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ABSTRACT

Rating-based human evaluation has become an essential tool to accurately eval-
uate the impressive performance of large language models (LLMs). However,
current rating systems suffer from several important limitations: first, they fail to
account for biases that significantly influence evaluation results, second, they re-
quire large and expensive preference datasets to obtain accurate ratings, and third,
they do not facilitate meaningful comparisons of model ratings across different
tasks. To address these issues, we introduce POLYRATING, an expressive and flex-
ible rating system based on maximum a posteriori estimation that enables a more
nuanced and thorough analysis of model performance at lower costs. POLYRAT-
ING can detect and quantify biases affecting human preferences, ensuring fairer
model comparisons. Further, POLYRATING can reduce the cost of human eval-
uations by up to 41% for new models and up to 77% for new tasks by leverag-
ing existing benchmark scores. Lastly, POLYRATING enables direct comparisons
of ratings across different tasks, providing a comprehensive understanding of an
LLMs’ strengths, weaknesses, and relative performance across different applica-
tions. 1

1 INTRODUCTION

Large language models (LLMs) have become powerful tools across a wide range of tasks, sometimes
even outperforming human experts (AI@Meta, 2024; Anil et al., 2023; Anthropic, 2024; OpenAI,
2023). To evaluate and compare the performance of LLMs, various benchmarks (Clark et al., 2018;
Cobbe et al., 2021; Hendrycks et al., 2021) and evaluation frameworks (Gao et al., 2023; Liang et al.,
2022) have been developed. These benchmarks aim to provide a comprehensive evaluation of LLM
capabilities across tasks such as code completion, mathematical problem-solving, and multilingual
understanding. However, the reliability of these benchmarks to accurately estimate model perfor-
mance has been questioned due to various concerns about data contamination (Dekoninck et al.,
2024; Zhang et al., 2024), errors in ground-truth solutions (Gema et al., 2024), and the discrepancy
between benchmarks and real-world performance (Lin et al., 2024).

Ratings for LLMs To evaluate LLMs more accurately in real-world scenarios, recent works have
made use of rating-based evaluations with human or LLM-based judges (Chiang et al., 2024b;
Dubois et al., 2024; Lin et al., 2024). These ratings reflect the relative performance of LLMs on
specific tasks and are used to construct leaderboards indicating their real-world performance. As
shown in Fig. 1, ratings are derived from preference datasets containing samples consisting of a
query Q, a response by two models m(0) and m(1), a judge J , and a judgment indicating the pre-
ferred response r. We illustrate human preference datasets for several tasks like code-based ( ),
mathematical ( ), and Chinese ( ) questions, along with a preference dataset using an LLM-based
judge ( ). Current methods fit each task separately using maximum likelihood estimation (MLE) to
obtain ratings Ri

task for each model mi that predict the judge’s preferences as accurately as possible.

Limitations of Current Rating Systems However, current rating systems suffer from several crit-
ical limitations. First, it is widely recognized that judges are influenced by biases that significantly
affect their preferences (Hosking et al., 2023; Wu and Aji, 2023; Shi et al., 2024; Chen et al., 2024).

1Code is available at https://github.com/eth-sri/polyrating.
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Figure 1: Overview of POLYRATING. Given preference datasets of n samples for k models over
various tasks, the standard approach needs to fit separate and independent ratings for each task and
cannot leverage continuous features. In contrast, POLYRATING fits a single linear model for all tasks
and can leverage continuous features. Attribution in App. A.

Yet, current rating systems are not expressive enough to capture these biases, leading to unfair com-
parisons of performance. Second, obtaining human annotations is very expensive. However, current
systems are sample inefficient and do not take measures to reduce costs. This inefficiency makes
it hard for resource-constrained LLM practitioners to use human evaluation for their tasks. Finally,
the wide applicability of LLMs requires a comprehensive evaluation system to compare model per-
formance across tasks. Yet, current rating systems suffer from shift-invariance, meaning that rating
optimality is preserved when shifting all ratings by an arbitrary constant. For instance, all code-based
ratings Rm can be shifted upwards by 40 points while maintaining optimality, making the ratings on
this task much higher than those on other tasks and rendering direct comparisons meaningless.

This Work: POLYRATING To address these limitations, we introduce POLYRATING, an expres-
sive rating system designed to model shared continuous features and biases influencing judge pref-
erences. As illustrated in Fig. 1, POLYRATING fits all preference datasets simultaneously using
maximum a posteriori (MAP) estimation, i.e. using maximum likelihood estimation with additional
priors on all parameters. These priors enable a more robust estimation of model ratings and act as
a regularizer to prevent overfitting. Specifically, for each model m, a base rating Rm

base is optimized
to reflect overall performance across tasks. Task-specific modifiers βm

task are then added to this base
rating to derive ratings for individual tasks. Additionally, shared parameters across all models αbias
capture the influence of features such as answer length ( ) and readability ( ) on preferences.

Benefits of POLYRATING POLYRATING addresses previous limitations by design. By modeling
shared features, POLYRATING is the first rating system that can quantify biases affecting judge pref-
erences by estimating their impact on model ratings. For instance, we find that answer length bias
boosts ratings significantly by 41 points in the Chatbot Arena (Chiang et al., 2024b). Additionally,
POLYRATING improves sample efficiency and reduces the costs of evaluations for new tasks by up
to 77% when collecting 10000 human annotations. POLYRATING can also leverage LLM-based
evaluations or traditional benchmarks to obtain ratings for human evaluation, allowing us to reduce
its cost by respectively 38% and 41% when collecting 10000 samples. Furthermore, POLYRATING
is not shift-invariant, enabling the construction of a leaderboard that offers detailed insights into
each LLM’s performance across different tasks, unlike previous approaches. Finally, we provide
convergence guarantees and prove the optimality of POLYRATING.

Main Contributions In summary, our main contributions are:
• Introducing POLYRATING, a multivariate rating system based on MAP estimation (§3).
• Detecting the influence of several judge biases in human and LLM-based evaluations and

for the first time estimating their effect on model ratings (§4.1).
• Demonstrating that POLYRATING improves sample efficiency, reducing the cost of human

evaluation by up to 77% for new tasks and by up to 41% for new models (§4.2).
• Providing a multivariate leaderboard using POLYRATING, enabling relative model perfor-

mance comparisons across tasks (§4.3).
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2 RATING SYSTEMS

In this section, we introduce the necessary notation to formalize rating systems for LLMs.

Preference Datasets A rating system requires the availability of a preference dataset, which con-
sists of n games that capture the preferences of a judge. In language model evaluation, a game g
consists of a user query Q, two language models m0 and m1, and a judge J . The result r of the game
is determined by the judge’s preference for one of the completions and is 1 if m1 beats m0, denoted
as m1 ≻ m0, and 0 if m0 ≻ m1. Thus, we can represent a game g as a tuple ⟨Q,m0,m1, J, r⟩.

Rating System For a given set of k models, a rating system assigns a score γi ∈ R+ to model mi,
indicating the relative skill of the model on the task. With these scores, the probability that mi wins
against mj can be computed using the Bradley-Terry model (BT-model) (Bradley and Terry, 1952):

P (mi ≻ mj |γi, γj) =
γi

γi + γj
.

In most rating systems the scores are parametrized using the exponential function γi = exp(Ri/400)
where Ri is the rating of mi and 400 is a constant used to scale ratings (Elo, 2008; Glickman, 2002).

Rating Optimization To determine the ratings of the models, a rating system aims to maximize
predictive capabilities for the observed outcomes of the games. The maximum likelihood estimate
for these observed outcomes in the BT-model can be found by minimizing the logistic loss

L(D,R) = −
∑
g∈D

(
gr logP (gm1

≻ gm0
|R) + (1− gr) logP (gm0

≻ gm1
|R)
)

(1)

for a dataset of games D = (g1, . . . , gn) and ratings R = (R1, . . . , Rk). Thus, the optimal rat-
ings can be obtained by computing argminR L(D,R). To obtain ratings for specific tasks, the
optimization is performed separately for each task on the task-specific dataset D.

Incorporating Draws However, the BT-model ignores the possibility of draws in games. Fol-
lowing the approach by the Chatbot Arena (Chiang et al., 2024b), we can generalize the BT-model
by setting the outcome gr equal to 0.5 for draws to obtain model ratings that can incorporate these
draws. Although we explore several alternatives to the BT-model that more explicitly model draws
in App. B, we found they did not offer significant advantages in practice.

3 POLYRATING

We now introduce POLYRATING, a multivariate rating system specifically designed for language
model evaluation. This section first outlines the four design goals for an effective LLM rating
system and then explains POLYRATING and how it meets these objectives.

3.1 DESIGN GOALS FOR LLM RATING SYSTEM

1) Quantify Biases Both human and LLM-based judges are influenced by biases that affect their
preferences (Chen et al., 2024; Hosking et al., 2023; Shi et al., 2024; Wu and Aji, 2023). A robust rat-
ing system must capture and quantify these biases to ensure fair comparisons of LLM performance,
regardless of the judge. Current rating systems are predominantly univariate and are therefore unable
to include the necessary extra parameters to capture these biases. Only AlpacaEval (Dubois et al.,
2024) accounts for length bias, where the length of the model answer significantly influences the
judge’s preference. However, its fitted coefficient is not directly interpretable and does not quantify
the bias’s influence on ratings.

2) Leverage Existing Information Leveraging existing information can make a rating system
more sample efficient and reduce evaluation costs. This information can come from LLM-based
evaluations or traditional benchmarks, both of which indicate model performance and should there-
fore give valuable information that can improve sample efficiency. However, current rating systems
start from scratch for each new task and model.
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3) Task Comparability Univariate rating systems cannot directly compare ratings across tasks.
This is due to shift-invariance, meaning that adding a constant c ∈ R to all ratings does not change
their optimality. Specifically, the loss of ratings R on a dataset D is invariant under the transforma-
tion R → R+ c, i.e., L(D,R) = L(D,R+ c). Therefore, if R1 and R2 are the optimal ratings for
two different tasks, the rating difference for a specific model Rm

1 − Rm
2 can be shifted by any con-

stant c without losing optimality. This makes it impossible to see how many rating points a model
gains or loses from one task to another. A good rating system should eliminate this issue, allowing
accurate performance comparisons of the same LLM across different tasks.

4) Optimality Rating systems aim to predict the outcomes of games as accurately as possible. It
can be shown that in the limit of infinite data, the univariate rating system presented in §2 obtains the
highest possible accuracy. While infinite data is not practically achievable, any new rating system
should retain this optimality.

3.2 POLYRATING

Modeling Features Features can be continuous, like the length of an answer, or discrete, like the
task of the query. We model each feature as a function f : G×{0, 1} → R that maps a game g ∈ G
and a boolean i to a number quantifying the presence of this feature. The boolean i specifies whether
the model for which we want to compute the feature is the first or second model in the game.

Modeling Ratings It is essential to model ratings as a function of these features to capture bi-
ases and measure task-specific ratings. For this purpose, we first note that ratings must be game-
dependent to incorporate game-dependent features like query task or answer length. Furthermore,
judge-specific biases are model-independent and must therefore be measured using parameters that
are shared across all models. Finally, it is important that ratings remain interpretable and practical
for leaderboards. Therefore, the rating for model m in game g is modeled using the linear model

Rm(g) = Rm
base +

d∑
j=1

αjfj(g, Jgm1 = mK) +
d′∑
j=1

βm
j f ′

j(g, Jgm1 = mK). (2)

Here, Rm
base ∈ R is the base rating, d and d′ are the number of features in the respective sums, αj ∈ R

is the weight for feature fj and is shared across all models, βm
j ∈ R is the model-specific weight

for feature f ′
j , and J. . .K is the indicator function. Importantly, Eq. (2) serves as the key element of

POLYRATING that enables it to incorporate all design goals. Indeed, the shared parameters measure
the biases in the judge’s preferences, addressing the first design goal. Furthermore, to obtain task-
specific ratings, we introduce a task-specific feature f ′

task(g, i) = Jg ∈ DtaskK, where Dtask represents
the set of all task-related queries. We then define the task-specific ratings as Rm

task = Rm
base + βm

task.
While this assumes no additional task-specific features are used, the definition can be easily extended
to incorporate them, ensuring that ratings remain adaptable to varying evaluation contexts.

