilla Unet directly
trained on the single source domain.

Augmentation
Optical Disc / Cup Segmentation (DSC ")

Avg. DSC "
A B C D E

Mixup [69] 78.86 82.59 81.39 81.75 80.36 80.99
CutMix [68] 80.97 83.11 82.54 82.38 81.50 82.10
MixStyle [78] 68.26 80.06 76.23 75.65 84.26 75.29
DSU [28] 69.07 79.14 79.64 73.36 73.37 74.91

*=8�A4@(⇡⌧< 83.82 86.27 84.84 85.36 85.31 85.31

low-frequency radius, we maintain another hyperparameter, the
adaptive perturbation intensity, constant (for example, a random
value of 0.5). As shown in Fig. 7, the overall performance of the
�xed-parameter perturbation method is lower than our adaptive
perturbation approach, as it does not take into account the dynamic
distribution of the spectrum in the input images. Furthermore, it is
noteworthy that when the perturbation intensity is set to one, and
the perturbation radius is one (covering the entire spectral range),
there is a signi�cant decline in segmentation performance.

C.3 Visualization of Learnable LF Masks
Our adaptive LSP is capable of learning the range of low frequencies
for each sample and each channel based on input features. To verify
that our LSP module can indeed identify di�erent spectral sizes,
we visualize the low frequencies learned by the model during the
training process. As shown in Fig. 8, at the beginning of training,
there is no signi�cant change in the low-frequency range. This is
because the model has not yet accumulated enough knowledge of
source domain samples, and thus the learned low-frequency masks
appear to be randomly generated. After 100 epochs of training, the

Table 10: Average Surface Distance (ASD) Metric Comparison on
Prostate segmentation dataset. D8 denotes the single training do-
main setting. We mark the top results in red and the second in blue.

Task Prostate Segmentation (ASD#) Avg.Seen Site D1 D2 D3 D4 D5 D6
ERM [48] ResNet-34 7.54 8.87 13.30 11.97 9.98 7.65 9.89

MixStyle [78] ResNet-34 4.98 5.77 6.30 5.21 5.98 6.26 5.75
CSDG [41] E�cientNet-B2 3.51 4.08 4.56 3.58 4.46 4.17 4.06
MaxStyle [5] ResNet-34 3.40 3.80 4.32 3.23 3.67 4.12 3.77
EFDM [71] ResNet-34 3.45 3.82 4.35 3.37 3.89 4.03 3.82
SLAug [50] E�cientNet-B2 3.31 3.74 4.23 3.22 3.79 3.91 3.67
TriD [8] ResNet-34 3.28 3.69 4.15 3.14 3.67 3.81 3.70

UniFreqSDG< ResNet-34 0.89 1.89 2.79 0.83 2.00 2.19 1.77

Table 11: Comparison of Multi-source domain generalization results on
Prostate dataset (%). We mark the top results in red and the second in blue. D8
denotes the single testing domain and the rest domains used for training.

Task Prostate Segmentation (DSC") Avg.Unseen Site D1 D2 D3 D4 D5 D6
JiGen [4] 85.45 89.26 85.92 87.45 86.18 83.08 86.22

BigAug [70] 85.73 89.34 84.49 88.02 81.95 87.63 86.19
FEDG [33] 86.43 89.59 85.30 88.95 85.93 87.39 87.27
DOFE [55] 89.79 87.42 84.90 88.56 86.47 87.72 87.48

RAM-DISR [80] 87.56 90.20 86.92 88.72 87.17 87.93 88.08
DCAC [d] 91.76 90.51 86.30 89.13 83.39 90.56 88.61
TriD [8] 91.63 90.71 86.91 89.42 88.67 90.11 89.57

UniFreqSDG< 92.14 91.84 89.59 90.89 90.30 91.32 91.01

model is now able to learn the diverse low-frequency distributions
present in the samples.
C.4 Comparisons with other augmentation

methods
In our experiments, to demonstrate the e�ectiveness of UniFre-
qSDG, we also compared it with several classic image data augmen-
tation methods: i.e., Mixup [69] and CutMix [68] , as well as two
state-of-the-art feature-level augmentation methods, i.e., MixStyle
[78] and DSU [28] (These twomethods have already been compared
in Tables 1 and 2.). As shown in Tab. 9, both image-level augmenta-
tions (Mixup and Cutmix) and feature-level augmentation methods
have led to performance improvements, indicating that these data
augmentation techniques can introduce a certain degree of diversity
to the input samples, thereby enhancing the model’s generalization
performance. Moreover, compared to image-level augmentations,
our approach achieved better generalization performance, which
suggests that the UniFreqSDG method can signi�cantly enhance
the diversity of input samples during the training process. Addi-
tionally, compared to feature-level data augmentation methods, our
model also has signi�cant advantages, which may be due to our
method’s ability to generate diverse samples while also e�ectively
preserving domain-invariant content features.

C.5 The results of the ASD evaluation metrics
We conducted comparative experiments on the prostate dataset us-
ing the ASD metrics. As shown in Tab. 10, our method still demon-
strates a signi�cant advantage, proving its e�ectiveness.

C.6 Multi-source domain generalization
We conducted multi-source domain generalization experiments on
the prostate dataset. Speci�cally, we trained on multiple source
domains and then tested on a single remaining target domain. We
conducted comparisons with SOTAmethods, including FedDG [33],
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Table 12: Performance comparisons of di�erent Sim function on
Fundus dataset [8].

(8< Function
Optical Disc / Cup Segmentation (DSC ")

Avg. DSC "
A B C D E

L1 loss 83.16 86.59 85.39 83.75 85.12 84.80
KL-div 83.57 86.50 83.28 83.58 85.24 84.43
JS-div 82.17 85.40 82.49 83.99 84.26 83.66
Cosine 83.82 86.27 84.84 85.36 85.31 85.31

DOFE[55], RAM-DISR [80], and DCAC. Results in Tab. 11 show
that our UniFreqSDG< outperforms all the previous methods.

C.6.1 The ablation study of di�erent Sim function. In Tab. 12, we
also demonstrate the impact of di�erent similarity measurement
functions (Eq. 17) on the model’s performance. Besides the Co-
sine Similarity metric, there are also KL-Divergence (KL-Div), JS-
Divergence (JS-Div), and L1 loss (L1) considered. These functions to
some extent all contribute to enhancing the proposed UniFreqSDG’s
learning of distinct features. However, overall, the performance im-
provement brought by the Cosine Similarity metric is the most
signi�cant.

Submission ID: 4543. 2024-08-01 05:25. Page 13 of 1–13.


