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Abstract

The growing size of models and datasets have made distributed implementation1

of stochastic gradient descent (SGD) an active field of research. However the2

high bandwidth cost of communicating gradient updates between nodes remains3

a bottleneck; lossy compression is a way to alleviate this problem. We propose a4

new unbiased Vector Quantizer (VQ), named StoVoQ, to perform gradient quan-5

tization. This approach relies on introducing randomness within the quantization6

process, that is based on the use of unitarily invariant random codebooks and on7

a straightforward bias compensation method. The distortion of StoVoQ signif-8

icantly improves upon existing quantization algorithms. Next, we explain how9

to combine this quantization scheme within a Federated Learning framework for10

complex high-dimensional model (dimension > 106), introducing DoStoVoQ. We11

provide theoretical guarantees on the quadratic error and (absence of) bias of the12

compressor, that allow to leverage strong theoretical results of convergence, e.g.,13

with heterogeneous workers or variance reduction. Finally, we show that training14

on convex and non-convex deep learning problems, our method leads to significant15

reduction of bandwidth use while preserving model accuracy.16

1 Introduction17

In this paper, we consider the Federated Learning framework, in which a potentially large number18

K of workers cooperate to solve the following problem:19

min
θ∈RD

K∑
k=1

fk(θ), (1)

where each function fk : RD → R represents the empirical risk on worker k ∈ [K] (where [K] =20

{1, . . . ,K}) and D is the ambient dimension of our problem. Each worker potentially holds a21

fraction of the data, and can share information with a central server, which progressively aggregates22

and updates the model accordingly [20, 19].23

Stochastic gradient algorithms [32] are particularly well suited in the large scale learning set-24

ting [6, 7]. The methods can easily be adapted to the distributed (and more generally federated)25

learning framework; see [19] and the references therein. For synchronous distributed Stochastic26

Gradient Descent, at every iteration, given the current parameter θt, each worker computes an un-27

biased estimate gk,t+1(θt) of the gradient of the local loss function fk. The central server then28

aggregates those oracles and performs the update.29

Communicating the gradients from the local workers to the central server is often a major bottleneck.30

The drastic increase both in the number of parameters and of workers over the last years, has made31

this problem even more acute. Alleviating the communication cost is one of the crucial challenges of32
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federated learning [19, Sec. 3.5]. A central idea to tackle this issue is communication compression,33

which consists in applying a lossy compression to the parameters or gradients to be transmitted.34

Since compression alters the message transmitted, the number of iterations required to reach a given35

accuracy may increase, therefore compression is of interest in situations where the communication36

gains are large relative to the increase of communication rounds. The design of new compression37

schemes (see among others [34, 2, 4, 5, 39]) and the adaptation of the learning algorithms to this38

setting (see e.g. [37, 1, 40, 38, 41, 25, 30, 13, 12, 23] and the references therein) are an extremely39

active field of research.40

Our main contribution is to introduce a novel unbiased vector quantization procedure allowing to41

reach high-compression rate, with a small computational overhead. More precisely, our contri-42

butions are as follow: first, we introduce StoVoQ, a vector quantization algorithm based on unitarily43

invariant random codebooks to automatically obtain directionally unbiased gradient oracles, and44

introduce a scalar correction function, that makes compression operator unbiased for a very modest45

computational cost. We further provide theoretical guarantees on the distortion of the compressor.46

In summary, StoVoQ algorithm is based on the following points, that are developed in Section 2.47

1. Vector quantization The input vector x ∈ Rd is mapped onto its nearest neighbor in a codebook48

CM = {ci}Mi=1.49

2. Random codebook. A new codebook is sampled every time a new quantization operation is50

performed. The proposed approach is different from classical random VQ which typically uses a51

random codebook, but which is sampled once and then kept fixed.52

3. Bias removal. By relying on unitarily invariant distribution for the codewords generation, the53

quantized value of each vector x ∈ Rd is directionnally unbiased. The bias only depends on54

the number and distributions of the random of codewords and on ‖x‖. This key property allows55

to derive a simple way to remove the quantization bias.56

Then, we describe how to use StoVoQ within the FL framework: this yields the algorithm DoStoVoQ.57

We prove that this process satisfies a strong assumption on the compression process, that allows to58

automatically derive fast convergence rates. In Section 3, we describe DoStoVoQ, i.e., how we solve59

the optimization problem (1) in dimension D.60

4. Splitting and renormalizing gradients. First, we split each gradient to compress into buckets61

(xi)i=1,...,L of dimension Rd, to use StoVoQ for each bucket.62

5. Synchronisation of random sequences of codebooks. We ensure that those codebooks are63

independent, at each step and between each machine, by generating a new codebook each time.64

To avoid any subsequent communication cost, we synchronously generate the codebooks on the65

central and local servers, by initially sharing random seeds.66

Remark that point 1 was also used in Dai et al. [8]. Points 2 to 3 and 5 are novel ideas that have not67

been leveraged in the FL framework. Finally, we demonstrate the effectiveness of random codebook68

quantization for gradient compression by extensive experiments in Section 4 on standard bench-69

marks like ImageNet or CIFAR10.70

2 StoVoQ algorithm71

Several compression operators [39, 31, 10, 4, 8, 41, 42] have been introduced recently as bandwidth72

reduction for distributed learning became a major challenge. In this section, we first discuss the73

importance of unbiasedness of compression operators in Subsection 2.1. We then present the StoVoQ74

compression scheme in Subsection 2.2. Finally, we compare StoVoQ to competing approaches, both75

theoretically and empirically on a small scale example with a high compression rate.76

2.1 Unbiased gradient estimate to mitigate high compression rates77

We here discuss an important property to mitigate high compression rates in FL settings. A com-78

pression operator Comp is a (random) mapping on Rd. Consider the following assumption:79

A1 (Unbiased Compression with relatively bounded variance). A compression operator Comp80

is unbiased if for any x ∈ Rd, E[Comp(x)] = x. It is said to have a ω-bounded relative variance,81

for some ω > 0, if it satisfies, for all x ∈ Rd, E[‖Comp(x)− x‖2] ≤ ω‖x‖2.82
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The most classical compressors, especially Q-SGD and Rand-H satisfy A 1 with different ω, see83

Subsection 2.3 and Table 1. On the other hand, some compression operators are biased, i.e.,84

E[Comp(x)] 6= x for some x ∈ R. Those operators are often deterministic, as is the case for85

Top-H compressor. The most classical assumption for biased operators, is the following contrac-86

tive property along the direction of descent [37, 5, 12]:87

A2 (Biased Compression with contraction). For δ > 0, a compression operator is said to be88

1/(1 + δ)-contractive if for any x ∈ Rd, we have E[‖Comp(x)− x‖] ≤ (1− 1/(1 + δ))‖x‖.89

Constants ω and δ from these two assumptions are both positive, and become larger as the compres-90

sion rate increases. Alternative assumptions for the biased case have been introduced in [5].91

Impact of unbiasedness on the compression of a single vector.1 To understand the interaction92

between the number of workers K and the compression error, a simple situation is the case in93

which the workers use independent and identically distributed compression operators (Compk)Kk=194

to compress the same vector x ∈ Rd. The central node aggregates {Compk(x)}Kk=1 into95

K−1
∑K
k=1 Compk(x). A bias-variance decomposition of the quadratic error gives:96

E[‖K−1
∑K
k=1 Compk(x)− x‖2] = ‖E[Comp1(x)]− x‖2 +K−1‖E[Comp1(x)]− x‖2].

The variance of the aggregated vector is reduced by a factor K−1 when averaging the messages97

send by the K workers, while the bias is independent of K. For example, if we use an unbiased98

compressor satisfying A 1, we get99

E
[
K−1

∑K
k=1 Compk(x)

]
= x, E

[∥∥x−K−1∑K
k=1 Compk(x)

∥∥2] ≤ (ω/K)‖x‖2, (2)

while for a deterministic biased compressor, we obtain that K−1
∑K
k=1 Compk(x) = Comp1(x)100

has the same error as any of the individual compressed vector. We therefore pay particular attention101

to obtaining an unbiased compressor in the following.102

2.2 StoVoQ definitions and main properties.103 Algorithm 1: StoVoQ with distribution p

Input : x ∈ Rd, p, M , P , seed s
Output: Codeword index ic, value ir

1 Sample CM ∼ p with seed s ; /* generate

codebook with distribution p */

2 c = VQ(x,CpM ); /* perform Voronoi quant. */

3 ic = index of c; /* get index of codeword */

4 r = rpM (‖x‖); /* find radial bias in table */

5 ir = SQ(r−1) ; /* quantize r on P bits */

The basic idea behind VQ is to quantize a vec-104

tor rather than each of its coordinates. A Vec-105

tor Quantizer is a mapping VQ(·,CM ) : Rd →106

CM which maps x ∈ Rd to an element of a107

codebook CM , which is a finite subset of Rd108

with M elements. The code of StoVoQ is pro-109

vided in Algorithm 1, and its crucial steps are110

described hereafter: we introduce the notion111

of (a) Voronoi quantization scheme before de-112

scribing more precisely (b) random codebooks, (c) whose distributions are invariant by unitary trans-113

forms. Then, (d) a method to obtain an unbiased Voronoi scheme is presented and finally (e) its114

asymptotic properties (as M →∞) are given.115

(a) Voronoi Quantization. Voronoi quantization [26, 28], aims at selecting the closest codeword116

from CM , i.e.:117

VQ(x,CM ) , argminc∈CM ‖x− c‖ . (3)
Unfortunately, for any given CM , the Voronoi quantizer is not unbiased: indeed it is deterministic118

and VQ(x,CM ) 6= x if x 6∈ CM . A classical approach to construct a bias-free VQ is to use the119

optimal “dual" VQ (or Delaunay quantization) [27], but this approach is numerically expensive (see120

Subsection 2.3). To mitigate the bias, we rather use random codebooks.121

(b) Random Codebook. A key ingredient of StoVoQ is the use of a random codebook within the122

quantizer. We assume CM = [C1, . . . , CM ] where the codewords {Ci}Mi=1 are i.i.d. random vectors123

distributed according to p, the codeword distribution pdf. We denote CM ∼ p and use boldface124

to stress that CM is random. When quantizing a sequence of vectors {xt}∞t=0 ⊂ Rd we sample125

for each t ∈ N a new codebook CM,t ∼ p, compute VQ(x,CM,t) and transmit the index of the126

corresponding codeword ic,t ∈ [M ]. The codebook CM,t is not transmitted: the transmitter and127

the receiver use the same seeds so that the same codebooks CM,t can be reconstructed on both sides.128

1The impact of unbiasedness for obtaining optimal convergence complexities in FL is discussed in Section 3.
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(c) Unitary invariant Codewords. Denote by U(d) = {U,U∗U = I} the set of unitary transforms129

over Rd. We assume in the sequel that the codeword distribution p is unitary invariant, meaning that:130

A3. The distribution of the codewords p is invariant under the unitary group, i.e. for all U ∈ U(d),131

and any x ∈ Rd, p(Ux) = p(x).132

Examples of such distributions include isotropic Gaussian distributions (p = N (0, σ2 Id), σ2 > 0)133

and the uniform distribution on the Sphere (which is specifically discussed in Appendix D.1). Under134

A 3, there exists a non-negative function prad on R+ such that, for all x ∈ Rd, p(x) = prad(‖x‖).135

(d) The quantization bias is radial. Under A 3, we have the following crucial unitary invariance136

property. For A ⊂ Rd, and U ∈ U(d), we write UA = {Ux, x ∈ A}.137

Lemma 1. Assume A 3. For any nonnegative measurable function f , any U ∈ U(d) and x ∈ Rd,138

ECM∼p[f(VQ(Ux,CM ))] = ECM∼p[f(U VQ(x,CM ))].139
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Figure 1: function rpM for d = 4 (dashed)
and d = 16 (solid), p = N (0, Id) andM =
210(orange), and M = 213(green).