Optimization Objective We perform MAP estimation with a normal prior on the weights αj and
βm
j with mean 0 and deviations σj and σ′

j respectively. This leads to the optimization objective

Lfull(D,Rbase,α,β) =
∑
g∈D

L({g}, R1(g), . . . , Rk(g)) +

d∑
j=1

(αj)
2

2 (σj)
2 +

k∑
m=1

d′∑
j=1

(βm
j )2

2
(
σ′
j

)2 , (3)

where Rbase is the vector of base ratings, α is the vector of shared weights, β is the matrix of model-
specific weights, and ratings are computed using Eq. (2). In contrast to the loss function presented
in §2, the dataset D can contain games from different tasks.

Using MAP estimation instead of MLE allows POLYRATING to incorporate information from ex-
isting tasks through its priors, thereby improving sample efficiency and reducing evaluation costs.
Furthermore, evaluations with LLM-based judges can be considered as a distinct task and can there-
fore be used to improve sample efficiency. Traditional benchmarks can also be reinterpreted as
preference datasets, where a question indicates a preference for models that answered correctly over
those that did not. If the models are both (in)correct, the judge has no preference. We can therefore
leverage all this information, ensuring that POLYRATING satisfies the second design goal.
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However, while traditional benchmarks often predict a ranking similar to human preference data,
their absolute performance measurements do not always align well with human ratings. For example,
an easy benchmark will cluster all models close together because weaker models can answer most
questions correctly, making it impossible for stronger models to achieve very high win rates against
them. This makes POLYRATING less effective, since the ratings from human preference data are
spread further apart than those from these easy benchmarks. To address this issue, we introduce a
hyperparameter that rescales the observed win rates of traditional benchmarks. This hyperparameter
is optimized on the training data to realign POLYRATING with the human preference data, allowing
for a more effective combination of the two. Full details on this parameter are in App. E.

Lastly, POLYRATING removes shift-invariance. Indeed, task-specific ratings Rm
task = Rm

base + βm
task

cannot be arbitrarily shifted compared to each other, since the priors on the task-specific weights
β ensure that Lfull(D,Rbase,α,β) ̸= Lfull(D,Rbase,α,β + c) for any non-zero constant c. This
enables accurate comparisons of model performance across tasks and fulfills the third design goal.

Optimization In App. D, we show that the optimization objective from Eq. (3) is convex and twice
differentiable with respect to Rbase,α and β, allowing us to use standard optimization techniques
to optimize the loss with respect to these parameters. Specifically, we use Newton’s method for the
model-specific parameters and L-BFGS for the shared parameters. Furthermore, we prove in App. D
that, under weak assumptions, the obtained ratings converge to the ratings that maximize predictive
capabilities and thus fulfill the final design goal.

Rating Uncertainty We compute pivotal intervals using bootstrapping to obtain rating uncertain-
ties (Tibshirani, 1984). Specifically, given the actual estimate of the ratings R̂ and n bootstrap
estimates R̂1, . . . , R̂n, the pivotal interval for a confidence α is [R̂− R̂(1−α/2), R̂− R̂(α/2)], where
R̂(1−α/2) and R̂(α/2) are respectively the 1 − α/2 and α/2 quantiles of the bootstrap estimates.
For brevity, we report the 2σ confidence intervals obtained using bootstrapping in §4, with detailed
pivotal intervals reported in App. F.

4 EVALUATION

We perform a series of experiments with POLYRATING that showcase its ability to quantify the
influence of biases on the ratings of the models (§4.1), its improved sample efficiency for various
use-cases (§4.2), and its ability to obtain reliable and comparable multivariate leaderboards (§4.3).

4.1 BIAS DETECTION

We use POLYRATING to quantify the influence of biases in both human and LLM-based evaluation
using a public subset of the Chatbot Arena (Chiang et al., 2024a) and Wildbench (Lin et al., 2024).
This enables an accurate estimation of the effects of these biases on model ratings and allows us to
compare the influence of these biases between human and LLM-based judges.

Biases We briefly explain the measured biases and refer to App. E for a full overview of all biases
along with their functional form. We include the well-known length bias (Dubois et al., 2024;
Singhal et al., 2023), which measures bias with respect to the length of the completion, and position
bias (Shi et al., 2024; Wang et al., 2023), which measures bias with respect to the order of the models
in the game. We further use classifiers (Babakov et al., 2023; Camacho-collados et al., 2022) to
evaluate the influence of formality and sentiment of the model’s output. Finally, we compute the
repetitiveness of the answer by measuring the number of unique tokens in the completion and check
the influence of the readability of an answer using the Flesch Reading Ease score (Kincaid et al.,
1975). We model all of these biases as shared features when fitting POLYRATING, allowing us to
accurately estimate their influence on the resulting ratings.

Results Table 1 shows the effects of these biases on both human and LLM-based judges. We
present both the coefficient αbias and the average influence this coefficient has on model ratings
for given queries, i.e. Eg(αbias · |fbias(g, 0) − fbias(g, 1)|). To put these numbers into context, the
difference between the first and the tenth best models in the Chatbot Arena is 50 rating points.
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Table 1: Fitted coefficients for the biases and their average influence on model ratings for both
human and LLM-based evaluation. The functional form of fbias used for each bias can be found in
App. E. The influence is computed as Eg(αbias · |fbias(g, 0)− fbias(g, 1)|).

(a) Human Evaluation

Bias Coefficient (α) Influence (E)

Length 130.74±7.3 40.84±2.3

Position 2.70±2.4 2.70±2.4

Formality −119.89±11.3 −15.17±1.4

Sentiment 57.42±11.1 7.90±1.5

Repetitiveness − 22.10±8.6 − 4.64±1.8

Readability 72.93±11.9 10.75±1.8

(b) LLM-based Evaluation

Bias Coefficient (α) Influence (E)

Length 251.87±7.2 48.48±1.4

Position 37.53±1.1 37.53±1.1

Formality − 37.56±6.9 − 4.31±0.8

Sentiment 4.31±6.5 0.43±0.7

Repetitiveness 75.04±8.3 9.12±1.0

Readability − 32.56±8.0 − 3.92±1.0

Discussion for Length and Position Bias We recover prior results on length and position bias
for both human and LLM-based judges (Dubois et al., 2024; Singhal et al., 2023; Shi et al., 2024;
Wang et al., 2023). Length bias is significant in both paradigms, though more so for LLM-based
judges. This explains why length-controlling techniques achieve higher correlation with human
judges (Dubois et al., 2024). In contrast, position bias is only significant for LLM-based judges.
Furthermore, in contrast to prior work, we can now estimate the effects of these biases on the ratings
of the models, with position bias gaining a model around 38 rating points when using an LLM-based
judge and length bias gaining 41 and 48 rating points for human and LLM-based judges respectively.

Discussion for Other Biases The other biases reveal interesting patterns. First, all biases differ
significantly between human and LLM-based judges. For instance, while readability increases the
rating of a model by 11 points for human judges, it decreases the rating by 4 points for LLM-
based judges. This indicates that LLM-based judges prefer denser text, while human judges prefer
more readable text. Furthermore, we find that sentiment and formality have a significant influence
on human judges, gaining models 8 and 15 rating points respectively. In contrast, LLM-based
judges are indifferent to sentiment and not influenced as much by formality. Lastly, we find that
repetitiveness decreases rating on average by 4 rating points for human judges, while for LLM-
based judges, it increases the rating by 9 points.

4.2 IMPROVED SAMPLE EFFICIENCY

We demonstrate that POLYRATING is more sample-efficient compared to traditional univariate ap-
proaches and therefore reduces the cost of human evaluation. In App. C, we show that a slight
adjustment of POLYRATING additionally enables an improved sample efficiency when evaluating
new model versions.

Dataset We use the full Chatbot Arena dataset (Chiang et al., 2024b), which contains over one
million questions across various tasks. Each question is answered by two models and judged by
the human that posed the question. We use the tasks that contain Chinese, code-based, and hard
questions for this experiment and refer for a full description of these tasks to App. E.

New Task We first showcase the improved sample efficiency when obtaining ratings for a new
task. For this purpose, we vary the number of available questions from the task and compute the
logistic loss with respect to a hidden test set. In this process, and in all further experiments of this
subsection, POLYRATING is allowed to use all questions in the dataset that do not belong to the task.
Thus, we model the rating of a model m for a game g as Rm

base + βm
task · Jg ∈ DtaskK where Dtask is

the dataset of all games from the task. The standard deviation of the prior on βm
task is determined by

running cross-validation on the current training set.

Results for the three tasks are shown in Fig. 2. We find that POLYRATING converges much faster
than the univariate baseline. Measuring efficiency improvement as the fraction of extra samples the
univariate baseline requires to obtain the same loss as POLYRATING when collecting 10000 samples,
we find that POLYRATING improves efficiency by 58%, 38%, and 77% for respectively the Chinese,
code-based, and hard questions. Thus, POLYRATING can cut the cost of obtaining ratings for new
tasks by up to fourfold.
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Figure 2: Comparison between POLYRATING and univariate baseline for different tasks. The x-axis
shows the number of samples of the task the rating systems are using. The logistic loss shown is
normalized by subtracting the loss of the best possible rating for that task. The grey horizontal line
indicates the loss of a rating system that assigns the same rating to all models.
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(a) LLM-based evaluation
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Figure 3: Comparison between POLYRATING and the univariate baseline when leveraging informa-
tion from existing benchmarks. For the left and middle plot, the x-axis shows the number of human
annotations used. For the right plot, the x-axis shows the amount of samples from the Chinese code
task. The logistic loss is normalized by subtracting the loss of the best possible rating.

LLM-based Judge Improves Sample Efficiency LLM-based preferences are much cheaper to
obtain than human preferences. Therefore, LLM-based judges are often used to obtain model rat-
ings, despite being less reliable than human judges. However, POLYRATING can further leverage
these ratings to converge faster to the ratings corresponding to human judges. Specifically, we
model the rating of a model m for a game g as

Rm(g) = Rm
base + α1 · Jg ∈ DLLMK · log(length(gym)) + βm

1 · Jg ∈ DLLMK
where length(gym) is the length of the models’ completion for the given question. We use the public
dataset from Wildbench (Lin et al., 2024) to obtain our LLM-based evaluation. Fig. 3(a) shows the
logistic loss on a test set of the Chatbot Arena for a varying amount of human annotations. We find
that POLYRATING converges faster to the optimal ratings than the univariate baseline. Specifically,
the increase in sample efficiency when collecting 10000 human annotations is 38%.

Classical Benchmarks Improve Sample Efficiency Obtaining results from classical benchmarks
is even cheaper than LLM-based evaluations. We leverage these benchmarks to increase sample
efficiency. To do so, we first convert a benchmark to a preference dataset based on model accuracy
as explained in §3. We then model rating as Rm

base + βm
1 · Jg ∈ DbenchmarkK and apply POLYRATING

to increase sample efficiency for human evaluation. We specifically use the MixEval-Hard (Ni et al.,
2024) benchmark and show results in Fig. 3(b). We find that POLYRATING significantly increases
the sample efficiency. Specifically, when collecting 10000 samples efficiency increases by 41%.

Decomposable Task Some tasks can be decomposed into two or more subtasks. If these subtasks
are prevalent in the dataset, but their combination is not, POLYRATING can obtain more reliable
ratings for the combined task. For example, Chinese code-based questions are rare in the Chatbot
Arena, but both Chinese questions and code-based questions are prevalent. For this example, we can
model the rating of a model m for a game g as

Rm(g) = Rm
base + βm

1 · Jg ∈ DchineseK + βm
2 · Jg ∈ DcodeK + βm

3 · Jg ∈ Dcode ∩DchineseK.
Fig. 3(c) shows the logistic loss for varying numbers of Chinese code-based questions from the
Chatbot Arena. POLYRATING’s logistic loss at the start is almost as low as the univariate baseline’s
at the end, with a sample efficiency improvement of 25% when obtaining 10000 samples.

7



Published as a conference paper at ICLR 2025

Table 2: Several models in a multidimensional leaderboard fitted using POLYRATING. The given
rank of the models indicates its rank in the complete leaderboard shown in Table 7 in App. F.

Rank Model Name Rating English Chinese Hardness Code

1 gpt-4o-2024-05-13 1297±4.4 −13±7.4 − 3±8.7 13±7.5 15±8.0

2 claude-3-5-sonnet-20240620 1286±7.1 −29±10.7 − 19±13.8 14±11.0 44±12.6

12 yi-large-preview 1237±4.3 − 4±7.6 37±8.5 17±7.6 11±8.3

26 llama-3-70b-instruct 1187±2.9 67±6.0 − 51±5.4 − 1±5.6 −10±6.1

56 mixtral-8x7b-instruct-v0.1 1114±4.1 25±7.1 − 37±7.3 10±6.8 − 4±7.6

Table 3: Several models in the leaderboard fitted using a unidimensional approach where each task
is fitted separately. Modifiers for the tasks are shown instead of the fitted rating to make comparison
with POLYRATING easier. The complete leaderboard is shown in Table 8 in App. F.

Rank Model Name Rating English Chinese Hardness Code

1 gpt-4o-2024-05-13 1283±3.2 −19±5.2 52±10.4 5±6.7 13±7.8

2 claude-3-5-sonnet-20240620 1267±4.8 −23±8.1 45±14.4 11±10.1 35±11.3

10 yi-large-preview 1233±3.3 −19±5.6 84±10.8 7±7.1 11±8.3

17 llama-3-70b-instruct 1202±2.5 22±4.1 − 32±8.0 − 5±5.3 0±6.3

53 mixtral-8x7b-instruct-v0.1 1114±0.0 0±0.0 0±0.0 0±0.0 0±0.0

4.3 MULTIVARIATE LEADERBOARD

We now compare separately fitted univariate leaderboards with a multivariate leaderboard fitted
using POLYRATING. Since the univariate approach is shift-invariant, we need to fix the shifting
constant for each task. We follow the approach of the Chatbot Arena and set the constant by fixing
the rating of Mixtral-8x7b-Instruct-v0.1 to 1114 for all tasks. We will show that this approach fails
to provide comparable ratings for the models in the leaderboard.

Results Table 2 and Table 3 show the ratings of several models in the leaderboard fitted using
POLYRATING and a univariate approach respectively. For a full overview of all models, we refer to
App. F. By examining the modifiers computed by POLYRATING, we immediately see the downside
of the univariate approach. The Mixtral model performs significantly worse, resp. better, on the
Chinese, resp. English, task compared to its base rating. Therefore, fixing the shifting constant using
Mixtral results in significant ratings shifts for these tasks making cross-task comparisons impossible.

This effect is most apparent in the Chinese task. 97 of the 114 models included in the dataset gain
rating for this task in the univariate approach, even though most models were not specifically trained
for the Chinese language. In contrast, POLYRATING shows that only 67 models gain rating, and
that the only ones to do so significantly are models trained by Chinese model providers, such as Yi,
Qwen and GLM.

Inspecting the English task, we find that POLYRATING indicates that top models tend to lose rating
for this task, while bad models tend to gain rating. This is in line with expectations as older and
worse models were predominantly trained on English data, making them more suitable for this task
and thus increase their rating. However, the univariate approach simply shows that more than 100
models lose rating for this task, with no discernable pattern.

5 RELATED WORK

Ratings Rating systems have been used across various domains, such as sports (Elo, 2008; Glick-
man, 2002; Shelopugin and Sirotkin, 2023; Sismanis, 2010; Vaz et al., 2012), gaming (Herbrich
et al., 2007; Dangauthier et al., 2007), movies (Talattinis and Stephanides, 2022) and recommenda-
tion systems (Adomavicius et al., 2005; Chen et al., 2018; Kong et al., 2019). The widely recognized
Elo rating system (Elo, 2008) and its extensions such as Glicko (Glickman, 2002) are generic uni-
variate systems based on the BT-model (Bradley and Terry, 1952) that are widely applicable. Fur-
thermore, various rating systems have been developed for specific use cases and areas. For example,
Elo++ (Sismanis, 2010) was specifically designed for chess, and TrueSkill (Herbrich et al., 2007;
Dangauthier et al., 2007) has been further developed specifically for multiplayer online games.
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Ratings for LLMs Preference datasets for LLMs have become common to evaluate model ca-
pabilities in areas lacking ground-truth benchmarks. The most popular one is the Chatbot Arena
(Chiang et al., 2024b), which contains over one million user queries and evaluates models in various
tasks such as code, math, and multilingual understanding. Wildbench (Lin et al., 2024), MT-Bench
(Zheng et al., 2023), and AlpacaEval (Dubois et al., 2024) are LLM-based evaluation frameworks
that have gained attention. Among these, AlpacaEval is the only one that applies a length-control
bias similar to POLYRATING to obtain a higher correlation with human judges. However, this fitted
bias is not directly interpretable and is less generic than the approach used in POLYRATING. Addi-
tionally, POLYRATING employs priors on various terms to improve sample efficiency and eliminate
shift-invariance, which AlpacaEval lacks. Therefore, AlpacaEval cannot be used to obtain any of
the benefits of POLYRATING that were presented in §4.

Multivariate Rating Systems Multivariate rating systems have been used before in recommen-
dation systems (Chen et al., 2018; Adomavicius et al., 2005; Kong et al., 2019; Abdi et al., 2021).
These developed systems are extensions to the more classical Elo (Elo, 2008) and Glicko (Glick-
man, 2002) rating systems. However, they are not directly applicable to LLM evaluation, as they do
not take into account the specific biases and dependencies that are present in LLM evaluation. Fur-
thermore, the limited numbers of models allow us to build an exact optimization algorithm, unlike
in recommendation systems where approximate algorithms are necessary due to the high number of
rated players (or products). These approximate algorithms are not suitable for LLM evaluation, as
shown in App. B. Furthermore, these systems do not include priors on the ratings, which are crucial
for the sample efficiency of POLYRATING.

Biases in Human and LLM-Based Evaluation Several works have examined biases in both hu-
man and LLM-based evaluations (Hosking et al., 2023; Clark et al., 2021; Wang et al., 2023; Wu
and Aji, 2023; Shi et al., 2024; Chen et al., 2024; Singhal et al., 2023). Typically, these studies
introduce biases to model answers to observe their impact on judge preferences (Wu and Aji, 2023;
Chen et al., 2024; Singhal et al., 2023; Wang et al., 2023). Additionally, they also investigate bias
by asking more specific questions to the judges, rather than simply asking their preference (Hosking
et al., 2023; Wu and Aji, 2023). These techniques, however, do not apply to existing datasets and
require additional annotations for specifically crafted answers. In contrast, POLYRATING can be
directly applied to existing datasets without further annotation.

6 LIMITATIONS

We briefly discuss the limitations of POLYRATING. First, while POLYRATING provides a way to
measure model strengths and weaknesses, these comparisons are relative to the other models in the
leaderboard and do not provide an absolute measure of model performance. For instance, if all
models in the leaderboard perform well on one task, and poorly on another, the leaderboard will
not reflect this absolute weakness. Instead, it will only show weaknesses relative to the average
performance of the models. This is a fundamental limitation of rating systems and cannot be solved
by any system that works solely based on preference data. To obtain absolute measures of model
performance additional data sources, such as traditional benchmarks, are required.

Furthermore, POLYRATING still requires significant manual inspection and tuning since users must
determine the modeling parameters and functions that constitute the rating, a process that can be
time-consuming. A more automatic discovery of interesting and relevant dimensions, especially for
bias detection, would help mitigate this issue.

7 CONCLUSION

We introduced POLYRATING, a multivariate rating system specifically designed for language model
evaluation. POLYRATING enables a more comprehensive evaluation of LLMs by capturing biases
and dependencies on both continuous and categorical features in the evaluation. We demonstrated
the existence and influence of several biases, such as length and position bias, and compared these
biases between human and LLM-based judges. Furthermore, we showed that POLYRATING can
leverage existing data to increase sample efficiency by 41% and reduce the costs of human eval-
uations for new tasks by up to 77%. Finally, we showed that POLYRATING can provide a more
reliable performance comparison of the same language model across different tasks by solving the
shift-invariance of the ratings across multiple dimensions.
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REPRODUCIBILITY STATEMENT

We have included our code in the supplementary material with instructions how to run and reproduce
all the results presented in the paper. Furthermore, App. D contains detailed proofs of all theoretical
statements made in the paper, particularly with respect to the optimality of POLYRATING.
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A ATTRIBUTION

We provide attribution for the icons used in Fig. 1 here. The code icon was obtained from flati-
con.com and created by Royyan Wijaya. The Chinese icon was obtained from flaticon.com and
created by Freepik. The bot icon was obtained from flaticon.com and created by Nuriali. The
math icon was obtained from flaticon.com and created by widphic. The length icon was obtained
from freepik.com and created by Surang Lineal. Finally, the readability icon was obtained from
freepik.com and created by Generic Detailed Outline.

B ALTERNATIVE RATING SYSTEMS

This section explores several alternatives to the exponential rating system that solves the MLE of the
logistic loss function, as discussed in §2. Specifically, we evaluate two extensions to the BT-model
and one alternative inspired by the accuracy metric commonly used in benchmarks. We then com-
pare these alternatives with the exponential rating system in terms of their predictive performance
and demonstrate that their added complexity does not result in better predictions.

All models discussed here are compatible with POLYRATING and can be used as substitutes for the
MLE-based BT-model used in §4.

Rao-Kupper Model Rao and Kupper (1967) extend the BT-model to explicitly account for the
probability of a draw by introducing a parameter θ ∈ R, θ ≥ 1:

P (i ≻ j|γi, γj) =
γi

γi + θγj

P (j ≻ i|γi, γj) =
γj

γj + θγi

P (i ≃ j|γi, γj) =
γiγj(θ

2 − 1)

(γj + θγi)(γi + θγj)

It can be shown that this model follows from the hypothesis that a judge cannot tell the difference
between two answers if the quality of the answers is close to each other.

Davidson-Model Davidson (1970) propose a similar modification to include draws, using a pa-
rameter θ ∈ R, θ ≥ 0:

P (i ≻ j|γi, γj) =
γi

γi + γj + θ
√
γiγj

P (j ≻ i|γi, γj) =
γj

γi + γj + θ
√
γiγj

P (i ≃ j|γi, γj) =
θ
√
γiγj

γi + γj + θ
√
γiγj

Accuracy-Based Model Both extensions to the BT-model presented above still model ratings
using an exponential function. However, for LLMs, it could be beneficial to use ratings directly
comparable to standard benchmark accuracies. Benchmarks can be viewed as a series of games
where, for a given question Q, model m1 defeats model m2 if m1 answers correctly and m2 does
not. A draw occurs if both answer correctly or incorrectly, and otherwise m2 wins.
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Figure 4: Logistic loss for all four alternatives on the Chatbot Arena dataset for various sizes of the
training set.

Let AccD denote the accuracy function on benchmark D. If we model draws as 0.5 points for each
model, the win rates can be expressed as:

P (i ≻ j|mi,mj) =
1

2

(
1 + AccD(m1)− AccD(m2)

)
P (j ≻ i|mi,mj) =

1

2

(
1 + AccD(m2)− AccD(m1)

)
.

To adapt the BT-model to this accuracy-based approach, we modify it as follows:

P (i ≻ j|Ri, Rj) = min

(
1,max

(
0,

1

2
(1 +Ri −Rj)

))
P (j ≻ i|Ri, Rj) = min

(
1,max

(
0,

1

2
(1 +Rj −Ri)

))
,

where the min and max functions ensure probabilities remain within the [0, 1] range. Fitting this
model on a standard accuracy-based benchmark by minimizing the logistic loss from Eq. (1) would
exactly recover the benchmark accuracies (up to a constant shift). In contrast, the exponential used
in the standard BT-model would ensure the benchmark would not exactly recover the accuracies.
Thus, the ratings obtained with this model would be more directly comparable with accuracies from
standard benchmarks.

Comparison Comparing these models is challenging because the Rao-Kupper and Davidson mod-
els include an additional draw prediction. For predictive purposes, we are only interested in the
logistic loss L from Eq. (1) to determine whether the additional complexity of the Rao-Kupper and
Davidson models reduces the value of L on an unknown test set. Using data from the Chatbot
Arena (Chiang et al., 2024b), we compute L for various training set sizes. For the Davidson and
Rao-Kupper models, we add 0.5P (i ≃ j|γi, γj) to both P (i ≻ j|γi, γj) and P (j ≻ i|γi, γj).
First of all, we see that the approximate Glicko system (Glickman, 2002) performs by far the worst,
as expected. Using approximate systems for LLM evaluation is not recommended, as these systems
were designed for time-varying, large-scale rating systems for multiple million players.