The proof is postponed to Appendix A.3. Tak-140

ing f(x) = x, the previous result implies that141

for any x ∈ Rd and U ∈ U(d), it holds that142

ECM∼p[VQ(Ux,CM )] = UECM∼p[VQ(x,CM )]. A143

direct consequence of the elementary Lemma 3 is that144

the quantization error is radial:145

Theorem 1 (Quantization bias). Assume A 3. Then,146

for all M ∈ N, there exists a function rpM : R+ 7→147

R+ such that for all x ∈ Rd, ECM∼p[VQ(x,CM )] =148

rpM (‖x‖)x.149

The proof is postponed to Appendix A.4.150

In words, the expectation of the quantized vec-151

tor VQ(x,CM ) is colinear to the vector x, i.e.,152

VQ(x,CM ) is directionally unbiased. Moreover, this radial bias only depends on ‖x‖, M and153

the distribution p. This function is intractable, but it is straightforward to pre-compute it using154

Monte-Carlo method. We display rpM for p = N (0, Id) in Figure 1. Consequently, we can remove155

the bias of VQ(x,CM ) by re-scaling the corresponding codeword by 1/rpM (‖x‖).156

We now analyze the quantization distortion for a given x ∈ Rd vector. We need to strengthen the157

assumption about the distribution of the codewords. Consider the following assumption158

A 4. (1) there exists ε > 0 such that
∫
r2+εprad(r)dr < ∞ (2) for some δ > 0, mδ =159

infr≤δ prad(r) > 0, and (3) prad is unimodal, i.e. the super level sets {r ∈ R+, prad(r) ≥ t},160

for t ≥ 0 are convex subsets of R+.161

A 4 is obviously satisfied if we take p = N (0, σ2 Id) for any σ2 > 0.162

Theorem 2. Assume A 3-A 4. Define Cd = π−1Γ(1 + 2/d)Γ(1 + d/2)2/d. Then, for every x ∈ Rd,163

lim
M→∞

M2/dECM∼p[‖VQ(x,CM )− x‖2] = Cdp
−2/d
rad (‖x‖) .

The proof is postponed to Appendix C.1. Note that Cd ud→∞ d/(2πe) hence Cd grows only164

linearly with the dimension d. We can now exploit this result to control the radial bias as a function165

of ‖x‖. Since |rpM (‖x‖)− 1| ≤ ‖x‖−1{ECM∼p[‖VQ(x,CM )− x‖2]}1/2, Theorem 2 shows that166

lim sup
M→∞

M1/d|rpM (‖x‖)− 1| ≤ C1/2
d p

−1/d
rad (‖x‖)/‖x‖ .

In other words, for any x ∈ Rd, the radial bias rpM (‖x‖) approaches 1 as M → ∞ with a rate167

O(M−1/d). We use an a scalar quantizer SQ to transmit 1/rpM (‖x‖). Because the range of values168

taken by 1/rpM (‖x‖) is limited, a small number of bits P is sufficient (we typically use P = 3169

bits). The total number of transmitted bits is log2(M) + log2(P ). We use a random unbiased scalar170

quantizer (see e.g. [8, Eq. (2)]), a random mapping for R → SP an ordered subset of R with P171

elements. A scalar quantizer is said to be unbiased if E[SQ(r)] = r for all r ∈ R. Assuming that172

SQ is independent of CM , we get for all x ∈ Rd, E[SQ(1/rpM (‖x‖))]ECM∼p[VQ(x,CM )] = x. To173

save space, we present the details of the scalar quantization (based on nonuniform random dither)174

methods is presented in Appendix B.1.175
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(e) Random vs. Optimal codebooks: We finally motivate the choice of random codebooks and176

describe how to choose the codevector distribution p. For a given pdf q of the input the (quadratic)177

distortion is defined as:178

Dist(q,CM ) =

∫
Rd
‖x−VQ(x,CM )‖2 q(x) dx = EX∼q[‖X −VQ(X,CM )‖2] . (4)

We stress that in this case the expectation is taken w.r.t. the input distribution q, the codebook being179

deterministic in (4). A Voronoi optimal codebook C
q,∗
M is a minimizer of the distortion over the set180

of codebooks: Dist(q,Cq,∗M ) = min|CM |=M Dist(q,CM ). Zador’s theorem [14] gives the distortion181

of the Voronoi optimal codebook in the limit of M → ∞; see Appendix C.1 for a precise state-182

ment. Denote for β ∈ R+ and a function f on Rd, ‖f‖β = (
∫
|f(x)|βdx)1/β . It is known that183

if ‖q‖d/(d+2) < ∞, then as M → ∞, Dist(q,CM ) u M−2/dJd‖q‖d/(d+2), and Jd is a universal184

constant Jd satisfying Jd ud→∞ d/2πe (see Appendix C.2 for the exact constant).185

Using Theorem 2, we can quantify the loss between random codebook distributed according to p186

and the Voronoi optimal codebook for a given input distribution q when M →∞. Define187

C(q, p, d) =

∫
Rd
p(x)−2/dq(x)dx . (5)

If ‖q‖d/(d+2) < ∞, using the Hölder inequality with negative exponents (see [16, p. 191] and188

Appendix C.3),it holds that C(q, p, d) ≥ ‖q‖d/(d+2).189

Theorem 3. Assume that p satisfies A 3-A 4, ‖q‖d/(d+2) < ∞,
∫
Rd ‖x‖

2+δq(x)dx < ∞ for some190

δ > 0, and C(q, p, d) <∞. Then,191

lim
M→∞

ECM∼p[Dist(q,CM )]/Dist(q,Cq,∗M ) = CdJ
−1
d C(q, p, d)‖q‖−1d/(d+2). (6)

with Cd defined in Theorem 2. Moreover, assume that input distribution q satisfies A 3-A 4, and192

set the codeword distribution pq,d,∗ = qd/(d+2)(x)/
∫
qd/(d+2)(x)dx. Then, C(q, pq,d,∗, d) =193

‖q‖d/(d+2).194

The proof is postponed to Appendix C.2. In words, under general assumptions, the distortion195

achieved by a random quantizer VQ(·,CM ), CM ∼ p is rate optimal (with rate M−2/d). If196

in addition q is unitarily invariant and unimodal, then a random codebook distributed accord-197

ing to pq,d,∗ reaches the optimal distortion bound, up to universal constants (depending only on198

the dimension d). Moreover, as d → ∞, then CdJ
−1
d ud→∞ 1 and the efficiency gap van-199

ishes. As an illustration, assume that the input distribution is standard Gaussian q = N (0, Id)200

and set the codeword distribution to be pα = N (0, α2 Id) where α2 ∈ R∗+. If α2d > 2, then201

C(N (0, Id),N (0, α2 Id), d) = 2πα2{α2d/(α2d − 2)}d/2 and ‖N (0, Id)‖(2+d)/2 = (2π)(1 +202

2/d)1+2/d. The function α→ C(N (0, Id),N (0, α2 Id), d) has a unique minimum at α2
d = 1 + 2/d203

for which C(N (0, Id),N (0, α2
d Id), d) = ‖N (0, Id)‖(2+d)/2 showing that a random codebook sam-204

pled fromN (0, α2
d Id) is optimal. It is interesting to note that the variance of the codeword distribu-205

tion should be (1 + 2/d) larger than the variance of the input distribution N (0, Id).206

2.3 Related works207

We compare StoVoQ with competing (random) compressors; additional details are given App. A.1.208

QSGD. Alistarh et al. [2] compresses each coordinate of the scaled vector x/‖x‖ on s+1 codewords.209

QSGD is a scalar quantizer which requires O(
√
d log2(d)) bits in its highest compression setting210

(s = 1, only two possible levels for each coordinate). The vector norm is transmitted with full211

precision ‖x‖ (16 or 32 bits). This is in general substantially higher than the number of bits used by212

VQ methods. In deep learning problems, it reduces the communication cost by a factor of 4 to 7 [2,213

Sec. 5].214

Top-H/Rand H. Achieving higher compression rates is possible through sparsification operators,215

that only transmit a few coordinates. The most popular schemes are Top-H and Rand-H com-216

pressors, that respectively map the vector to either its H largest coordinates, or a random subset217

of cardinality H , rescaled by d/H to ensure unbiasedness. Top-H is a biased operator, and the218

performance of Rand-H are poor on deep learning tasks [5, Figures 4 and 5].219
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Table 1: Per iteration communication complexity of most frequently used algorithms in dimension
d. Constants H and M respectively correspond to a number of coordinates to be transmitted and a
number of codewords, they are chosen by the user.