Results are shown in Fig. 4. The Roa-Kupper model performs the worst, while the accuracy-based
model is only slightly worse than the remaining two. Finally, both the Davidson and BT-model per-
form almost identically. Due to the extra complexity of the Davidson model and the more frequent
use of the BT-model for LLMs, we decided to use the BT-model as a default for POLYRATING.
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C MODEL VERSIONS

Models are iteratively improved through time. Evaluating these iterations is essential for tracking
performance changes and understanding the impact of updates. For developers who create multiple
versions of a model simultaneously or in quick succession, it is essential to evaluate the relative
performance of these versions as cost-effectively as possible. However, this process can be com-
putationally expensive, especially when human evaluations are used. This section describes how
POLYRATING enables more efficient evaluation of model versions.

C.1 INCORPORATING MODEL VERSIONS

Model versions evolve over time, much like human capabilities in competitive games. Rating sys-
tems often reflect this evolution by introducing time-dependent factors, such as the method proposed
by Coulom (2008), which uses a time-dependent Bradley-Terry (BT) model. This approach incor-
porates a Gaussian prior on consecutive ratings, ensuring they do not shift arbitrarily over time:

Rt+1 −Rt ∼ N (0, σ2)

Unlike human capabilities, model updates are irregular. Some models may never be updated, while
others evolve rapidly. However, Coulom (2008) assumes that the ratings are updated at regular
intervals. To remove this assumption, we modify the prior by only updating ratings upon a new
release. For two versions v1 and v2, we impose a regularizing prior on the base rating:

Rv2
base −Rv1

base ∼ N (0, σ2)

This adjustment enables faster convergence by constraining rating shifts between versions without
requiring regularity. Using this prior, the loss function for evaluating versions becomes:

Lversion(D,Rbase,α,β) = Lfull(D,Rbase,α,β) +
∑

(v1,v2)∈VM

(Rv1
base −Rv2

base)
2

2σ2
(4)

Here, VM represents all pairs of consecutive model versions. Thus, if a model has versions
v1, . . . , vn, then {(v1, v2), . . . , (vn−1, vn)} ⊂ VM. Note that we only consider versions of mi-
nor updates. For major updates (e.g., GPT-3.5 to GPT-4), the update is not included in VM as
the rating of the new model will likely be substantially higher and is not related to the previous
model anymore. This loss function can be optimized using the same techniques as described in §3.
Therefore, no additional adjustments are needed to evaluate model versions using POLYRATING.

C.2 EVALUATING MODEL VERSIONS

0 10000 20000 30000 40000
# of Samples

10−3

10−2

10−1

Constant Rating

Logistic Loss

Univariate Baseline

Polyrating

Figure 5: Convergence rate of the univari-
ate method and POLYRATING when evalu-
ating model versions. The x-axis represents
the number of games available in the train-
ing set associated with the subsequent ver-
sions, while the y-axis represents the loss of
the univariate method and POLYRATING.

We evaluate whether POLYRATING can effectively
reduce the evaluation costs associated with assess-
ing new model versions. To do this, we adopt an
experimental setup similar to the one described in
§4. Using the Chatbot Arena dataset, we first iden-
tify models with multiple versions to construct the
set VM. Out of the 129 models in the dataset, 43
are subsequent versions of earlier models. We then
split the dataset into two parts: one containing games
involving these subsequent versions, and the other
including all remaining games. As before, the lat-
ter set is used for both the univariate method and
POLYRATING, while the former set is further divided
into training and test splits.

Next, we vary the number of games available in the
training set for the subsequent versions and compare
how quickly the univariate method and POLYRAT-
ING converge on the test set. This approach allows
us to evaluate how efficiently the methods handle
new models, assuming the first version of each model has already been evaluated. The results of
this experiment are shown in Fig. 5. When obtaining 10,000 samples, POLYRATING shows a 38%
improvement in sample efficiency compared to the univariate method. These results indicate that
POLYRATING significantly reduces the evaluation costs associated with new model versions.
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D PROOFS

We provide the proofs for the theorems mentioned in the main text here.

We first prove the convexity of the optimization objective in Eq. (3).
Theorem 1 (Convexity of the Optimization Objective). The optimization objective in Eq. (3) is
convex and twice differentiable.

Proof. Twice differentiability follows immediately from the twice differentiability of the logistic
loss and the squared penalty term. To show convexity, we make use of the following well-known
facts about convex functions:

• The sum of two convex functions is convex.

• The composition of a convex function with an affine function is convex.

Since the logistic loss f(x) = − log(1 + exp(x)) is convex, and since POLYRATING relies on a
linear combination of parameters in the loss function, the logistic loss is convex in these parameters.
The squared penalty term is also convex, as it is a sum of squared terms with a positive quadratic
coefficient. The sum of two convex functions is convex, so the optimization objective is convex.

Further, we show the optimality of POLYRATING by showing it converges to the same optimal rating
as the univariate approach when fitted on multiple tasks at the same time.

For this purpose, suppose we have a task for which we want to obtain a separate rating. Specifically,
let D be a dataset of games between models. Let D¬task ⊂ D, resp. Dtask ⊂ D, be the set of
games not belonging to, resp. belonging to, the task of interest. We show that as |D| → ∞, the
rating obtained by individually fitting the tasks is equivalent to the rating obtained by fitting all tasks
simultaneously using POLYRATING. Intuitively, the extra prior term in POLYRATING will be of less
importance as the number of games in the task of interest increases, and the ratings will converge to
the same optimal rating.
Theorem 2 (Equivalence of Ratings). Let D be a set of i.i.d. games between models m0, . . . ,mk−1.
Let Dtask ⊂ D and D¬task ⊂ D be as defined above. Let Rtask, resp. R¬task, be the rating obtained
by fitting the games in Dtask, resp. D¬task, using the optimal univariate rating system. Let R′ be
the rating obtained by fitting all games in D simultaneously using POLYRATING with the formula
R′m(g) = R′m

¬task + βm
1 Jg ∈ DtaskK and define R′m

task = R′m
¬task + βm

1 . Finally, let the priors on
respectively R′m

¬task and βm
1 be N (0, σ2

¬task) and N (0, σ2
1). Then, as |D¬task| → ∞ and |Dtask| → ∞,

Rtask and R′
task will, up to a constant difference, converge to the same optimal rating R∗

task if all
optimal ratings are finite. Similarly, R¬task and R′

¬task will, up to a constant difference, converge to
the same optimal rating R∗

¬task if all optimal ratings are finite.

To prove the theorem, we first need several lemmas.
Lemma 1 (Shift-Invarance of Optimal Ratings). Let D be a set of games between models
m0, . . . ,mk−1 where there exists one model that has played all other models at least once. If
R1 and R2 both minimize the logistic loss L(D,R) for D, then R1 −R2 is a constant vector.

Proof. Without loss of generality, we can assume that the first model is the model that has played
all other models at least once. We first note that for any constant c ∈ R, it holds that L(D,R+ c) =
L(D,R). Therefore, we can assume that the first element of each vector, namely R0

1 and R0
2, are

both zero by applying a constant shift to both. We now show that R1 = R2.

We do so by proving that the function F (x1, . . . xk−1) = L(D, (0, x1, ..., xk−1)) is strictly convex.
Since strictly convex functions have a unique minimum, this implies that R1 = R2. We show
strict convexity by computing the Hessian and showing that it is diagonally dominant with strictly
positive diagonal elements. By Gershgorin circle theorem, this implies that the Hessian cannot have
eigenvalues equal to zero, and is therefore positive definite. Since the Hessian is positive definite,
the function is strictly convex, and the result follows.

We compute the diagonal terms of the Hessian of F . We denote by D{i,j} all games where one
model is mi and the other model is mj . We slightly change the notation such that the game result
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gr ∈ D{i,j} indicates whether mi won or lost, no matter the order of the models. We define x0 = 0
and drop the division by 400 for convenience. We have:

F (x1, . . . xk−1) =

k−1∑
i=0

k−1∑
j=0

∑
g∈D{i,j}

gr log(1 + exp(xj − xi))

Thus,

∂2F

∂x2
i

=

k−1∑
j=0

∑
g∈D{i,j}

gr
exp(xj − xi)

(1 + exp(xj − xi))2
+ (1− gr)

exp(xi − xj)

(1 + exp(xi − xj))2

=
∑

g∈D{i,0}

gr
exp(−xi)

(1 + exp(−xi))2
+ (1− gr)

exp(xi)

(1 + exp(xi))2
+

k−1∑
j=1

− ∂2F

∂xi∂xj

Since all terms in the sum are positive, the diagonal terms of the Hessian are strictly positive. Fur-
thermore, the Hessian is diagonally dominant as the last sum is the sum over all off-diagonal terms
in the same column and the first sum is strictly positive since mi has played at least one game against
m0. Thus, the Hessian is positive definite, and the function is strictly convex.

Lemma 2 (Limit Exists and Is Finite). Let D be a set of i.i.d. games between models m0, . . . ,mk−1.
Furthermore, assume all ratings are bounded. Then,

lim
|D|→∞

1

|D| min
R

L(D,R) (5)

almost surely uniformly converges to Eg(L(g,R)). Furthermore,

lim
|D|→∞

argmin
R,R0=0

L(D,R) (6)

almost surely exists and converges to the optimal rating.

Proof. Let Dn be the first n games in D. We show that the functions Ln : Rk → R defined by
Ln(R) = 1

nL(Dn,R) converge uniformly to Eg(L(g,R)).

Thus, for any given ϵ > 0 we need to prove the existence of an N such that for all n > N and all
R, |Ln(R) − Eg(L(g,R))| < ϵ. Let ϵ > 0 be chosen arbitrarily. We can group games with the
same models together in the notation for Ln. More specifically, let w(n)

i,j denote the weight of the
coefficient associated with log(1 + exp(−Rm

i +Rm
j )). Then we can write:

Ln(R)

n
=

k∑
i=1

k∑
j=1

w
(n)
i,j

n
log(1 + exp(−Rm

i +Rm
j ))

Furthermore, we can write the expected value of the loss as:

Eg(L(g,R)) =

k∑
i=1

k∑
j=1

(P (i ≻ j) + 0.5 · P (i ≃ j)) · P (g ∈ D{i,j}) log(1 + exp(−Rm
i +Rm

j ))

:=

k∑
i=1

k∑
j=1

Pi,j log(1 + exp(−Rm
i +Rm

j ))

where ≃ denotes a draw.

Thus, we obtain:

Ln(R)

n
− Eg(L(g,R)) =

k∑
i=1

k∑
j=1

(
w

(n)
i,j

n
− Pi,j

)
· log(1 + exp(−Rm

i +Rm
j ))
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By the strong law of large numbers, the weights w
(n)
i,j /n converge almost surely to the expected

value of the weights, i.e. Pi,j . Furthermore, since the ratings are finite, log(1 + exp(−Rm
i +Rm

j ))
can be bounded by a constant B. Thus, for any ϵ > 0, there exists an N such that for all n > N ,

|w
(n)
i,j

n − Pi,j | < ϵ
Bk2 for all i, j. Then, almost surely,∣∣∣∣Ln(R)

n
− Eg(L(g,R))

∣∣∣∣ ⩽ k∑
i=1

k∑
j=1

∣∣∣∣∣w
(n)
i,j

n
− Pi,j

∣∣∣∣∣B
⩽

ϵ

Bk2
·Bk2 = ϵ,

proving the first part of the lemma.

For the second part, we note that Lemma 1 implies that argminR,R0=0 Ln(R) has a unique solution.
By uniform convergence on a compact domain of continuous functions Ln, we thus have that the
limit of the minimizers of Ln is the minimizer of the expected loss, and the result follows.

Now, we can prove Theorem 2.

Proof. We prove that Rtask and R′
task will converge to the same optimal rating R∗

task assuming
that Rtask,0 = R′

task,0 = R∗
task,0 = 0 which can be assumed due to shift-invariance. The other

implication is proven equivalently.

Let D(n)
task denote the first n elements of Dtask and R

(n)
task the optimal solutions found when fitting using

D
(n)
task. Note that we leave the size of D¬task in the sequence unspecified since it does not matter for

this part of the proof. We note that POLYRATING optimizes the loss

L(n)
full (D

(n),R′) =
1

n
L(D¬task,R

′
¬task) +

1

n
L(D(n)

task,R
′
task) +

1

n

d∑
j=0

R′2
¬task,j

2σ2
¬task

+
1

n

d∑
j=0

β2
1,j

2σ2
1

(7)

with optimal solution R′(n). Suppose now that R′(n)
task does not converge to R∗

task. Then there exists
a subsequence ni and a δ > 0 such that ||R′(ni)

task −R∗
task|| > δ. Without loss of generalization, we

can assume this subsequence is the full sequence.