Uncomp. Scalar Quantization Vector Quantization
SGD Sign QSGD s≥1 Top-H Rand-H Polytope [10] HSQ-span [8] HSQ-greed [8] StoVoQ DoStoVoQ

#bits 32d d 32 + s
√
d log2(d) 32H 32H log2(2d) log2(M) log2(M) log2(M) log2(M)

Unbiased - X X X X X X (Th.4)
A.1 (ω + 1) - -

√
d/s - d/H d d - O(M−2/d) (Th.4)

A.2 (δ + 1) - - - d/H - - M/σmin(C) - -

HyperSphere Quantization (HSQ). HSQ was introduced by Dai et al. [8]. Two versions are con-220

sidered: (1) a - greedy- Voronoi VQ referred to as HSQ-greed in Table 1, which is biased, and for221

which the theoretical guarantee provided in the paper (in their Lemma 3 and Theorem 3, which cor-222

responds to a variant of A 2 and the subsequent convergence rate) worsens as M increases, making223

it mostly vacuous; (2) an unbiased version VQ (HSQ-span), which uses a minimum-norm decom-224

position of x ∈ Span(CM ) the linear subspace generated by the codewords - this version suffers225

from a large variance (see Table 7) and potentially an ill-conditioning. Moreover, the performance226

of HSQ-span does not improve with M .227

StoVoQ builds on HSQ-greed, that achieves high compression factors (up to 60-100 to obtain close228

to SOTA performance on CIFAR10), while preserving a good flexibility w.r.t. the compression229

level. StoVoQ approach allows to remove its inherent bias and provide a much stronger convergence230

analysis: our approach is the first vector quantization scheme to provably benefit from an231

increasing number of elements in the codebook M (and obviously benefits from the number of232

workers K, as it is unbiased).233

Dual Quantization and Cross-polytope. An approach to constructing unbiased VQ is to use234

the dual VQ, also referred to as Delaunay Quantization (DQ); see [27]. DQ is unbiased for any235

x ∈ ConvHull(CM ), the convex hull of CM . DQ requires to compute the barycentric coordinates236

for x ∈ ConvHull(CM ), that is to solve (λx1 , . . . , λ
x
M ) = argminλ1,...,λM ‖x −

∑M
i=1 λici‖2, un-237

der the constraints λi ≥ 0,
∑M
i=1 λi = 1. The quantizer is obtained by drawing a codeword ci238

with probability [λx1 , . . . , λ
x
M ]. Computing the barycentric coordinates is in general very demand-239

ing unless CM has a very simple structure (see Appendix B for details). The Cross-Polytope240

method Gandikota et al. [10] is a simple instance of DQ, with a codebook CCP
2d composed of the241

2d canonical vectors
{
±
√
dei = ±(0, . . . , 0,

√
d, 0 . . . 0), i ∈ [d]

}
, that relies on the inclu-242

sion B2(0; 1) ⊂ B1(0;
√
d) = ConvHull(CCP

2d ). The barycentric decomposition can then easily243

be computed. Unfortunately, this method suffers from a large variance, as the quantization error244

‖VQCP(x,CM ) − x‖ of any x is lower bounded by
√
d − 1, which means the error has the same245

quadratic error than the Rand-1 compressor.246

Table 1 summarizes the number of bits required to exchange the compressed value of a vector247

x ∈ Rd for the compression methods considered in this Section, as well as the assumptions they248

satisfy.249

Numerical comparisons: In Table 7, we compare the distortions achieved by the compression250

methods given in Table 1 for a communication budget of 16 bits for d = 16 and assuming that the251

input distribution is q = N (0, Id). The compression factor is 32 (assuming 32 bits floating point252

per coordinate). Such a compression rate is out of reach for QSGD, that requires, even for s = 1 at253

least
√
d log(d) +R bits, where R is the number of bits to encode the norm (32 in [2]). For QSGD we254

have quantized the norm (using an uniform quantizer) on 3 bits and obtained an averaged distortion255

of 36.10 (for K = 1) and 1.82 for (K = 20) - the total number of bits is 19-. We use H = 2 for256

Top-H and Rand-H and use a scalar quantizer with 8 bits. For HSQ, we use 6 bits for the norm,257

using the unbiased uniform quantizer given in [8] and a Voronoi optimal codebook for the uniform258

distribution on the unit-sphere with M = 210 codewords. For StoVoQ we use a random codebook259

with M = 213 codewords; the codewords are sampled from a N (0, (1 + 2/d) Id), and 3 bits are260

allocated for the scalar quantization of 1/rpM (the inverse of the radial bias). Finally, we average the261

result of 2 independent compressions for Polytope (following the replication technique described262

in [10]). We use n = 104 vectors, and report in Table 7 the distortion and sample variance. For263

StoVoQ with K = 20, the codebooks of the different workers are independent.264
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Table 2: Distortion for Gaussian inputs, for a fixed budget of 16 bits with d = 16.
Method Sign [4] Top-2 Rand-2 Polytope [10] HSQ-span [8] HSQ-greed [8] StoVoQ
# Bits (obj =16) 16 2× 8 2× 8 log2(2× 16)× 2 + 6 log2(210) + 6 log2(210) + 6 log2(213) + 3

Unbiased X X X X

K = 1 6.21 (0.02) 8.40 (0.04) 102.8 (0.9) 113.9 (0.6) 146.9 (0.6) 9.03 (0.04) 6.97 (0.02) :
K = 20 6.26 (0.02) 8.76 (0.04) 5.40 (0.04) 5.98 (0.03) 7.58 (0.04) 9.10 (0.04) 0.838 (0.005)

3 DoStoVoQ algorithm265

We illustrate how the StoVoQ compression scheme can be implemented in FL. To avoid cumbersome266

technical details, we focus here on the Federated-SGD algorithm. At iteration t + 1, each worker267

computes a stochastic gradient gk,t+1 of the loss fk at the current model θt, compresses it into268

ĝk,t+1 = Comp(gk,t+1) and send it to the central server, that performs the update step θt = θt−1 −269

γt/K
∑K
k=1 ĝk,t. The code of the resulting algorithm, DoStoVoQ-SGD, is given in Algorithm 2. At270

iteration t+ 1, the crucial steps are:271

1. Worker k ∈ [K] computes the norm ‖gk,t+1‖ of the D × 1 gradient gk,t+1 and then splits the272

scaled gradient gk,t+1 ×
√
D/‖gk,t+1‖ into L-buckets of size d: gk,t+1 ×

√
D/‖gk,t+1‖ =273

[b1k,t+1, . . . , b
L
k,t+1]. The norm ‖gk,t+1‖ is transmitted to the central node using a high-resolution274

scalar quantizer (or without quantization).275

2. Each worker quantizes the buckets {b1k,t+1, . . . , b
L
k,t+1} using StoVoQ. Independent code-276

books {CM,k,t+1}k∈[K] are used to ensure that the quantizers remain conditionally indepen-277

dent (see below for a precise statement). The double stochasticity (each worker uses random278

codebooks, which are independent between workers and across iterations) motivates the name279

DoStoVoQ. At iteration t, the same codebook is used for all buckets of worker k. Formally,280

for ` ∈ [L] we apply (in parallel) StoVoQ(b`k,t+1, p,M, P, sk,t+1), with a sequence of different281

seeds (sk,t+1)k∈[K],t≥0. This sequence is shared between the workers and the central node at282

initialization.283

3. The central node computes (ĝk,t+1)k∈K from all messages received, performs the update on284

(θt)t≥, and broadcasts θt+1 to the workers.285

These steps would similarly allow to incorporate StoVoQ within any of the advanced FL algorithms,286

and Theorem 4 is the crucial assumption to derive the convergence rates, as described in Section 2.287

Natural extensions to DoStoVoQ-Fed-Avg, DoStoVoQ-DIANA and DoStoVoQ-VR-DIANA are pro-288

vided in Appendix D.2.289

Algorithm 2: DoStoVoQ-SGD over T iterations
Input : T nb of steps, (γt)t≥0 LR, θ0, p, M , P ;
Output: (θt)t≥0

1 for t = 1, . . . , T do
2 w0 sends θt−1 and different seeds sk,t to each wk;
3 for k = 1, . . . ,K do
4 Compute local gradient gk,t at θt−1;
5 Split gk,t ×

√
D/‖gk,t‖ on [b1k,t, . . . , b

L
k,t] ;

6 for ` = 1, . . . , L (in parallel) do
7 (it,k,`c , it,k,`r ) = StoVoQ(b`k,t, p,M,P, sk,t)

8 end
9 Send (‖gk,t‖, (it,k,`c , it,k,`r )`∈[L]) to w0 ;

10 end
11 Reconstruct (ĝk,t)k∈K ;
12 Update: θt = θt−1 − γt 1

K

∑K
k=1 ĝk,t ;

13 end

Bias and variance of the com-290

pressed gradient with K workers.291

Consider the two filtrations (Ft)t≥0292

and (Gt)t≥0 defined recursively as293

follows F0 = σ(∅) and for t ≥ 0,294

Gt+1 = Ft ∨ σ({gk,t+1, k ∈ [K]})295

and Ft+1 = Gt+1 ∨ σ({ĝk,t+1, k ∈296

[K]}). With these notations, for any297

t ≥ 0, θt is Ft-measurable.298

Theorem 4. At any iteration t +299

1 in DoStoVoQ, the K compressed300

stochastic gradients (ĝk,t+1)k∈[K]301

are (i) independent conditionally302

to Gt+1 (ii) conditionally unbiased,303

i.e., for all k ∈ [K], we have304

E [ ĝk,t+1 | Gt+1] = gk,t+1, (iii) sat-305

isfy the relatively bounded error con-306

dition of A 1, i.e. there exists a con-307

stant ωM such that, for all k ∈ [K]: E
[
‖ĝk,t+1 − gk,t+1‖2

∣∣Gt+1

]
≤ ωM‖gk,t+1‖2.308

Moreover, ωM decreases with the number of codewords M and the P , as ωM = O(M−2/d) +309

O(2−P ) [the dependence on p, d, and D is made explicit in the proof].310
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The first statement stems from the fact that each bucket is quantized using StoVoQ which is unbiased.311

The second statement is more challenging; proof is postponed to Appendix A.5. We stress that this312

result differs from Theorem 2, which corresponds to the distortion of a source with distribution q.313

Convergence results. Theorem 4 proves that our compression method satisfies the assumptions314

needed to obtain fast convergence rate, for DoStoVoQ-SGD, and for its variants DoStoVoQ-(VR)-315

DIANA. Consider a Smooth and Strongly Convex (SSC) function F =
∑K
k=1 fk, with condition316

number κ > 1. We measure the complexity of the algorithm by the number of iterations t required317

to obtain a model θt such that E[F (θt)] − minRD F ≤ ε. The result of VR-DIANA [17], which318

provides a complexity ofOκ→∞
(
κ (1 + ωM/K) log(ε−1)

)
[17, Corollary 2], applies to DoStoVoQ-319

VR-DIANA.320

Convergence rates for DoStoVoQ-DIANA (without VR), and on non-convex optimization problems321

can be obtained from Horváth et al. [17, Corollary 1,3,4]. As in the strongly-convex case, complex-322

ities increase by a factor depending on (1 + ωM/K) w.r.t. uncompressed algorithm. Intuitively, the323

impact on the optimization complexity of a high compression is mitigated by the number of workers,324

which supports the use of independent and unbiased compressors when the number of workers is325

large and high compression factors are required.326

Indeed, these complexities can be compared to: (1) the one of uncompressed variance reduced327

distributed methods [9] that achieve a complexity of Oκ→∞
(
κ log(ε−1)

)
(in the SSC case); (2) the328

complexity for biased compression operators satisfying A 2, Beznosikov et al. [5, Theorem 13] that329

obtain Oκ→∞(κ(1 + δ) log(ε−1)) for compressed GD (independently of the number of workers);330

(3) the complexities of compressed SGD methods with error feedback in [12]2, that also have no331

dependency on the number of workers. Overall,the unbiased character is crucial to mitigate the332

variance increase resulting from high compression rates.333

4 Numerical experiments334

4.1 Least Squares Regression (LSR)335

0 2 4 6 8 10
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Figure 2: Comparison between GD (blue),
HSQ-greed (orange) and DoStoVoQ (green), on
a LSR problem in dimension D = 29.

We consider a least-squares problem with n =336

214 samples, a bucket size d = 16,D = 29, and337

K = 32 workers; each worker has access to a338

subset m = 211 samples (picked with replace-339

ment) to introduce a dependency in the data340

used by the workers. For i ∈ [n], we assume341

Xi ∼ N (0, ID) and Yi ∼ N (X>i ω∗, 1) where342

ω∗ ∈ RD. We solve infω∈RD
∑n
i=1 ‖Yi −343

X>i ω‖2 via a gradient descent with step size344

1/αL where α is fine-tuned for each quanti-345

zation method and L ≈ 2n is the smoothness346

constant. We use DoStoVoQ with M = 213347

codewords sampled fromN (0, (1+2/d) Id) for348

DoStoVoQ and M = 210 on the unit Sphere for349

HSQ s.t. the number of bits transmitted at each350

round by the worker is set to 16 (see Table 7).351

Figure 2 reports the excess-log of the train loss over T = 10 iterations, for a standard GD. DoStoVoQ352

outperforms HSQ-greed: indeed the linear convergence rate of distributed GD is faster for an unbi-353

ased compressor than for the biased approach.354

4.2 Applications to Deep Neural Networks training355

Setting. We now describe our experimental framework for training two standard models of Deep356

Neural Networks: a VGG-16 [35] and a ResNet-18 [15]. We follow the standard procedure of357

training those models both on CIFAR-10 and ImageNet; the hyper-parameters are fine-tuned to358

optimize the accuracy without quantization. We do not compress the affine constant part of the359

affine convolutional layers and batch normalization layers. We apply independent DoStoVoQ on360

2authors provide complexities for 10 algorithms in Table 1, with Error Feedback and under A 2.

8



Table 3: Average accuracy over 5 experiments, after 100 epochs on CIFAR-10.
Algorithm SGD QSGD QSGD QSGD HSQ HSQ Dos. Dos.

2 bits 4 bits 8 bits d = 16 d = 8 d = 16 d = 8

Raw bits per bucket 32d
√
d log(d) log(d)

Effective Compression factor 1 ∼ 13 ∼ 8 ∼ 4 34 17 38 20
K = 1 worker 91.9 91.7 92.1 91.9 92.0 92.0 92.0 92.1
K = 8 worker 92.0 91.8 91.8 92.0 91.8 92.0 91.8 92.1

Table 4: Distortion for on a subset G of the gradients of a layer of CIFAR-10, for a fixed budget of
16 bits with d = 16.

Method Top-2 Rand-2 Polytope [10] HSQ-span [8] HSQ-greed [8] DoStoVoQ
# Bits (obj =16) 2× 8 2× 8 log2(2× 16)× 2 + 6 log2(210) + 6 log2(210) + 6 log2(213) + 3

Unbiased X X X X

K = 1 0.0022 0.025 0.028 0.034 0.0021 0.0026

batches of 32 buckets of size d = 16 (i.e. we transmit a high-resolution norm for D = 32 ·16 = 512361

coefficients).362

CIFAR-10. We use the implementation of HSQ [8]: the batch size is 256 for CIFAR-10, the363

total number of epochs is 100, the initial learning rate is 0.1, which is divided by 10 and 50 at364

epochs 51 and 71. We report the accuracy of DoStoVoQ, QSGD, and HSQ-greed in table 4. By365

design, the compression factor of Q-SGD for d = 16 is 13, which is significantly less than HSQ366

or DoStoVoQ. Both HSQ and DoStoVoQ perform similarly and the accuracy gap between the two367

methods are under the sample variance (computed over 5 seed and about 0.2). In Table 4 we report368

the distortion of a random subset of gradients G = {gt, t ∈ [|G|]} (with |G| = 102, d = 16, D =369

25×d) obtained from a given layer of a VGG on CIFAR-10, i.e.: |G|−1
∑
gt∈G

∥∥K−1∑K
k=1(gk,t−370

ĝk,t)
∥∥2, where (ĝk,t)k∈[K] correspond to k independent workers compressing their own gradient371

gk,t. The choice of the layer does not affect significantly the results. Even with the actual gradient372

distribution, DoStoVoQ outperforms for a given compression factor each unbiased method. This is373

on pair with the observation that the gradients of a Deep Neural Network are approximately Gaussian374

distributed [3, 41, 4]. Additional experiments can be found in the Appendix.375

ImageNet. For ImageNet, we use different bucket sizes, the standard batch size of 256, and only376

K = 1 worker for energy savings (recall Imagenet training last about 1 day for a single worker on377

academic hardware). An initial learning rate of 0.1 is divided by 10 at epoch 30 and 60, while the378

model is trained for 90 epochs. A ResNet here obtains 69.9%, and with a compression factor of 8,379

the performance drops by 2.5%. Using d = 16, we reach a compression factor of 38, while the Top-380

1 accuracy drops by only 4.8%: this is a substantially higher compression rate than the concurrent381

work QSGD on the ImageNet dataset.382

Computational impact. In the case of deep Neural Networks, our training procedure requires383

neither a substantial modifications of standard pipelines, nor a modification of the hyper-parameters384

which allows to save computational resources. Green Algorithm ([22]) shows that this work gen-385

erated around 15kg of CO2, and require 400 kWh. A typical experiment lasted few hours on CIFAR-386

10 and about 3 days on ImageNet, which is in the standard range for this type of prototypical codes.387

This work could have future impact on FL, to reduce their electrical consumption.388

Broader impact. Federated learning enables multiple actors to build a common model without389

data sharing, hence respecting privacy. However classic FL methods consume an important amount390

of energy in transmitting information. Our method DoStoVoQ can be adapted to any FL framework391

while enabling important bandwidth savings. These savings highly counterbalance the computa-392

tional impact of our experiments.393
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A Proofs589

A.1 Classical compressors mentioned in the main text590

For completeness, we here recall the formal definitions of the scalar compression operators men-591

tioned in the main text. For i ∈ [d], denote by ei the i-th canonical vector. Let H ∈ [d].592

Definition 1 (Sign). For any x ∈ Rd, Sign(x) :=
∑
i∈[d] sign(xi) ei.593

Definition 2 (Top-H). For any x ∈ Rd, Top-H(x) :=
∑
i∈TH xiei, where TH is the set composed594

of the indices of the H largest (in absolute value) coordinates of x.595

Definition 3 (Rand-H). For any x ∈ Rd, Rand-H(x) := d
H

∑
i∈RH xiei, where RH is the set596

composed of H random indices picket uniformly without replacement.597

Definition 4 (s-quantization operator). Let s ≥ 1 and p ≥ 1. Given x ∈ Rd, the s-quantization598

operator Cs is defined by:599

Cs(x) := ‖x‖p ×
d∑
i=1

sign(xi)
{
s−1bs|xj |/‖x‖pc+ 1({Ui ≤ s|xj |/‖x‖p − bs|xj |/‖x‖pc})

}
ei .

where {Ui}di=1 are d-independent uniform random variables on [0, 1].600

The s-quantization scheme verifies A 1 with ωs = min(d/s2,
√
d/s). Proof can be found in Alistarh601

et al. [2, see Appendix A.1].602

A.2 Notations603

For u, v ∈ Rd, 〈u, v〉 = u>v denotes the standard scalar product. For p ≥ 1 and x ∈ Rd, ‖x‖p =604 {∑d
i=1 |xi|p

}1/p

. When p = 2, we sometimes drop the subscript, i.e. we write ‖x‖ as a shorthand605

notation of ‖x‖2.606

A function ϕ : Rd → R is said to be a radial function if and only if ϕ is invariant under unitary607

transforms, i.e. for all x ∈ Rd and U ∈ U(d), ϕ(Ux) = ϕ(x).608

We denote for t > 0 by Γ(t) =
∫ +∞
0

ut−1e−udu the Gamma function. Leb d the Lebesgue measure609

on Rd. B(x; r) is the (Euclidean) ball centered at x ∈ Rd with radius r > 0. We denote by610

Sd−1 = {x ∈ Rd, ‖x‖ = 1} the unit-sphere and σd−1 the uniform distribution ofn Sd−1.611

A.3 Proof of Lemma 1612

Note that, for any U ∈ U(d) and x ∈ Rd,613

VQ(Ux,CM ) = argminc∈CM ‖Ux− c‖ = argminc∈CM ‖x− U
>c‖ = U VQ(x, U>CM ) , (7)

where U>CM = {U>C1, . . . , U
>Cn}. Using (7) and A 3, we get614

ECM∼p[g(VQ(Ux,CM ))] = ECM∼p[g(U VQ(x, U>CM ))] = ECM∼p[g(U VQ(x,CM ))] .

A.4 Proof of Theorem 1615

We preface the proof of the Theorem by stating and proving two elementary lemmas.616

Lemma 2. Let f : Rd → Rd be a function such that f(Ux) = Uf(x) for any x ∈ Sd−1 and617

U ∈ U(d). Then, there exists r ∈ R such that f(x) = rx for all x ∈ Rd.618
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Proof. For all x ∈ Sd−1, define g(x) = f(x)− 〈f(x), x〉x . It is easily checked that for all x ∈ Rd619

and U ∈ U(d), g(Ux) = Ug(x). Let Ux be the reflection symmetry with axis Rx: Uxx = x and620

for any vector y ∈ Rd orthogonal to x, Uxy = −y. Since g(x) = g(Uxx) = Uxg(x) = −g(x), we621

get that g(x) = 0 for all x ∈ Sd−1. Finally, denote by Ux→e1 (where e1 is the first canonical vector)622

any unitary transform satisfying Ux→e1x = e1. We get623

〈f(x), x〉 = 〈U>x→e1f(Ux→e1x), x〉 = 〈f(Ux→e1x), Ux→e1x〉 = 〈f(e1), e1〉 = r ,

which concludes the proof.624

Lemma 3. Let f : Rd → Rd be a function such that f(Ux) = Uf(x) for any x ∈ Rd and625

U ∈ U(d). Then, there exists a function r : R → R such that f(x) = r(‖x‖)x. Moreover,626

r(x) = ‖f(‖x‖e1)‖/‖x‖.627

Proof. Let λ > 0, and define for x ∈ Sd−1, fλ(x) = f(λx). Lemma 2 shows that there exists628

ρ(λ) ∈ R such that, for all x ∈ Sd−1, fλ(x) = f(λx) = ρ(λ)x. Hence for x ∈ Rd, f(x) =629

f‖x‖(x/‖x‖) = ρ(‖x‖)x/‖x‖. Hence |ρ(‖x‖)| = ‖f(x)‖ = ‖f(‖x‖Ux/‖x‖→e1x/‖x‖)‖ =630

‖f(‖x‖e1)‖. The proof follows.631

Proof of Theorem 1. The proof follows from Lemmas 1 and 3.632

A.5 Proof of Theorem 4633

We preface the proof by several technical lemmas. These lemmas establish important properties of634

random vector quantization that are of interest beyond the proof of the theorem.635