By Lemma 2, we know that 1
nL(D

(n)
task,R) uniformly converges to the function L∗(R) :=

Egtask(L(gtask,R)) which has R∗
task as minimizer. By Lemma 1, L∗ is continuous and has a unique

minimum that satisfies R∗
task,0 = 0. Therefore, there exists an ϵ > 0 such that for all ratings R with

R0 = 0 the following is true:

||R−R∗
task|| > δ ⇒ L∗(R)− L∗(R∗

task) > ϵ. (8)

Since R
(n)
task converges to R∗

task by Lemma 2, we know there is an n0 > 0 such that for each n > n0,

L∗(R
(n)
task)− L∗(R∗

task) <
ϵ

4
. (9)

Furthermore, due to the uniform convergence of the loss, there exists an n1 > 0 such that for all
n > n1 and all R, ∣∣∣∣ 1nL(D(n)

task,R)− L∗(R)

∣∣∣∣ < ϵ

4
. (10)

Finally, there exists an n2 > 0 such that for all n > n2,∣∣∣∣d+ 1

n

B2

2σ2
¬task

+
d+ 1

n

4B2

2σ2
1

∣∣∣∣ < ϵ

4
(11)

where B is the upper bound for all ratings.

However, we can now define R′′(n)
¬task = R′(n)

¬task and β′′(n) = R
(n)
task−R′(n)

¬task. The inequalities above
imply that for all n > max(n0, n1, n2), L(n)

full (D
(n),R′′(n)) < L(n)

full (D
(n),R′(n)), since
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1

n
L(D(n)

task,R
′
task)−

1

n
L(D(n)

task,Rtask) > L∗(R′
task)−

ϵ

4
− L∗(Rtask)−

ϵ

4

= L∗(R′
task)− L∗(R∗

task) + L∗(R∗
task)− L∗(Rtask)−

ϵ

2

> ϵ− ϵ

4
− ϵ

2
=

ϵ

4

where the first inequality follows from Eq. (10) and the last from Eq. (8) and Eq. (9). Since Eq. (11)
ensures that the difference in the bias term can at most differ by ϵ/4, we find L(n)

full (D
(n),R′′(n)) <

L(n)
full (D

(n),R′(n)). Therefore, R′(n)
task cannot be the optimal solution, which is a contradiction to the

optimality of R′(n). Therefore, R′
task must converge to R∗

task.

E EXPERIMENTAL DETAILS

In this section, we provide detailed descriptions of the biases and tasks used in our experiments. In
Table 4 we describe the biases used in §4.1 in more detail. In Table 5 we describe the tasks used in
§4 in more detail. Finally, we note that any run using POLYRATING took at most 6 hours on a single
CPU, even for huge datasets with a million samples, 100 models and 10 tasks.

We also briefly explain how we adjust the win rates of traditional benchmarks to improve sample
efficiency of human evaluation, as discussed in §4.2. As detailed in the accuracy-based model in
App. B, the win rate of m1 over m2 in a traditional benchmark can be written as

P (i ≻ j|mi,mj) =
1

2

(
1 + AccD(m1)− AccD(m2)

)
P (j ≻ i|mi,mj) =

1

2

(
1 + AccD(m2)− AccD(m1)

)
.

where AccD is the accuracy function.

Benchmarks often exhibit significant variation in accuracy differences between models. For in-
stance, in some benchmarks, models may have closely aligned accuracies, while in others, the
differences may be substantial. This variation affects the win rate estimates between models. To
address this, we introduce a parameter W , which allows us to adjust the scale of win rates. The
adjusted win rates are modeled as:

P (i ≻ j|mi,mj) = min

(
1,

W
2

(
1 + AccD(m1)− AccD(m2)

))
P (j ≻ i|mi,mj) = 1− P (i ≻ j|mi,mj).

This adjustment ensures that we can control the scale of win rates, mitigating the issue of varying
accuracy differences. We optimize the hyperparameter W using human evaluations from the training
data. Specifically, we fit a univariate rating model using win rates for a given W on the classical
benchmark and evaluate the logistic loss of the resulting ratings on the training data. The parameter
with the lowest logistic loss is selected. Importantly, we do not use any unknown test data during
this optimization process, ensuring that our approach can be applied in practical scenarios without
compromising the integrity of the evaluation.

1https://huggingface.co/s-nlp/roberta-base-formality-ranker
2https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest
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Table 4: Overview of all biases used in §4.1. The table contains a description of the bias and a
functional form of the bias. Scaling constant were introduced in these functional forms to ensure
that all biases output values within the same order of magnitude.

Bias Description Functional Form

Length Measures the length of a model answer for
a given question.

f(g, i) = log10(length(gmi(gp)))

Position Computes the order of the model in the
game.

f(g, i) = Ji = 1K

Formality Computes the formality of an answer
computed by a popular formality classifier
(Babakov et al., 2023).1

f(g, i) = M(gmi(gp))1

Sentiment Computes the sentiment of an answer
computed by a popular sentiment classifier
(Camacho-collados et al., 2022).2

f(g, i) = M(gmi(gp))2

Repetitiveness Computes the repetitiveness of the answer
by computing the percentage of non-unique
words in the answer.

f(g, i) = 5 · # of repeated words in gmi
(gp)

# of words in gmi
(gp)

Readability Computes the Flesch Reading Ease score
(Kincaid et al., 1975) of an answer.

f(g, i) = min(1,max(0,
Flesch(gmi

(gp))

100
))

Table 5: Overview of all tasks used in §4. For each task, we use the same data as the actual Chatbot
Arena (Chiang et al., 2024b)

Task Description

English Questions that are in English.
Chinese Questions that are in Chinese.
Hardness Questions that are considered hard by the Chatbot Arena. These are questions that

are classified as being in at least six of the following seven categories: specific,
requires domain knowledge, is complex, requires problem-solving, requires
creative thinking, requires technical accuracy, is a real-world question.

Code Questions that require code to be answered.
LLM Whether the judge is a language model.

Table 6: Fitted coefficients for the biases and their average influence on the ratings of the models
for both human and LLM-based evaluation. The functional form of fbias used for each bias can be
found in App. E. The influence is computed as Eg(αbias · |fbias(g, 0)− fbias(g, 1)|) and indicates the
average influence the bias has on the rating of models for specific games. Errors shown are 95%
pivot intervals computed using bootstrapping.

(a) Human Evaluation

Bias Coefficient (α) Influence (E)

Length 130.74+7.9
−7.3 40.84+2.5

−2.3

Position 2.70+2.3
−2.4 2.70+2.3

−2.4

Formality −119.89+11.6
−11.4 −15.17+1.5

−1.4

Sentiment 57.42+10.1
−10.9 7.90+1.4

−1.5

Repetitiveness − 22.10+8.5
−8.4 − 4.64+1.8

−1.8

Readability 72.93+11.0
−11.6 10.75+1.6

−1.7

(b) LLM-based Evaluation

Bias Coefficient (α) Influence (E)

Length 251.87+7.3
−6.8 48.48+1.4

−1.3

Position 37.53+1.1
−1.2 37.53+1.1

−1.2

Formality − 37.56+6.7
−7.2 − 4.31+0.8

−0.8

Sentiment 4.31+6.1
−6.7 0.43+0.6

−0.7

Repetitiveness 75.04+8.8
−7.3 9.12+1.1

−0.9

Readability − 32.56+8.1
−7.9 − 3.92+1.0

−0.9
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F DETAILED RESULTS

In Table 6, we show Table 1 with the adjusted confidence intervals computed using pivot intervals
instead of 2σ intervals.

The full multidimensional leaderboard fitted using POLYRATING on Chatbot Arena data (Chiang
et al., 2024b) can be found in Table 7. The full leaderboard fitted using a unidimensional approach
can be found in Table 8.

Table 7: Leaderboard of human evaluation with modifiers fitted with POLYRATING. Indicated devi-
ations are 95% pivot intervals determined using bootstrapping.