Lemma 4. Let c1, c2, x ∈ Rd and λ ∈ (0, 1). If ‖x− c1‖ ≤ ‖x− c2‖ and ‖λx− c2‖ ≤ ‖λx− c1‖,636

then ‖c2‖ ≤ ‖c1‖.637

Proof. Indeed, we have both ‖x‖2 − 2〈x, c1〉 + ‖c1‖2 ≤ ‖x‖2 − 2〈x, c2〉 + ‖c2‖2 and λ2‖x‖2 −638

2λ〈x, c2〉 + ‖c2‖2 ≤ λ2‖x‖2 − 2λ〈x, c1〉 + ‖c1‖2. Thus −2〈x, c1〉 ≤ −2〈x, c2〉 + ‖c2‖2 − ‖c1‖2639

and −2〈x, c2〉 ≤ −2〈x, c1〉+ λ−1‖c1‖2 − λ−1‖c2‖2. Combining both inequalities, we get (λ−1 −640

1)‖c2‖2 ≤ (λ−1 − 1)‖c1‖2 and as λ−1 − 1 > 0, we conclude ‖c2‖2 ≤ ‖c1‖2.641

We now make an additional assumption on the codeword distribution p.642

A5. The distribution p is radially homogeneous, i.e. p is unitarily invariant and for any β ∈ (0, 1]643

and x ∈ Rd:644

‖ECM∼p[VQ(x, βCM )]‖ ≤ ‖ECM∼p[VQ(x,CM )]‖

In words, this means that contracting all codewords by a factor β ∈ (0, 1] reduces the norm of the645

expectation of the nearest neighbor of any x. This condition is slightly more restrictive than A 3.646

It is satisfied by the standard Gaussian distribution. Under this assumption, we have the following647

Lemma.648

Lemma 5. Assume A 3-A 5 and consider the function rpM : R+ → R defined in Theorem 1. For any649

M ∈ N∗ the function ρ → rpM (ρ) is non-increasing on R+. If in addition A 4 is satisfied, then for650

any ρ ∈ R∗+, rpM (ρ) ≤ 1.651

Proof. Let x ∈ Rd and λ > 1. By definition, we have:652

rpM (λ‖x‖)λx = ECM∼p[VQ(λx,CM )] = λECM∼p[VQ(x, λ−1CM )], (8)

where we have used that a.s., VQ(λx,CM ) = λVQ(x, λ−1CM ). On the other hand:653

ECM∼p[VQ(x,CM )] = rpM (‖x‖)x. (9)
Combining both equations under A 2, we get:654

‖rpM (λ‖x‖)λx‖2 eq. (8)
= ‖λECM∼p[VQ(x, λ−1CM )]‖2

A 5
≤ ‖λECM∼p[VQ(x,CM )]‖2

eq. (9)
≤ ‖λrpM (‖x‖)x‖2.

15



Overall, we obtain that (rpM (λ‖x‖))2≤(rpM (‖x‖))2, thus that rpM is non-increasing.655

We now consider the second statement. Note first that656

ECM∼p

[
max
i∈[M ]

‖Ci‖
]
≤ ECM∼p

[
M∑
i=1

‖Ci‖2
]

= MEC1∼p[‖C1‖2] . (10)

Since ‖VQ(x,CM )‖ ≤ maxi∈[M ] ‖Ci‖, for all x ∈ Rd it holds that657

‖ECM∼p[VQ(x,CM )]‖ ≤M1/2(EC1∼p[‖C1‖2])1/2 .

Hence, for all x ∈ Rd such that ‖x‖ ≥ M1/2(EC1∼p[‖C1‖2])1/2, ‖ECM∼p[VQ(x,CM )]‖ ≤ ‖x‖.658

For all λ ∈ (0, 1), using A 5, we get659

rpM (λ‖x‖)λ‖x‖ = ‖ECM∼p[VQ(λx,CM )]‖ = λ‖ECM∼p[VQ(x, λ−1CM )]‖ ≤ λ‖x‖ ,
which concludes the proof.660

Lemma 6. Assume A 3-A 4. Then, for any M ∈ N∗, ECM∼p[‖VQ(x,CM ) − x‖2] is (a radial661

function) which is non-decreasing, i.e. for any x ∈ Rd and λ ∈ [0, 1], ECM∼p[‖VQ(λx,CM ) −662

λx‖2] ≤ ECM∼p[‖VQ(x,CM )− x‖2].663

Proof. By Lemma 1, for any U ∈ U(d) and x ∈ Rd, we get664

ECM∼p[‖VQ(Ux,CM )−Ux‖2] = ECM∼p[‖U VQ(x,CM )−Ux‖2] = ECM∼p[‖VQ(x,CM )−x‖2]

showing that this function is radial. We write, for any x ∈ Rd:665

ECM∼p[‖VQ(x,CM )− x‖2] = 2

∫ ∞
t=0

tPCM∼p
(
‖VQ(x,CM )− x‖2 > t

)
dt

= 2

∫ ∞
t=0

tPCM∼p

(
min
i∈[M ]

‖Ci − x‖2 > t

)
dt

= 2

∫ ∞
t=0

t
(
1− PC1∼p

(
‖C1 − x‖2 ≤ t

))M
dt

= 2

∫ ∞
t=0

t
(

1− PC1∼p

(
B2(x;

√
t)
))M

dt .

By Anderson’s theorem [11], we have that PC1∼p
(
B2(x;

√
t)
)

is (a radial function) which is non-666

increasing, i.e. for any x ∈ Rd and λ ∈ [0, 1], PC1∼p
(
B2(λx;

√
t)
)
≥ PC1∼p

(
B2(x;

√
t)
)
.667

Consequently, the quadratic error ECM∼p[‖VQ(x,CM ) − x‖2] is non-decreasing radial function.668

669

Next, we provide a control on the second order moment of VQ(x,CM ).670

Lemma 7. Assume A 3-A 4. Then, for anyM ∈ N∗, the function x→ ECM∼p

[
‖VQ(x,CM )‖2

]
=:671

Md,p,M (‖x‖) is radial and r → Md,p,M (r) is non-decreasing. Moreover, for any M0 ≥ 1 there672

exists a constant CM0,R,d,p such that for all M ≥M0, Md,p,M (R) ≤ CM0,R,d,p.673

Proof. The fact that x 7→ ECM∼p

[
‖VQ(x,CM )‖2

]
is radial is a consequence of Lemma 1. We674

can thus denote Md,p,M this function. Moreover, by Lemma 4 for any x ∈ Rd, λ ∈ (0, 1) and675

almost surely any codebook CM , we have that ‖VQ(λx,CM )‖2 ≤ ‖VQ(x,CM )‖2. (We apply676

Lemma 4 with c1 = VQ(x,CM ) and c2 = VQ(λx,CM )). Consequently, for any λ ∈ (0, 1), we677

have ECM∼p

[
‖VQ(λx,CM )‖2

]
≤ ECM∼p

[
‖VQ(x,CM )‖2

]
, and Md,p,M is non-decreasing.678

To prove the second statement, we use the following decomposition: for any x ∈ Rd such that679

‖x‖ = R, and a.s. any CM :680

‖VQ(x,CM )‖2 ≤ 2 ‖VQ(x,CM )− x‖2 + 2 ‖x‖2

≤ 2 ‖VQ(x,CM )− x‖2 + 2R2.
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Taking the expectation, and using again Lemma 1, we get681

Md,p,M (R) ≤ 2ECM∼p[‖VQ(Re1,CM )−Re1‖2] + 2R2 .

We finally prove that, for a given x ∈ Rd, ECM∼p

[
‖VQ(x,CM )− x‖2

]
is non-increasing with682

M . Indeed, writing CM = [C1, . . . , CM ] = CM−1 ∪ {CM} (which amounts to define a coupling683

between CM and CM−1), we obtain684

‖VQ(x,CM )− x‖2 = min
(
‖VQ(x,CM−1)− x‖2 , ‖CM − x‖2

)
≤ ‖VQ(x,CM−1)− x‖2 .

685

In the next Lemma and the rest of the proof, to avoid the cumbersome notation (rpM )−1 we omit the686

dependency on p in rpM and simply write r−1M . We now show that the quadratic error is uniformly687

decreasing on B2(0;R) at speed M−2/d.688

Lemma 8. Assume A 3-A 4-A 5. Then, for any R > 0 and M0 ≥ 1 there exists a constant689

CM0,R <∞ such that, for all M ≥M0,690

sup
x∈B2(0;R)

ECM∼p

[∥∥r−1M (‖x‖) VQ(x,CM )− x
∥∥2] ≤ CM0,RM

−2/d.

Proof. Using Lemma 1, the function x → ECM∼p

[∥∥r−1M (‖x‖) VQ(x,CM )− x
∥∥2] is radial. For691

x ∈ Rd, we get that692

ECM∼p

[∥∥r−1M (‖x‖) VQ(x,CM )− x
∥∥2]

≤ 2ECM∼p

[∥∥(r−1M (‖x‖)− 1) VQ(x,CM )
∥∥2]+ 2ECM∼p

[
‖VQ(x,CM )− x‖2

]
≤ 2(r−1M (‖x‖)− 1)2ECM∼p

[
‖VQ(x,CM )‖2

]
+ 2ECM∼p

[
‖VQ(x,CM )− x‖2

]
. (11)

Set M0 ≥ 1. First, by Lemma 7, for any M ≥M0, we get693

sup
x∈B2(0;R)

ECM∼p

[
‖VQ(x,CM )‖2

]
≤ CM0,R,d,p (12)

Second, by Lemma 5, for any x ∈ B2(0;R), we have 0 ≤ (r−1M (‖x‖)− 1) ≤ (r−1M (R)− 1), and by694

the remark following Theorem 2, we get:695

lim sup
M→∞

M1/d|rM (R)− 1| ≤ C1/2
d p

−1/d
rad (R)/R ,

thus696

(r−1M (R)− 1)2 = |rM (R)− 1|2/r2M (R) = O(M−2/d) . (13)

Thirdly, Lemma 6 gives that697

sup
x∈B2(0;R)

ECM∼p

[
‖VQ(x,CM )− x‖2

]
= ECM∼p

[
‖VQ(Re1,CM )−Re1‖2

]
,

Using Theorem 2, we obtain698

lim
M→∞

M2/dECM∼p[‖VQ(Re1,CM )−Re1‖2] = Cdp
−2/d
rad (R) . (14)

Plugging (12)-(13) and (14) into (11), we obtain that699

sup
x∈B2(0;R)

ECM∼p

[∥∥r−1M (‖x‖) VQ(x,CM )− x
∥∥2] = O(M−2/d) .

700
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A random scalar quantizer is defined by a scalar output codebook, OQ = [o1, . . . , oQ] assumed to701

be ordered o1 < · · · < oQ and an external randomization, which may be taken without loss of702

generality as U ∼ Unif([0, 1]); see Appendix B.1 for a construction. Here Q is the number of703

codewords and the number of bits required to encode the output vectors (the scalar quantizer rate)704

is log2(Q). A scalar quantizer is said to be uniform if for all i ∈ [Q − 1], oi+1 − oi = δ for some705

δ > 0. It is shown in Appendix B.1 that, for all L > 0, we may contruct a uniform random scalar706

quantizer with Q codewords, satisfying for all x ∈ [0, L],707

EU∼Unif([0,1])[SQ(x, L,Q,U)] = x (15)

EU∼Unif([0,1])[{SQ(x, L,Q,U)− x}2] ≤ L2/4(Q− 1)2 . (16)

We use this random scalar quantifier in the following proposition.708

Proposition 1. Assume A 3-A 4-A 5. Let R > 0 and M0 ≥ 1. For Q ≥ 2, denote by ωM,Q(R) =709

maxx∈B2(0;R) ΩM,Q(x) where710

ΩM,Q(x) = ECM∼p,U∼Unif([0,1])

[∥∥SQ(r−1M (‖x‖), r−1M (R), Q, U) VQ(x,CM )− x
∥∥2] .

Then, there exists a constant CM0
(R), such that for all M ≥M0,711

ωM,Q(R) ≤ CM0(R){M−2/d +Q−2}.

Proof. It follows from Lemma 1 that the function x → ΩM,Q(x) is radial. If A is a scalar random712

variable, B is a random vector, A and B are independent, E[A2] <∞, and E[‖B‖2] <∞, then713

E[‖AB− E[A]E[B]‖2] = E[(A− E[A])2]E[‖B‖2] + {E[A]}2E[‖B− E[B]‖2] .

Setting A← SQ
(
r−1M (‖x‖)

)
, B← VQ(x,CM ), we get714

ΩM,Q(x) = ECM∼p

[∥∥r−1M (‖x‖) VQ(x,CM )− x
∥∥2]

+ ECM∼p

[
‖VQ(x,CM )‖2

]
EU∼Unif([0,1])

[{
SQ(r−1M (‖x‖), r−1M (R), Q, U)− r−1M (‖x‖)

}2]
.

We now make the following observations:715

1. The function r−1M (‖x‖) is bounded on B2(0;R) by r−1M (R) (see Lemma 5). Hence,716

EU∼Unif([0,1])

[{
SQ(r−1M (‖x‖), r−1M (R), Q, U)− r−1M (‖x‖)

}2] ≤ r−2M (R)/4(Q− 1)2.

2. The second order moment ECM∼p

[
‖VQ(x,CM )‖2

]
is upper bounded by a constant independent717

of M on B2(0;R) by Lemma 7.718

3. Using Lemma 8, we can upper bound the first term for any M ≥M0719

ECM∼p

[∥∥r−1M (‖x‖) VQ(x,CM )− x
∥∥2] ≤ CM0,RM

−2/d .

This concludes the proof.720

We now give the proof of the main result Theorem 4.721

Proof of Theorem 4. We consider the process described in DoStoVoQ. For t ≥ 0, k ∈ [K], we define722

(b̂`k,t+1)`∈[L] such that ĝk,t+1 = ‖gk,t+1‖D−1/2(b̂1k,t+1, . . . , b̂
L
k,t+1), where for any ` ∈ [L] we have723

b̂`k,t+1 = StoVoQ(b`k,t+1, p,M,P, sk,t+1).724

1. Conditional independence property. We observe that for all k ∈ [K], gk,t+1 is Gt+1-725

measurable. Moreover, the seeds (sk,t+1)k∈[K],t≥0 are independent, and there exists a functional φ726

such that for all k ∈ [K], ĝk,t+1 = φ(gk,t+1, sk,t+1). We conclude that the compressed stochastic727

gradients (ĝk,t+1)k∈[K] are mutually independent conditionally to Gt+1.728
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2. Unbiasedness. In the sequel, we fix t ≥ 0, k ∈ [K]. Regarding the bias, we use the fact that for729

any ` ∈ [L], b`k,t+1 is Gt+1-measurable. Moreover, as b̂`k,t+1 = StoVoQ(b`k,t+1, p,M,P, sk,t+1), we730

have that ECM∼p[b̂
`
k,t+1|Gt+1] = b`k,t+1, using the fact that StoVoQ is unbiased.731

Consequently, ECM∼p

[
‖gk,t+1‖/

√
D ×

(
b̂1k,t+1, . . . , b̂

L
k,t+1

)
`∈[L]

∣∣∣Gt+1

]
= gk,t+1.732

3. Relative error bound. We write:733

E
[
‖ĝk,t+1 − gk,t+1‖2

∣∣Gt+1

]
=
‖gk,t+1‖2

D

∑
`∈[L]

E
[
‖b̂`k,t+1 − b`k,t+1‖2

∣∣∣Gt+1

]
.

Remark that
∑
`∈[L] ‖b`k,t+1‖2 = D. Consequently, for all ` ∈ [L], b`k,t+1 ∈ B2(0;

√
D). Using734

Proposition 1, with R = D, we get:735

E
[
‖ĝk,t+1 − gk,t+1‖2

∣∣Gt+1

]
=
ωM,Q(R)

D
‖gk,t+1‖2

which concludes the proof.736

737

B Scalar and vector Quantization738

B.1 Unbiased random scalar quantization739

A random scalar quantizer is a random map from the real line to a (scalar) codebook OQ =740

{o1, . . . , oQ} ⊂ R where Q ≥ 2. It is assumed that −∞ < o1 < · · · < oQ < ∞. The reso-741

lution (or code rate) is P = log2(Q) is the number of bits needed to uniquely specify a codeword.742

A scalar quantizer is said to be uniform if for all i ∈ [Q− 1], oi+1 − oi = δ, for some δ > 0. Note743

that in such case δ = {oQ − o1}/(Q− 1).744

For x ∈ R and u ∈ [0, 1], consider a function SQ(x,OQ, u) ∈ OQ. If U ∼ Unif([0, 1]), then745

SQ(x,OQ, U) is a random scalar quantizer. A random scalar quantizer is said to be unbiased if for746

all x ∈ [o1, . . . , oQ], EU∼Unif([0,1])[SQ(x,OQ, U)] = x.747

A simple way to construct an unbiased scalar quantizer goes a follows. We first compute the index748

j(x) ∈ [Q] such that x ∈
[
oj(x), oj(x)+1

)
. Note that x = λ∗j(x)(x)oj(x) + (1 − λ∗j(x)(x))oj(x)+1749

where750

λ∗j(x)(x) = (x− oj(x))/(oj(x)+1 − oj(x)) ∈ (0, 1] .

For u ∈ (0, 1], we set751

SQ(x,OQ, u) = 1{u≤λ∗
j(x)

(x)}oj(x) + 1{u>λ∗
j(x)

(x)}oj(x)+1 .

Since EU∼Unif([0,1])(U ≤ λj(x)∗(x)) = λ∗j(x) the unbiasedness follows. It is easily seen that the752

distortion of a scalar quantizer is directly related to the diameter of the quantizer.753

Proposition 2. For all x ∈ [o1, oQ], it holds that754

EU∼Unif([0,1])[{SQ(x,OQ, U)− x}2] ≤ (1/4) sup
i∈[Q−1]

{oi+1 − oi}2 .

If the scalar quantizer is uniform,755

EU∼Unif([0,1])[{SQ(x,OQ, U)− x}2] ≤ (1/4)(Q− 1)−2{oQ − o1}2 .

Proof. For all x ∈ [o1, oQ], we get756

|SQ(x,OQ, U)− x| ≤ (1/2){oj(x)+1 − oj(x)}

The proof follows.757

Unbiased random scalar quantization is a special case of dual vector quantization, introduced in the758

next section.759
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B.2 Dual Vector Quantization760

We introduce a new notion of vector quantization, called dual quantization (or Delaunay quantiza-761

tion). The principle of dual quantization is to map an Rd-valued vector x onto a codebook CM using762

a random splitting operator Dual-VQ(x,CM , U) such that, for all x ∈ ConvHull(CM ),763

EU∼Unif([0,1])[Dual-VQ(x,CM , U)] = x . (17)

We stress that in this case the unbiasedness is not due to the use of a random codebook but makes use764

of an external randomization. In practice, a dual quantizer procedure amounts to define a probability765

distribution of CM , with weights (λ∗1(x), . . . , λ∗M (x)), λ∗i (x) ≥ 0,
∑M
j=1 λ

∗
j (x) = 1. Set Λ∗0(x) = 0766

and for i ∈ [M ], Λ∗i (x) =
∑i
j=1 λ

∗
j (x). Note that Λ∗M (x) = 1. If u ∈

(
Λ∗j−1(x),Λ∗j (x)

]
, j ∈ [M ],767

we set Dual-VQ(x,CM , u) = cj . In such that, for all x ∈ ConvHull(CM ), we get768

EU∼Unif([0,1])[Dual-VQ(x,CM , U)] =

M∑
i=1

λ∗i (x)ci = x .

The distortion of a dual quantizer is therefore given, for x ∈ Rd, by769

EU∼Unif([0,1])[‖Dual-VQ(x,CM , U)− x‖2] =

M∑
i=1

λ∗i (x)‖x− ci‖2 . (18)

For x ∈ ConvHull(CM ), the probability distribution (λ∗1(x), . . . , λ∗M (x)) is obtained by solving the770

following convex optimization program:771

(λ∗1(x), . . . , λ∗M (x)) = argmin(λ1,...,λM )∈S(x,CM )

M∑
i=1

λi‖x− ci‖2 , (19)

where772

S(x,CM ) =

{
(λ1, . . . , λM ) ∈ RM+ ,

M∑
i=1

λi = 1,

M∑
i=1

λici = x

}
. (20)

The support of (λ∗1(x), . . . , λ∗M (x)) is M + 1 at most. For a distribution q on Rd, we define773

Dual-Dist(q,CM ) =

∫
q(x)

{
M∑
i=1

λ∗i (x)‖x− ci‖2
}

dx . (21)

For a given input distribution q, an optimal codebook C∗M of cardinality M satisfies774

Dual-Dist(q,C∗M ) ≤ Dual-Dist(q,CM ) for all CM satisfying |CM | = M .775

Theorem 5 (Rates, see [27]). Asymptoptic rate. Assume that the pdf q is compactly supported on776

Rd-valued.777

lim
M→∞

M
2
d inf
|CM |=M

Dual-Dist(q,CM ) =: QD2 (q) = QD2 (Unif([0, 1])d)
∥∥q∥∥ d

d+2

. (22)

B.3 HSQ methods - see Dai et al. [8]778

In this Section, we provide a detailed review of the two methods proposed by Dai et al. [8]. In779

Appendix B.3.1, we first discuss HSQ-Span and explain why it cannot compete with approaches780

based on Voronoi quantization. In Appendix B.3.2, we discuss HSQ-greed.781

B.3.1 HSQ-Span782

The first method, HSQ-Span, is unbiased but suffers form a large variance. Indeed, it relies on783

decomposing the vector x ∈ Rd as a linear combination of the codewords in CM , assuming that784

Span{ci, i ∈ [M ]} = Rd (a codebook satisfying this property is said to be full-rank). Because785

typically M � d, there are infinitely many solutions to the linear problem
∑M
i=1 αici = x, i.e.786

A(x,CM ) = {(α1, . . . , αM ) ∈ RM ,
∑M
i=1 αici = x} is infinite. Note that contrary to the Dual787

quantization approach, we do not assume that αi ≥ 0 for i ∈ [M ] or
∑
i∈[M ] αi = 1. However, for788
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(a) x ∼ N (0, I2) and M = 10.
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(b) x ∼ N (0, I2) and M = 3.