Rank Model Name Rating English Chinese Hardness Code

1 gpt-4o-2024-05-13 1297+4.5
−4.2 −13+4.3

−10.3 − 3+8.8
−8.2 13+10.0

−4.8 15+10.4
−5.7

2 claude-3-5-sonnet-20240620 1286+6.7
−7.4 −29+8.2

−13.9 − 19+15.0
−12.9 14+13.6

−8.5 44+14.9
−10.6

3 gemini-advanced-0514 1285+4.5
−5.1 −26+4.5

−10.7 8+9.2
−9.4 3+10.3

−5.6 2+11.2
−6.9

4 gemini-1.5-pro-api-0514 1273+4.8
−4.5 −20+4.8

−10.5 19+10.0
−8.6 15+10.0

−4.8 11+11.3
−5.8

5 claude-3-opus-20240229 1273+3.0
−2.7 −39+2.5

−9.2 1+6.0
−5.1 15+8.4

−2.9 12+8.4
−3.7

6 bard-jan-24-gemini-pro 1271+12.4
−12.6 −48+11.7

−16.9 − 25+25.6
−25.8 −45+16.9

−11.7 −11+19.0
−13.4

7 gpt-4-1106-preview 1265+3.7
−4.0 −11+3.5

−9.7 − 3+8.0
−7.2 9+8.7

−3.5 11+9.3
−4.8

8 gemini-1.5-pro-api-0409-preview 1264+4.6
−4.4 − 2+4.1

−10.1 5+7.9
−8.5 − 4+9.8

−4.8 −12+10.8
−5.5

9 gpt-4-turbo-2024-04-09 1258+3.8
−3.4 3+3.6

−9.8 4+7.4
−6.6 11+8.9

−3.8 15+9.6
−4.9

10 gpt-4-0125-preview 1255+3.6
−3.6 − 5+3.5

−9.6 1+7.3
−6.1 14+9.0

−3.9 2+9.5
−4.7

11 gemini-1.5-flash-api-0514 1243+4.7
−4.5 −21+4.5

−10.5 8+9.5
−9.7 9+10.4

−5.5 15+10.8
−6.7

12 yi-large-preview 1237+4.4
−4.4 − 4+4.1

−10.6 37+8.8
−8.6 17+10.5

−4.8 11+11.0
−5.8

13 gemma-2-27b-it 1232+11.7
−11.4 −10+12.2

−17.6 − 1+23.2
−19.6 −15+18.0

−13.6 7+19.9
−15.7

14 yi-large 1222+8.8
−7.7 − 3+8.5

−15.5 9+17.9
−16.5 11+15.4

−10.4 21+18.2
−12.5

15 nemotron-4-340b-instruct 1222+6.5
−7.2 −13+7.6

−13.1 7+13.9
−12.4 9+13.2

−8.5 − 6+14.7
−9.4

16 claude-3-sonnet-20240229 1220+3.3
−3.2 −26+2.8

−9.4 − 15+5.9
−5.5 6+8.3

−3.6 26+9.2
−3.7

17 command-r-plus 1214+3.9
−3.5 −18+3.4

−9.4 6+6.7
−6.4 − 7+9.0

−3.7 −14+9.3
−4.4

18 gpt-4-0314 1213+4.5
−4.5 −29+4.3

−10.4 − 13+8.7
−7.9 23+9.7

−4.6 9+10.5
−4.9

19 reka-core-20240501 1212+3.6
−3.9 −11+3.7

−9.8 9+8.1
−7.6 6+9.3

−4.7 − 2+10.4
−4.6

20 claude-3-haiku-20240307 1209+3.5
−3.4 −30+3.2

−9.2 − 36+6.0
−5.2 10+8.4

−3.4 16+9.0
−3.6

21 gemma-2-9b-it 1204+11.0
−10.7 −17+12.6

−17.5 − 1+21.4
−22.1 3+18.6

−12.6 −14+20.3
−16.3

22 glm-4-0520 1202+10.0
−9.6 8+10.8

−15.8 49+17.8
−17.7 19+15.7

−11.1 12+17.4
−12.5

23 gpt-4-0613 1191+3.8
−3.7 −22+3.6

−9.5 − 41+7.6
−6.5 18+8.5

−3.7 1+9.5
−4.2

24 claude-1 1190+8.3
−8.2 −30+7.9

−14.5 − 18+16.9
−17.0 −19+13.3

−7.6 4+14.8
−9.4

25 reka-flash-preview-20240611 1188+7.7
−7.6 −15+7.3

−13.8 − 5+14.1
−15.0 −10+13.8

−9.0 7+15.4
−10.6

26 llama-3-70b-instruct 1187+3.0
−2.7 67+2.3

−9.0 − 51+5.7
−5.0 − 1+7.8

−2.5 −10+8.6
−3.3

27 qwen-max-0428 1187+5.4
−5.1 3+5.4

−11.6 62+12.9
−11.3 11+11.2

−7.1 8+12.3
−7.9

28 qwen2-72b-instruct 1182+6.0
−6.0 9+5.4

−12.9 68+11.9
−11.0 13+11.6

−6.8 − 3+13.4
−7.6

29 gemini-pro-dev-api 1182+8.1
−7.2 −38+7.2

−13.6 − 23+15.1
−14.0 −11+13.3

−8.7 −23+14.3
−9.2

30 deepseek-coder-v2 1181+9.4
−9.3 −34+9.6

−15.6 16+17.3
−17.5 43+15.5

−11.0 64+18.1
−11.5

31 reka-flash-21b-20240226-online 1176+6.9
−7.1 −12+6.9

−13.3 − 10+13.3
−12.1 − 2+13.0

−8.1 1+13.4
−9.4

32 command-r 1175+4.2
−3.9 −15+3.9

−9.9 12+7.5
−6.8 −23+9.3

−4.6 − 9+10.6
−5.3

33 reka-flash-21b-20240226 1170+5.6
−5.2 −16+5.2

−11.7 − 12+10.1
−11.7 − 6+11.7

−6.4 5+11.5
−7.2

34 claude-2.0 1164+10.8
−10.4 −26+9.9

−15.8 − 8+24.1
−23.1 3+15.1

−10.9 12+17.6
−13.0

35 mistral-large-2402 1163+4.0
−4.2 2+3.8

−10.0 − 32+7.7
−7.1 20+9.0

−4.2 10+9.9
−5.3

36 gpt-3.5-turbo-0314 1162+19.5
−21.0 −56+19.3

−25.0 9+31.9
−32.4 22+22.7

−18.2 14+27.5
−21.9

37 qwen1.5-110b-chat 1161+4.9
−5.0 12+4.9

−11.0 58+11.1
−10.5 10+10.8

−7.2 11+12.5
−7.8

38 gpt-3.5-turbo-0613 1161+6.2
−6.3 −41+4.9

−11.3 − 37+16.2
−14.5 13+10.5

−6.0 21+12.1
−7.9

39 claude-2.1 1156+6.3
−5.7 −40+5.3

−11.6 − 45+12.2
−11.8 10+10.8

−5.3 22+11.8
−6.9

40 mistral-next 1153+11.0
−10.6 −20+9.7

−15.2 − 50+20.2
−19.4 14+14.9

−10.4 8+17.7
−13.2

41 mistral-medium 1153+6.1
−6.0 9+5.2

−11.4 − 24+11.1
−10.7 5+11.4

−5.8 11+13.2
−7.2
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Table 7: (continued)

Rank Model Name Rating English Chinese Hardness Code

42 mixtral-8x22b-instruct-v0.1 1152+4.9
−4.5 5+4.3

−10.3 − 7+8.6
−9.0 12+10.3

−4.6 8+10.9
−5.9

43 llama-3-8b-instruct 1150+3.5
−3.4 48+3.3

−9.3 − 41+6.9
−6.0 −16+8.5

−3.4 − 4+8.7
−4.1

44 glm-4-0116 1149+9.2
−10.7 45+10.5

−15.8 76+19.5
−18.7 21+17.4

−11.6 12+18.5
−14.0

45 qwen1.5-72b-chat 1148+5.4
−4.6 11+4.7

−10.6 58+9.0
−9.2 − 1+10.2

−4.7 19+11.5
−6.3

46 gpt-3.5-turbo-0125 1147+4.1
−3.8 −38+3.5

−10.1 − 46+7.3
−7.1 11+9.2

−4.4 19+10.2
−4.5

47 zephyr-orpo-141b-A35b-v0.1 1143+11.7
−12.2 4+12.2

−19.4 − 27+21.3
−22.2 − 2+21.5

−16.2 − 1+22.5
−18.9

48 gemini-pro 1139+14.4
−14.6 − 7+14.6

−20.4 2+29.9
−29.5 −23+18.7

−14.0 − 7+22.2
−17.3

49 claude-instant-1 1134+8.1
−8.7 −13+8.1

−14.0 − 15+18.8
−19.0 7+13.3

−7.8 3+14.7
−10.7

50 wizardlm-70b 1129+12.7
−13.0 5+12.8

−17.3 − 30+30.0
−28.0 −19+17.7

−13.6 −26+20.1
−16.3

51 snowflake-arctic-instruct 1126+5.3
−5.0 −13+5.2

−11.1 − 3+9.8
−9.4 −13+10.7

−5.7 −11+12.1
−6.7

52 qwen1.5-32b-chat 1126+5.8
−6.0 5+5.8

−11.7 69+11.1
−10.4 8+11.7

−7.1 22+13.3
−8.9

53 yi-1.5-34b-chat 1126+6.4
−5.9 63+6.9

−12.2 103+12.1
−11.4 5+12.6

−7.6 1+13.5
−8.9

54 phi-3-medium-4k-instruct 1126+7.3
−7.4 12+7.9

−13.8 − 7+13.0
−13.0 21+13.5

−8.6 5+15.2
−11.1

55 tulu-2-dpo-70b 1122+13.4
−13.7 − 4+12.4

−19.0 − 72+29.7
−28.7 8+18.6

−12.9 − 6+21.1
−16.3

56 mixtral-8x7b-instruct-v0.1 1114+4.1
−3.8 25+3.4

−10.2 − 37+7.4
−6.9 10+9.3

−4.0 − 4+10.2
−4.8

57 openchat-3.5-0106 1114+8.7
−8.4 − 3+8.5

−14.5 − 3+17.0
−14.4 −11+14.0

−9.4 17+15.9
−11.5

58 qwen1.5-14b-chat 1112+6.4
−6.5 10+6.6

−12.5 57+11.2
−10.3 8+12.4

−8.1 11+14.2
−9.0

59 llama2-70b-steerlm-chat 1111+20.6
−20.2 − 3+19.4

−25.7 − 28+36.7
−33.8 −13+25.0

−19.7 −52+25.8
−21.6

60 starling-lm-7b-beta 1111+7.7
−7.1 19+7.6

−14.1 35+12.7
−11.3 1+13.0

−7.7 18+13.7
−10.5

61 llama-2-70b-chat 1108+5.8
−4.9 24+4.7

−10.3 − 78+10.8
−10.4 −18+10.3

−5.8 −15+11.1
−7.0

62 gpt-3.5-turbo-1106 1106+8.7
−8.8 −36+8.6

−14.7 − 62+22.6
−21.8 33+14.7

−8.4 20+15.3
−11.5

63 vicuna-33b 1105+8.2
−7.9 17+6.6

−12.9 − 27+16.3
−14.4 −18+12.6

−7.8 −18+14.1
−8.9

64 phi-3-small-8k-instruct 1103+7.0
−6.7 27+7.6

−12.6 − 16+12.9
−12.0 13+13.5

−8.0 − 5+15.1
−9.4

65 openchat-3.5 1101+13.2
−12.9 − 5+12.1

−18.3 2+26.4
−28.3 2+17.2

−11.6 −23+20.5
−16.2

66 dbrx-instruct-preview 1101+5.3
−5.3 25+4.9

−10.8 − 4+9.6
−9.4 5+10.5

−5.4 17+12.4
−6.8

67 yi-34b-chat 1101+8.1
−7.9 36+7.5

−14.4 94+16.5
−16.5 − 6+14.0

−9.8 − 6+14.5
−10.0

68 starling-lm-7b-alpha 1099+11.0
−10.4 17+10.5

−15.8 − 17+20.0
−19.9 −12+16.3

−11.9 − 3+18.1
−12.6

69 gemma-1.1-7b-it 1097+6.0
−6.0 14+5.9

−11.4 − 2+10.4
−10.2 − 9+12.2

−6.5 3+12.7
−8.5

70 pplx-70b-online 1095+12.8
−15.4 11+15.2

−19.4 13+31.4
−29.1 −39+20.3

−13.8 −32+19.9
−16.0

71 deepseek-llm-67b-chat 1092+15.8
−17.2 0+16.4

−21.6 46+34.4
−30.4 −10+23.9

−16.0 10+22.9
−20.2

72 nous-hermes-2-mixtral-8x7b-dpo 1090+20.2
−18.6 25+18.3

−24.8 − 26+35.4
−37.1 −42+21.5

−16.5 17+23.0
−21.5

73 qwen1.5-7b-chat 1086+13.4
−13.7 − 4+13.7

−19.7 72+26.1
−22.7 − 8+19.6

−15.3 24+22.5
−18.0

74 wizardlm-13b 1083+14.8
−14.1 5+12.4

−19.6 − 10+26.1
−27.5 −41+19.6

−15.9 −13+23.0
−19.1

75 llama-2-13b-chat 1081+7.3
−7.9 12+7.3

−12.7 − 58+17.3
−15.9 −10+12.9

−7.7 − 9+15.0
−10.4

76 qwen-14b-chat 1081+15.3
−16.1 −35+16.2

−20.3 11+35.3
−31.7 −17+22.0

−17.9 33+25.2
−20.4

77 vicuna-13b 1077+8.7
−8.9 −15+8.2

−12.9 7+16.5
−16.9 −15+13.8

−9.1 1+15.2
−10.7

78 openhermes-2.5-mistral-7b 1075+15.1
−14.8 28+14.7

−20.9 − 13+31.0
−29.5 3+19.7

−16.8 −17+23.8
−18.4

79 phi-3-mini-128k-instruct 1072+6.2
−6.3 0+6.4

−11.9 − 2+12.1
−11.6 0+12.7

−6.9 −23+13.4
−8.7

80 codellama-34b-instruct 1070+12.0
−13.1 − 5+12.3

−19.1 − 57+29.8
−30.6 −13+19.3

−13.2 5+22.4
−17.3

81 phi-3-mini-4k-instruct 1068+6.2
−5.7 28+6.2

−12.5 − 24+13.5
−13.0 15+12.2

−7.5 10+13.5
−8.0

82 solar-10.7b-instruct-v1.0 1064+18.2
−17.8 27+17.9

−22.0 − 23+33.4
−33.3 2+22.4

−17.3 −15+27.7
−21.3

83 dolphin-2.2.1-mistral-7b 1060+25.1
−24.5 30+24.6

−29.4 15+37.1
−37.3 0+29.8

−23.2 −31+33.5
−28.0

84 vicuna-7b 1058+16.1
−16.7 −36+15.7

−21.5 − 37+28.8
−27.6 − 3+19.3

−14.6 −18+21.4
−18.8

85 falcon-180b-chat 1056+29.7
−29.4 3+26.8

−34.2 − 22+35.1
−34.5 −25+32.1

−28.4 − 4+40.6
−34.0

86 mistral-7b-instruct-v0.2 1054+7.9
−7.4 55+7.4

−12.6 − 6+14.3
−12.7 − 3+12.4

−8.3 0+14.1
−9.0

87 zephyr-7b-alpha 1051+24.4
−26.8 22+26.7

−28.7 − 14+39.1
−37.1 −18+34.8

−25.8 − 2+33.6
−30.5

88 zephyr-7b-beta 1049+11.4
−11.0 39+10.7

−16.5 − 42+25.7
−24.8 −22+15.8

−11.5 −13+18.7
−12.9

89 gemma-1.1-2b-it 1044+9.0
−8.6 2+8.4

−15.2 9+16.3
−16.0 −19+16.0

−11.0 25+16.4
−12.3

90 mpt-30b-chat 1041+20.5
−21.3 31+20.8

−27.2 − 14+38.9
−37.3 12+29.1

−22.5 −20+31.8
−30.0

91 codellama-70b-instruct 1039+24.2
−23.2 29+26.1

−30.3 25+36.5
−34.2 8+33.3

−28.6 − 1+36.0
−28.9
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Table 7: (continued)