Figure 3: Delaunay quantization for a vector x (orange
diamond), for a given set of codewords (green +),and corre-
sponding weights (area of the blue spheres). Remark that all
but three points have a 0 probability of being picked, making
the quadratic error much smaller than for HSQ-span.
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Figure 4: Cross-Polytope [10]
is a particular case of Delaunay
quantization. The codewords are
the vertices of B1(0;

√
d). A vector

x (orange diamond) lying on the unit
Ball B2(0; 1) (red circle) is decom-
posed with weights (area of the blue
spheres) of codewords on the Ball of
radius

√
d (green).

any i ∈ [M ], we pick the codeword ci with probability |αi|/‖α‖1, and encode x as sign(αi)‖α‖1ci.789

In HSQ-Span, the minimal norm solution in A(x,CM ) is chosen, i.e. solve790

α∗(x) := (α∗1(x), . . . , α∗M (x)) = argmin(α1,...,αM )∈A(x,CM )

M∑
i=1

α2
i , (23)

The main advantage are that791

1. Fast computation. First, as α∗(x) = C†x, where C† is the Moore-Penrose inverse of792

the codewords matrix C = [c1, . . . , cM ], provided a fixed codebook CM , it is possible793

to compute only once C† and to then obtain α∗(x) for any x by a simple matrix-vector794

product.795

2. Unbiased. Second, this approach is unbiased. Its quadratic error thus linearly decays with796

the number of workers.797

However (1) its variance is high and (2) does not decrease with M . Indeed, the minimal norm798

solution α∗(x) tends to put weight on all codewords. For example, we represent in Figure 6 the799

weights on each vector for 3 situations in dimension d = 2. Intuitively, the probability of of selecting800

ci is not a decreasing function ‖x − ci‖2 (see e.g., Figure 6b), which results in the large variance;801

even if there exists i such that ci = x, there is a non vanishing probability of selecting cj 6= ci s802

(Figure 6a). We illustrate the second point in Figure 5 which gives the evolution of the distortion for803

d = 16 w.r.t. M for K ∈ {1, 8} workers. The error does not decrease.804

B.3.2 HSQ-greed805

HSQ-greed is closed to DoStoVoQ: Dai et al. [8] still consider a full-rank codebook CM , and simply806

encode x by VQ(x,CM ). We list here the main differences to our approach:807

1. the same codebook is used during all iterations and on all workers. This makes it impos-808

sible or cumbersome to apply the convergence result developed in the federated learning809

literature, which require that the compression on each workers are independent (at least810

between iterations).811

2. No assumption is made on the codebook distribution (apart from the fact that it is full-812

rank). The importance of unitary invariance is not mentioned. In practice, authors use an813

codebook generated by applying a k-means algorithm on a larger set of scaled Gaussian814

isotropic vectors. This pre-processing slightly improves the distribution of the codewords815

but is in practice of limited impact (see paragraph (e) in Subsection 2.2 in the main text.).816
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(a) x1 = (1, 1),
CM = [(2, 0); (0, 2); (1, 1)].
α∗(x1) ' (33%, 33%, 33%).

(b) x2 = (0.1, 0.1),
CM = [(4, 0); (0, 4); (1/4, 1/4)]
α∗(x2) ' (47%, 47%, 6%).

(c) x ∼ N (0, I2) and M = 1000. (d) x ∼ N (0, I2) and M = 100, p =
U(S1(R2)).

Figure 6: HSQ-Span: weights (size of the blue point) on each of the codewords of CM when decom-
posing x (orange diamond) .

3. Codewords are chosen of norm 1. This means we also need to encode ‖x‖ together817

with VQ(x,CM ), which is typically done on using 6 bits per bucket.818

4. The method is biased, so does not benefit from a large number of workers. No analysis of819

the quadratic error is provided.820
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Figure 5: HSQ-Span: Distortion as a function of
M (log-scale): K = 1 (blue) K = 8 (orange).

Theoretical results. Dai et al. [8] present a821

convergence result for HSQ-greed, namely in822

Lemma 3 and the subsequent Theorem 3. Note823

however that the proof of this result is not pro-824

vided in the paper3. Second, the guarantee pro-825

vided is almost vacuous. Indeed, authors rely826

on an alternative assumption4 on the alignment827

of the compressed value VQ(x,CM ) with x:828

Definition 5 (Compression with preserved829

alignement). There exists α > 0 such that830

for all x ∈ Rd, we have 〈Comp(x), x〉2 ≥831

(1− α)‖x‖2.832

This assumption becomes stronger as 1 − α833

increases. However, Lemma 3 indicates that834

1 − α ≥ σmin(C)/M , with σmin the minimal835

3The appendices of the paper were not available, neither on https://arxiv.org/pdf/1911.04655.pdf,
nor on https://paperswithcode.com/paper/hyper-sphere-quantization-communication, on the
1st of June, 2021.

4See the work of Beznosikov et al. [5] for a discussion between the possible assumptions.
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eigenvalue of the codebook matrix C. The bound guarantee thus worsens with M . A similar multi-836

plicative factor 1/(1− α) ∝M appears in their convergence rate Theorem 3. We note that without837

any assumption on the codebook distribution, it seems difficult to obtain any result, as the worst838

case codebook that satisfies the full-rank assumption could be arbitrarily bad (typically a unique839

codeword perturbed by a tiny amount of noise CM = [c1 + ηεi]i∈[M ], with η very small).840

B.4 Alignment under A 3, for StoVoQ without debiasing function (new)841

We can leverage our tight analysis of unitarily invariant distribution to obtain a result on the expected842

alignment between a vector x ∈ Rd and the output of StoVoQ (without bias removal) applied on x.843

More precisely, we have the following lemma:844

Lemma 9. Assume Lemma 1, then :845

ECM∼p[〈x,VQ(x,CM )〉] ≥ rpM (‖x‖)‖x‖2.

We proved that on a ball of radius R, rpM (‖x‖) ≥ rpM (R) and that rpM (R) = 1 − O(M−2d): in846

other words our guarantee does improve with M . This result is thus much stronger than the one847

of [8]. Note however that without debiasing, it is not possible to directly leverage the literature on848

federated learning: our result is only on the expected alignment and it would require novel proofs849

(relying on 1. expected alignment and 2. Bounded variance) to give a convergence result.850

C Unitarily invariant random codebooks851

We gather in this section the theoretical results on random codebooks distributed according to a uni-852

tarily invariant distribution. In Appendix C.1 we provide a proof of Theorem 2. In Appendix C.2, we853

show that random codebook are asymptotically optimal when the distribution of inputs is also unitar-854

ily invariant, provided that the codebook distribution is appropriately chosen. In Appendix C.3, we855

state an elementary lower bound. In Appendix C.4, we extend our results for spherical codebooks.856

This extension is not mentionned in the main document.857

C.1 Proof of Theorem 2858

Let {Ci}∞i=1 be an i.i.d. sequence of random vector with pdf p w.r.t. the Lebesgue measure. For each859

n ∈ N, denotes by CM = {C1, . . . , CM} the associated sequence of codebook. Define for k > 0860

and λ > 0, the pdf of the Weibull distribution (Weibull(k, λ)) with shape parameter k and scale861

parameter λ is given, for x ≥ 0, by:862

wk,λ(x) = (k/λ)(x/λ)k−1e−(x/λ)
k

. (24)

The survival function of Weibull(k, λ) is denoted by W̄k,λ(t) = e−(t/λ)
k

. Denote by Vd the volume863

of the unit ball in Rd,864

Vd = πd/2/Γ(d/2 + 1) . (25)
We preface the proof by a lemma.865

Lemma 10. Assume A 3-A 4. Then, for every x∈ Rd and t ≥ 0,866

lim
M→∞

PCM∼p(M
1/d‖VQ(x,CM )− x‖ > t) = W̄d,(Vdp(x))−1/d(t) .

Proof. We get for t ≥ 0,867

PCM∼p
(
M1/d min

i=1:M
‖Ci − x‖ ≥ t

)
=
(

1− PC1∼p(‖C1 − x‖ ≤ tM−1/d)
)M

=
(

1− P
(

B(x; tM−1/d)
))M

where for A ⊂ Rd a Borel set, P (A) =
∫
p(x)1A(x)dx. It follows from the Lebesgue differentia-868

tion theorem that869

P
(

B(x; tM−1/d)
)
∼M→∞ p(x) Lebd

(
B(x; tM−1/d)

)
= p(x)Vdt

dM−1
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where Lebd denotes the Lebesgue measure. Hence, for any t ≥ 0870

PCM∼p
(
M1/d min

i=1:M
‖Ci − x‖ ≥ t

)
−→M→∞ W̄d,{Vdp(x)}−1/d(t) = e−p(x)Vdt

d

.

871

Proof of Theorem 2. The proof relies on Lemma 10 and on the uniform integrability of the sequence872 (
M1/d mini=1:M ‖Ci − x‖

)2
, M ≥ 1. Let R > 0.873

ECM∼p

[
M2/d min

i∈[M ]
‖Ci − x‖21{M2/dmini=1:M ‖Ci−x‖2≥R}

]
=

∫ ∞
R

{
1− P

(
B(x;M−1/dt1/2)

)}M
dt

By Anderson’s inequality (see [11]) P
(

B(x;M−1/dt1/2)
)
≥ P

(
B(0;M−1/dt1/2)

)
so that874 ∫ +∞

R

{
1− P

(
B(x;M−1/dt1/2)

)}
dt ≤

∫ +∞

R

(
1− P

(
B(0;M−1/dt1/2)

))M
︸ ︷︷ ︸

=:φM (t)

dt.

Let ρ∈ (0, 1). Decompose φM (t) = AM (t) +BM (t) with875

AM (t) =
{

1− P
(

B(0;M−1/dt1/2)
)}M

1{M−1/dt1/2>tρ/2}

BM (t) = exp

(
−M

[ P (B(0;M−1/dt1/2))

Lebd
(

B(0;M−1/dt1/2)
)VdM−1/dtd/2])1{M−1/dt1/2≤tρ/2}.

Note that876

AM (t) ≤ 1− P
(

B(0; tρ/2)
)
.