Rank Model Name Rating English Chinese Hardness Code

92 pplx-7b-online 1038+15.2
−14.6 35+15.6

−21.0 21+32.7
−27.8 −17+21.6

−15.4 −21+22.7
−18.3

93 llama-2-7b-chat 1036+9.3
−8.6 45+7.9

−15.3 − 28+19.0
−19.2 −22+14.4

−9.6 −31+16.4
−12.3

94 guanaco-33b 1035+20.7
−21.6 30+21.7

−25.9 − 17+33.1
−31.7 −12+25.7

−21.4 −53+28.1
−27.0

95 gemma-7b-it 1029+11.3
−11.0 28+10.3

−16.5 38+18.7
−16.5 11+17.5

−11.6 7+16.7
−13.6

96 stripedhyena-nous-7b 1028+15.3
−13.6 21+14.1

−20.5 − 16+35.2
−32.9 −19+19.2

−16.2 −10+24.2
−18.6

97 qwen1.5-4b-chat 1026+13.0
−10.7 −23+11.9

−18.2 36+19.6
−19.0 −13+17.2

−13.2 4+19.3
−15.4

98 mistral-7b-instruct 1008+11.9
−12.6 32+11.5

−18.0 − 26+26.9
−27.6 − 4+18.1

−11.6 0+19.2
−16.8

99 palm-2 997+14.6
−14.4 43+14.4

−18.9 − 69+29.4
−29.6 0+17.9

−13.2 −18+21.7
−16.6

100 gemma-2b-it 995+13.9
−14.7 20+15.2

−20.9 33+26.1
−24.6 − 7+19.9

−17.1 7+25.0
−19.7

101 olmo-7b-instruct 995+13.4
−13.3 59+12.6

−18.3 54+23.7
−21.8 −30+18.8

−14.0 8+21.9
−18.7

102 RWKV-4-Raven-14B 971+17.6
−19.5 −30+17.5

−23.4 − 28+30.0
−29.6 −23+23.6

−17.6 − 7+24.5
−21.3

103 koala-13b 967+16.6
−17.4 31+16.6

−22.0 − 44+25.5
−24.0 −36+19.5

−15.0 − 5+21.8
−18.9

104 alpaca-13b 955+19.8
−17.7 −11+18.2

−24.9 − 96+28.1
−28.4 −62+21.3

−15.3 −78+27.9
−21.8

105 chatglm3-6b 946+16.3
−17.0 33+17.3

−22.0 113+30.0
−32.1 4+21.8

−17.8 − 7+25.3
−21.6

106 mpt-7b-chat 944+20.8
−20.3 8+20.6

−25.7 37+30.5
−30.1 −25+24.7

−22.6 − 7+31.2
−26.0

107 chatglm2-6b 930+20.7
−19.2 30+21.2

−25.2 67+42.2
−37.8 − 2+30.3

−24.8 −38+31.0
−27.1

108 gpt4all-13b-snoozy 924+25.1
−27.3 39+26.6

−29.2 − 8+31.0
−31.9 10+28.9

−24.2 −21+33.1
−32.2

109 oasst-pythia-12b 912+17.6
−18.1 10+16.6

−21.2 − 63+26.3
−25.1 − 4+21.3

−18.4 −12+26.1
−20.0

110 fastchat-t5-3b 879+20.8
−19.6 42+18.6

−24.8 −108+28.6
−26.6 −36+23.6

−18.6 −90+28.8
−24.5

111 chatglm-6b 874+19.3
−19.1 11+18.1

−24.3 199+29.8
−28.7 18+22.4

−19.5 11+24.4
−23.1

112 dolly-v2-12b 856+22.7
−24.2 −15+21.9

−27.6 8+31.1
−30.9 4+26.2

−22.0 −58+30.8
−24.2

113 llama-13b 853+24.0
−25.8 −26+24.4

−28.6 − 8+33.2
−27.7 −36+28.9

−27.0 −89+32.6
−25.1

114 stablelm-tuned-alpha-7b 843+19.6
−22.2 19+22.2

−24.7 30+29.1
−28.5 −13+24.0

−20.5 32+27.9
−23.9

Table 8: Leaderboard of human evaluation with modifiers when all fitted separately using a uni-
dimensional approach. For the four tasks, modifiers are shown to indicate the deviation from the
main rating to make comparison with POLYRATING easier. Indicated deviations are 95% confidence
intervals determined using bootstrapping.

Rank Model Name Rating English Chinese Hardness Code

1 gpt-4o-2024-05-13 1283+2.7
−2.8 −19+4.3

−4.4 52+9.0
−9.2 5+5.6

−5.4 13+6.3
−6.7

2 claude-3-5-sonnet-20240620 1267+4.1
−4.2 −23+6.9

−6.9 45+12.1
−12.1 11+8.5

−8.8 35+9.1
−10.0

3 gemini-advanced-0514 1261+2.8
−2.9 −28+4.8

−5.1 69+8.7
−8.9 − 8+6.2

−6.1 − 4+7.0
−7.5

4 gemini-1.5-pro-api-0514 1259+2.7
−2.9 −25+4.8

−4.9 76+8.5
−8.7 5+6.1

−5.8 8+6.8
−7.0

5 gpt-4-turbo-2024-04-09 1252+2.3
−2.3 −12+3.7

−4.0 50+7.4
−7.1 5+5.1

−4.7 14+6.0
−5.8

6 gpt-4-1106-preview 1248+2.3
−2.3 −17+3.4

−3.9 52+7.5
−7.9 0+4.9

−5.2 8+5.6
−5.9

7 gemini-1.5-pro-api-0409-preview 1247+2.6
−2.6 −16+4.3

−4.0 55+8.3
−8.5 −15+5.5

−5.8 −15+6.3
−6.0

8 claude-3-opus-20240229 1245+2.1
−2.1 −31+3.4

−3.4 70+6.6
−6.6 3+4.3

−4.3 6+5.1
−5.3

9 gpt-4-0125-preview 1243+2.2
−2.4 −16+3.7

−3.6 53+7.2
−7.4 2+5.1

−5.0 3+6.0
−6.2

10 yi-large-preview 1233+2.8
−2.8 −19+4.7

−4.4 84+8.9
−8.8 7+6.1

−6.0 11+6.7
−7.1

11 gemini-1.5-flash-api-0514 1226+3.0
−3.0 −25+5.0

−4.7 66+9.4
−9.3 1+6.0

−6.3 9+7.3
−7.3

12 yi-large 1215+4.4
−4.5 −16+8.3

−8.2 58+15.3
−15.1 6+10.2

−10.2 18+11.9
−11.9

13 gemma-2-27b-it 1210+5.9
−6.0 −20+10.1

−11.0 54+20.1
−20.1 −18+11.7

−12.5 − 5+14.6
−14.0

14 bard-jan-24-gemini-pro 1207+4.7
−4.5 −25+7.0

−7.0 59+24.1
−22.5 −51+10.6

−10.6 −35+13.1
−13.3

15 glm-4-0520 1206+5.0
−5.1 −15+8.2

−8.7 90+17.2
−16.0 10+10.7

−10.9 13+12.7
−12.4

16 nemotron-4-340b-instruct 1204+3.6
−3.9 −22+6.4

−6.4 62+12.3
−12.4 − 4+8.3

−8.2 − 7+11.2
−9.9

17 llama-3-70b-instruct 1202+2.1
−2.1 22+3.3

−3.4 − 32+6.5
−6.6 − 5+4.5

−4.5 0+5.3
−5.3

18 claude-3-sonnet-20240229 1198+2.2
−2.2 −23+3.5

−3.4 48+6.1
−6.6 1+4.4

−4.7 17+5.4
−5.1

19 reka-core-20240501 1194+2.4
−2.4 −20+4.0

−4.3 63+8.3
−8.5 − 6+5.2

−5.8 − 4+6.2
−5.9

24



Published as a conference paper at ICLR 2025

Table 8: (continued)

Rank Model Name Rating English Chinese Hardness Code

20 command-r-plus 1188+2.2
−2.3 −25+3.6

−3.7 63+6.9
−7.0 −20+5.1

−4.8 −21+5.9
−5.9

21 gpt-4-0314 1188+2.5
−2.6 −23+4.2

−4.1 54+8.3
−8.3 9+5.5

−5.6 10+6.5
−6.7

22 qwen-max-0428 1185+2.7
−2.9 −17+5.1

−4.9 105+11.3
−11.4 3+7.1

−7.1 7+7.8
−8.3

23 qwen2-72b-instruct 1184+3.3
−3.2 −17+5.5

−5.3 106+10.6
−10.4 1+7.2

−6.9 − 1+8.6
−8.6

24 claude-3-haiku-20240307 1181+2.2
−2.2 −23+3.6

−3.8 33+6.4
−7.0 1+4.7

−4.6 10+5.6
−5.7

25 gemma-2-9b-it 1180+6.0
−6.0 −24+10.5

−10.1 56+19.9
−19.5 −10+12.7

−13.3 −17+14.8
−15.1

26 deepseek-coder-v2 1177+4.6
−4.9 −28+8.3

−8.1 80+16.2
−16.2 37+10.3

−10.8 61+11.4
−11.8

27 glm-4-0116 1173+5.1
−5.3 2+9.0

−9.1 99+18.5
−17.9 14+10.6

−11.3 19+12.7
−13.0

28 qwen1.5-110b-chat 1165+3.1
−3.1 −13+4.8

−5.1 96+10.4
−10.1 4+6.3

−6.4 10+8.1
−7.9

29 gpt-4-0613 1165+2.2
−2.4 −18+3.5

−3.8 25+7.6
−7.8 3+4.8

−5.0 3+5.7
−6.0

30 reka-flash-preview-20240611 1164+4.3
−4.1 −22+7.7

−7.7 52+13.4
−13.5 −14+8.6

−8.5 − 3+10.1
−9.8

31 yi-1.5-34b-chat 1158+3.3
−3.4 5+5.7

−5.8 110+11.0
−11.1 2+7.0

−8.0 6+8.7
−9.0

32 reka-flash-21b-20240226-online 1155+3.6
−3.7 −19+6.1

−6.7 46+11.0
−10.9 −12+8.5

−8.8 − 6+8.4
−8.9

33 mistral-large-2402 1155+2.5
−2.4 − 9+4.0

−4.2 18+7.9
−7.8 10+5.5

−5.3 14+6.2
−6.2

34 llama-3-8b-instruct 1154+2.2
−2.3 11+3.6

−3.7 − 15+6.7
−6.8 −16+4.6

−4.6 − 6+5.8
−5.5

35 qwen1.5-72b-chat 1151+2.4
−2.6 −16+4.3

−4.3 94+9.0
−9.1 − 4+5.8

−5.9 11+6.8
−7.4

36 claude-1 1150+3.7
−3.8 −21+5.8

−5.8 49+14.4
−13.7 −25+7.9

−8.5 −12+10.5
−10.4

37 command-r 1149+2.5
−2.5 −26+4.2

−4.3 66+7.2
−7.5 −30+5.5

−5.6 −23+6.4
−6.0

38 reka-flash-21b-20240226 1147+3.1
−3.3 −20+5.1

−5.1 46+10.2
−9.9 −13+7.1

−6.3 − 4+7.3
−8.1

39 mistral-medium 1146+2.9
−2.8 − 9+4.7

−4.9 20+9.9
−10.4 − 1+6.0

−6.3 8+7.6
−7.2

40 mixtral-8x22b-instruct-v0.1 1146+2.7
−2.7 −10+4.4

−4.2 40+8.5
−9.0 3+5.9

−6.2 9+6.4
−6.9

41 gemini-pro-dev-api 1136+3.6
−3.7 −26+6.3

−5.8 51+12.6
−12.6 −27+8.8

−8.9 −31+10.0
−10.0

42 claude-2.0 1133+4.7
−4.5 −19+6.9

−6.8 58+21.8
−21.0 − 5+10.6

−10.1 4+13.5
−13.1

43 qwen1.5-32b-chat 1132+3.3
−3.4 −21+5.5

−5.2 104+9.6
−9.8 4+7.5

−7.4 16+8.6
−8.7

44 zephyr-orpo-141b-A35b-v0.1 1128+6.3
−6.0 − 9+11.4

−10.6 22+18.8
−18.1 −11+14.5

−15.1 − 5+16.6
−17.2

45 mistral-next 1127+4.5
−4.5 −16+6.5

−6.9 12+17.2
−17.8 3+9.8

−9.1 7+12.1
−11.8

46 phi-3-medium-4k-instruct 1125+4.1
−4.1 − 7+7.0

−6.6 36+12.2
−11.9 9+8.8

−9.0 10+9.9
−9.2

47 gpt-3.5-turbo-0613 1120+2.9
−2.9 −21+4.5

−4.5 40+13.5
−13.3 4+6.8

−6.6 16+8.6
−8.3

48 qwen1.5-14b-chat 1119+3.4
−3.7 −19+6.0

−6.1 89+9.8
−9.7 1+7.4

−7.4 9+8.8
−9.1

49 starling-lm-7b-beta 1119+3.7
−4.0 −12+6.4

−6.3 66+10.5
−10.3 − 1+7.8

−8.1 13+9.1
−9.2

50 claude-2.1 1118+3.0
−2.9 −22+4.6

−4.5 32+10.9
−11.8 2+6.4

−6.5 15+8.0
−8.7

51 yi-34b-chat 1116+3.9
−3.8 − 9+6.5

−6.3 116+14.7
−14.3 −12+8.8

−9.2 − 9+10.5
−10.7

52 gemini-pro 1115+6.2
−6.1 −16+9.6

−9.4 52+29.4
−30.2 −30+14.4

−13.5 −19+17.3
−19.3

53 mixtral-8x7b-instruct-v0.1 1114+0.0
0.0 0+0.0

0.0 0+0.0
0.0 0+0.0

0.0 0+0.0
0.0

54 gpt-3.5-turbo-0125 1113+2.4
−2.2 −24+4.0

−4.0 29+7.6
−7.7 1+5.4

−5.1 12+6.1
−6.5

55 claude-instant-1 1112+3.9
−3.9 −16+6.1

−5.8 38+17.5
−17.2 − 4+8.7

−8.7 − 2+11.3
−10.8

56 wizardlm-70b 1110+5.4
−5.6 −11+8.2

−8.7 10+27.5
−27.7 −31+12.9

−12.2 −38+15.7
−15.3

57 gpt-3.5-turbo-0314 1110+7.3
−7.2 −26+11.2

−11.8 95+30.4
−30.5 9+18.4

−20.6 8+24.3
−24.1

58 dbrx-instruct-preview 1106+2.8
−3.1 − 2+4.7

−4.7 30+8.2
−8.5 2+6.2

−6.4 15+7.4
−7.4

59 phi-3-small-8k-instruct 1104+3.9
−3.8 2+6.9

−6.7 21+11.7
−11.6 3+8.6

−8.1 3+9.4
−10.0

60 tulu-2-dpo-70b 1103+6.2
−6.1 −11+8.5

−9.3 − 33+29.0
−31.3 − 5+14.3

−13.9 − 8+17.0
−18.0

61 snowflake-arctic-instruct 1099+2.9
−2.8 −20+4.7

−4.6 53+9.2
−9.6 −23+6.2

−6.1 −19+7.3
−8.1

62 openchat-3.5-0106 1099+4.2
−4.1 −15+6.3

−6.7 48+14.0
−13.0 −13+8.7

−8.5 6+11.5
−11.4

63 llama-2-70b-chat 1097+2.7
−2.8 1+4.4

−4.7 − 39+9.5
−9.4 −25+6.0

−5.8 −22+7.7
−7.7

64 vicuna-33b 1095+3.6
−3.4 − 7+5.2

−5.5 9+13.1
−12.9 −27+7.8

−8.2 −28+9.8
−9.7

65 starling-lm-7b-alpha 1093+4.9
−4.7 − 7+7.4

−7.8 20+17.5
−17.1 −17+10.8

−10.6 −10+12.6
−12.9

66 gemma-1.1-7b-it 1090+3.3
−3.3 − 8+5.4

−5.4 39+9.9
−9.8 −13+7.2

−7.1 − 3+7.8
−8.0

67 nous-hermes-2-mixtral-8x7b-dpo 1087+7.6
−6.8 − 9+11.4

−11.4 − 9+47.6
−48.2 −35+15.8

−15.5 − 4+18.7
−19.9

68 llama2-70b-steerlm-chat 1083+7.9
−8.5 −14+12.9

−12.6 14+37.5
−35.5 −35+19.9

−20.0 −59+23.2
−23.0

69 openchat-3.5 1080+5.4
−5.3 −14+7.8

−8.7 53+26.8
−25.7 −14+12.1

−12.7 −24+15.4
−16.3
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Table 8: (continued)

Rank Model Name Rating English Chinese Hardness Code

70 deepseek-llm-67b-chat 1080+7.0
−7.0 −15+10.3

−10.8 103+34.8
−33.8 −14+15.3

−15.5 2+20.1
−19.7

71 openhermes-2.5-mistral-7b 1080+6.4
−6.3 − 6+9.4

−9.9 8+34.6
−33.3 −10+15.1

−14.8 −18+20.2
−19.9

72 qwen1.5-7b-chat 1079+6.3
−6.3 −22+10.1

−10.1 122+22.7
−23.3 −10+12.9

−13.7 13+18.0
−17.7

73 pplx-70b-online 1077+5.9
−6.1 −12+9.2

−9.4 54+29.6
−30.5 −49+13.4

−13.7 −49+16.0
−15.5

74 mistral-7b-instruct-v0.2 1075+3.7
−3.5 7+5.7

−5.7 8+11.2
−10.7 − 6+7.9

−7.4 0+9.2
−9.6

75 gpt-3.5-turbo-1106 1073+3.9
−3.8 −18+6.2

−5.9 10+17.8
−19.0 20+9.0

−9.3 25+10.8
−10.3

76 phi-3-mini-4k-instruct 1072+3.7
−3.7 3+6.1

−6.1 12+12.0
−11.5 8+7.1

−7.1 16+8.4
−8.7

77 llama-2-13b-chat 1068+4.0
−3.8 − 6+5.8

−6.3 − 17+15.5
−15.4 −19+9.0

−8.7 −16+10.5
−10.8

78 solar-10.7b-instruct-v1.0 1067+7.2
−7.2 − 5+10.4

−11.1 0+37.2
−35.9 − 9+17.0

−16.7 −16+19.8
−21.1

79 dolphin-2.2.1-mistral-7b 1066+11.4
−11.3 − 5+16.6

−17.2 44+56.3
−54.6 −15+27.3

−26.6 −40+34.2
−34.6

80 wizardlm-13b 1063+6.0
−5.6 −12+8.9

−8.7 28+26.1
−26.0 −49+15.0

−14.3 −37+18.8
−17.3

81 zephyr-7b-beta 1057+5.2
−5.0 − 2+7.6

−7.1 − 31+24.9
−24.3 −29+11.9

−11.5 −24+14.2
−13.8

82 phi-3-mini-128k-instruct 1054+3.6
−3.4 −15+5.7

−5.4 47+11.1
−11.4 −15+7.6

−7.4 −23+8.7
−9.2

83 vicuna-13b 1050+4.2
−3.9 −19+6.2

−6.2 63+15.5
−16.3 −23+9.2

−8.9 −15+11.6
−11.8

84 mpt-30b-chat 1050+9.4
−9.4 − 5+14.0

−15.1 − 3+48.4
−48.3 − 2+25.1

−25.0 −21+28.5
−30.3

85 codellama-34b-instruct 1049+6.0
−5.7 −13+8.5

−8.5 − 17+31.5
−29.4 −19+14.5

−13.2 − 8+16.9
−17.2

86 zephyr-7b-alpha 1048+10.7
−10.9 − 6+16.1

−16.4 1+68.5
−68.4 −27+28.2

−28.5 −14+31.9
−32.8

87 codellama-70b-instruct 1047+14.6
−13.5 − 3+22.8

−22.0 62+39.8
−37.2 3+29.9

−28.6 2+34.8
−36.9

88 pplx-7b-online 1045+6.4
−6.6 − 6+10.2

−9.6 47+33.3
−31.8 −28+14.7

−14.4 −30+17.8
−17.1

89 gemma-7b-it 1043+5.3
−5.2 − 8+8.3

−8.0 64+16.0
−15.6 4+11.8

−11.4 7+13.7
−12.8

90 llama-2-7b-chat 1043+4.1
−4.1 1+6.3

−6.5 − 11+15.9
−15.6 −32+9.8

−9.2 −38+11.3
−11.7

91 qwen-14b-chat 1041+6.8
−6.4 −21+10.3

−10.6 94+34.7
−36.5 −16+16.3

−16.8 16+19.6
−20.5

92 falcon-180b-chat 1039+14.1
−13.3 −12+20.6

−21.2 − 6+79.9
−103.1 −38+32.2

−31.7 −22+42.0
−43.5

93 guanaco-33b 1037+9.1
−9.4 − 7+13.0

−13.7 − 8+37.5
−37.8 −35+23.6

−23.0 −69+28.3
−27.9

94 gemma-1.1-2b-it 1034+4.5
−4.7 −15+8.0

−8.0 54+13.9
−13.8 −15+10.2

−10.6 8+11.5
−11.1

95 stripedhyena-nous-7b 1024+6.8
−6.8 − 8+9.9

−9.9 11+36.3
−36.7 −26+14.5

−14.3 −21+18.8
−17.9

96 olmo-7b-instruct 1021+6.1
−6.0 0+9.9

−9.7 62+18.4
−18.5 −26+12.5

−13.2 − 5+17.3
−16.3

97 mistral-7b-instruct 1016+5.6
−5.3 − 4+8.1

−8.4 − 8+26.1
−25.7 −10+11.6

−12.6 − 5+15.3
−14.5

98 palm-2 1012+5.7
−5.9 − 1+8.7

−8.2 − 69+30.6
−32.4 −12+14.4

−13.9 −22+16.5
−16.6

99 vicuna-7b 1012+6.2
−6.2 −20+9.4

−9.2 30+25.6
−27.8 −20+15.6

−15.3 −27+17.8
−17.3

100 qwen1.5-4b-chat 1003+5.5
−5.3 −30+9.2

−9.0 92+15.8
−16.5 −21+11.8

−11.5 −11+15.6
−14.3

101 gemma-2b-it 1000+6.7
−6.8 −11+10.7

−11.2 67+20.8
−21.3 −12+14.8

−14.9 0+18.2
−18.4

102 koala-13b 971+6.5
−6.6 − 6+9.9

−9.5 − 34+25.9
−25.7 −43+16.8

−16.4 −30+18.7
−18.9

103 chatglm3-6b 962+7.9
−7.7 −11+11.6

−11.2 159+33.1
−35.2 − 7+17.2

−17.0 − 9+22.6
−22.3

104 gpt4all-13b-snoozy 941+11.6
−12.2 − 4+18.2

−17.0 − 6+48.8
−44.9 − 6+28.2

−28.5 −28+35.3
−37.5

105 chatglm2-6b 936+9.9
−9.8 − 7+14.9

−15.0 120+47.3
−46.3 −19+25.1

−23.1 −43+29.9
−30.5

106 mpt-7b-chat 935+8.0
−8.2 −15+11.4

−11.9 73+34.0
−32.0 −36+20.6

−18.5 −28+26.1
−24.7

107 RWKV-4-Raven-14B 929+8.0
−7.7 −19+11.4

−11.5 29+31.6
−30.9 −36+18.2

−18.2 −30+23.7
−22.2

108 alpaca-13b 911+7.0
−7.2 −13+10.3

−10.1 − 65+30.4
−30.9 −88+18.0

−17.7 −117+22.7
−24.0

109 oasst-pythia-12b 902+7.0
−6.8 − 9+11.5

−10.9 − 41+26.8
−26.6 −18+18.1

−16.4 −26+22.4
−21.6

110 chatglm-6b 889+7.9
−7.5 −25+10.8

−11.6 252+30.0
−30.3 9+19.0

−19.4 1+22.5
−23.3

111 fastchat-t5-3b 879+7.9
−7.9 − 1+11.7

−12.0 22+172.3
−250.3 −66+18.6

−19.0 −117+25.8
−25.2

112 stablelm-tuned-alpha-7b 851+9.7
−9.2 −13+13.3

−14.1 52+35.9
−31.8 −17+23.8

−22.6 10+27.3
−26.3

113 dolly-v2-12b 828+9.2
−9.3 −20+14.0

−13.5 53+35.2
−35.2 −27+23.2

−22.3 −78+27.3
−28.5

114 llama-13b 806+10.2
−10.6 −23+16.6

−16.7 47+35.7
−36.2 −79+28.7

−27.8 −134+35.4
−35.6
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