Now let δ > 0. We upper-bound BM (t) as follows877

BM (t) ≤ exp

(
− inf
s∈(0,δ]

P
(

B(0; s)
)

Lebd
(

B(0; s)
)Vdtd/2)+ exp

(
− inf
s∈(δ,tρ/2]

P
(

B(0; s)
)

Lebd
(

B(0; s)
)Vdtd/2)

≤ exp

(
− inf
s∈(0,δ]

P (B(0; s))

Lebd
(

B(0; s)
)Vdtd/2)+ exp

(
−P (B(0; δ)) td(1−ρ)/2

)
.

Let us denote B1(t) and B2(t) the two terms on the right hand side of the previous equation. Note878

that Bi(t), i = 1, 2 do not depend on M . Now let us show that these functions are integrable.879 ∫ +∞

0

AM (t)dt ≤
∫ +∞

0

{
1− P (B(0; tρ/2))

}
dt =

∫ +∞

0

P(‖C1‖ > tρ/2)dt = E[‖C1‖2/ρ] < +∞ .

For the next two terms we use the elementary inequality infs∈(0,δ]
P (B(0;s))
λd(B(0;s)) ≥ mδ so that880 ∫ +∞

0

B1(t)dt ≤
∫ +∞

0

e−Vdmδt
d/2

dt < +∞

and881 ∫ +∞

0

B2(t)dt ≤
∫ +∞

0

e−mδVdt
d(1−ρ)/2

< +∞.

Consequently, limR→+∞ supM
∫ +∞
R

φM (t)dt = 0 which ensures uniform integrability.882

We conclude by using that the second moment of a Weibull(k, λ) is given by λ2Γ(1+2/k) and that883

Vd = πd/2/Γ(1 + d/2).884
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C.2 Proof of Theorem 3885

The proof of Theorem 3 follows almost immediately from Theorem 2 using the classical Zador886

theorem, stated for completeness below (see [14] for a proof of Zador theorem, which has a long887

history).888

Theorem 6 (Zador’s Theorem).889

• Assume that
∫
‖x‖r+δp(x)dx <∞, for some δ > 0. Then,890

lim
M→∞

M2/d Dist(p,C∗M ) = Q2(p) = Q2([0, 1]d)

(∫
pd/(d+2)(x)dx

)(d+2)/d

, (26)

where Q2(p) is the quantization coefficient of the distribution p and Q2([0, 1]d) that of the uni-891

form distribution over ther unit hypercube, Unif([0, 1]d). If the distribution p is standard normal892

N (0, Id), then Q2

(
N (0, Id)

)
∼d→∞ d.893

• There exists a universal constant Cd,r+δ∈ (0,∞) such that, for any pdf p on Rd894

Dist(p,C∗M ) ≤ Cd,rδσrr+δM−r/d

where σr+δ(p) =: infa∈Rd
( ∫
|x|r+δ|x|p(x)dx

) 1
r+δ .895

C.3 An elementary lower-bound896

The Hölder inequality with negative exponents (see [16, p. 191]) shows that for 0 <897

r < 1 and s ∈ R such that r−1 + s−1 = 1 (hence s < 0),
∫
p−2/d(x)q(x)dx ≥898 {∫

p−2s/d(x)dx
}1/s {∫

qr(x)dx
}1/r

. Setting s = −d/2 and r = 2/(d + 2), we get that899

C(q, p, d) ≥ ‖q‖d/(d+2).900

C.4 Asymptotic distortion of a random quantizer on the unit sphere Sd−1901

We now consider random codebooks on the unit hypesphere Sd−1 = {x ∈ Rd, ‖x‖ = 1}. We902

compute the distortion of a codebook distributed uniformly on the unit-sphere as a function of the903

number of codewords M and of the ambient dimension d. Denote by σd−1 the uniform distribution904

on Sd−1. Denote905

κd =
(2
√
π Γ((d+ 1)/2)

Γ(d/2)

)1/(d−1)
(27)

Theorem 7. Assume d ≥ 2 and assume that the codewords {Cn}n≥1 are i.i.d. uniformly distributed906

on the unit hyper-sphere Sd−1 of Rd. For every x∈ Sd−1, and t ≥ 0907

lim
n→∞

PCM∼σd−1
(M1/(d−1)‖VQ(x,CM )− x‖ ≥ t) = W̄d−1,κd(t) , .

Furthermore,908

lim
M→∞

M2/(d−1) ECM∼σd−1

[
‖VQ(x,CM )− x‖2

]
= κ2d Γ

(
1 + 2/(d− 1)

)
.

Proof. Since the uniform distribution over Sd−1 is unitary invariant, we get for all x ∈ Sd−1,909

PC1∼σd−1

(
C1∈ B(x; r)

)
=
σd−1

(
B(x; r) ∩ Sd−1

)
σd−1(Sd−1)

∼r→0+
Lebd−1(B(0; r))

σd−1(Sd−1)

and, using that σd−1(Sd−1) = 2πd/2/Γ(d/2) we get910

Lebd−1(B(0; r))

σd−1(Sd−1)
=

Vd−1r
d−1

σd−1(Sd−1)
=

π
d−1
2 rd−1

Γ(d−12 + 1)

Γ(d2 )

2π
d
2

=
Γ(d2 )

Γ(d+1
2 )

rd−1

2
√
π

=
(
r/κd)

d−1.

Taking r = M−1/(d−1)t yields that911

PCM∼σd−1

(
M−1/(d−1)‖VQ(x,CM )− x‖ > t

)
=
(

1− PC1∼σd−1

(
C1∈ B(0;M−1/(d−1)t)

))M
−→M→∞ e−(t/κd)

d−1

.

This completes the first part of the proof. For the second part of the proof, it is required to check912

the uniform integrability which follows from the fact that the above equivalence (∼) also holds as a913

lower bound inequality.914
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D Algorithmic extensions915

D.1 Spherical codebooks916

In this section, we describe a spherical version of StoVoQ and DoStoVoQ. Beyond the obvious917

change from the codeword distribution from Gaussian to uniform on the sphere, a key modification918

stems form the fact that each quantized vector has norm 1: the debiasing function does not depend919

on ‖x‖, but only on the number of codewords M . Consequently, the bias correction does not need920

to be transmitted and can be directly performed on the central server.921

On the other hand, the norm of each bucket has to be transmitted: the vector quantization is applied922

to the shape, i.e. the unitary vector x/‖x‖. We use a scalar quantizer for the norm, typically over923

4-6 bits. For completeness, the codes of those two algorithms are given in Algorithms 3 and 4.924

Algorithm 3: Spherical-StoVoQ

Input : x ∈ Rd, d, M , P , seed s
Output: Codeword index ic, value ir

1 Sample CM ∼ σd−1 with seed s ; /* sample codebook with uniform distribution σd−1 on the sphere */

2 cl = VQ(x/‖x‖,CM ); /* quantize (select a codeword in spherical codebook CM ) */

3 icl ← index of cl; /* get index of codeword */

4 ir = SQ(‖x‖) ; /* quantize r on P bits */

925

Algorithm 4: Spherical-DoStoVoQ over T iterations
Input : T nb of steps, (γt)t≥0 LR, θ0, d, M , P ;
Output: (θt)t≥0

1 for t = 1, . . . , T do
2 w0 sends θt−1 and different seeds sk,t to each wk;
3 for k = 1, . . . ,K do
4 Compute local gradient gk,t at θt−1;
5 Split gk,t on [b1k,t, . . . , b

L
k,t] ;

6 for ` = 1, . . . , L (in parallel) do
7 (it,k,`c , it,k,`r ) = Spherical− StoVoQ(b`k,t, p,M,P, sk,t)

8 end
9 Send (it,k,`c , it,k,`r )`∈[L] to w0 ;

10 end
11 Reconstruct (ĝk,t)k∈K ;
12 Update: θt = θt−1 − γt 1

K

∑K
k=1 ĝk,t ;

13 end

926

D.2 Extension to DoStoVoQ-DIANA and DoStoVoQ-VR-DIANA927

In this subsection, we provide the adaptations of the DoStoVoQ algorithm to algorithms designed to928

handle heterogeneous workers, and for which the best complexities are achieved, namely DIANA [25]929

and VR-DIANA [17]. Those algorithms are based on the fundamental idea: relying on control variates930

(hk,t)k∈[K],t≥0, updated at each iteration, that converge (in the convex case), for each worker k, to931

∇fk(θ∗). Instead of compressing gk,t, the algorithm compresses the difference between the actual932

gradient and the control variate gk,t−hk,t. The impact of those control variates (often referred to as933

memory) is to mitigate the discrepancy between workers’ gradients that stems from the heterogeneity934

of the data-distribution between different workers. As explained in Appendix E it is particularly935

relevant to reduce this discrepancy to maximize the impact of the multiple workers. The same idea936

can be incorporated within a variance reduced algorithm, we here focus on SVRG [18] (extension to937

SAGA [9] or other variants is straightforward). To incorporate variance reduction to the algorithm,938

we further assume that each fk is a finite sum 1
S

∑
s∈[S] fk,s. Algorithms DoStoVoQ-DIANA and939

DoStoVoQ-DIANA-SVRG are provided in respectively Algorithms 5 and 6.940
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Algorithm 5: DoStoVoQ-DIANA over T iterations . Lines specific to the Diana approach
are highlighted in blue
Input : T nb of steps, (γt)t≥0 LR, θ0, p, M , P , l.r. α ;
Output: (θt)t≥0

1 Set hk,0 = 0 for all k ∈ [K] (or alternatively h0,k = ∇fk(θ0));
2 for t = 1, . . . , T do
3 w0 sends θt−1 and different seeds sk,t to each wk;
4 for k = 1, . . . ,K do
5 Compute local gradient gk,t at θt−1;
6 Set ∆k,t = gk,t − hk,t;
7 Split ∆k,t ×

√
D/‖∆k,t‖ on [δ1k,t, . . . , δ

L
k,t] ;

8 for ` = 1, . . . , L (in parallel) do
9 (it,k,`c , it,k,`r ) = StoVoQ(δ`k,t, p,M, P, sk,t)

10 end
11 Reconstruct (∆̂k,t)k∈K ;
12 Update memory: hk,t+1 = hk,t + α∆̂k,t;
13 Send (‖∆k,t‖, (it,k,`c , it,k,`r )`∈[L]) to w0 ;
14 end
15 On the central node w0;
16 Reconstruct (∆̂k,t)k∈K ;
17 Update: θt = θt−1 − γt(h̄t + 1

K

∑K
k=1 ∆̂k,t) ;

18 Update averaged memory : h̄t+1

(
:= 1

K

∑
k∈[K] hk,t

)
= h̄t + α

K

∑
k∈[K] ∆̂k,t ;

19 end

941

Algorithm 6: DoStoVoQ-DIANA-SVRG over T iterations . Lines specific to the variance
reduction approach are highlighted in green
Input : T nb of steps, (γt)t≥0 LR, θ0, p, M , P , l.r. α ;
Output: (θt)t≥0

1 Set hk,0 = 0 for all k ∈ [K] (or alternatively h0,k = ∇fk(θ0));
2 for t = 1, . . . , T do
3 Sample ut ∼ B(S−1) ;
4 w0 sends θt−1, ut and different seeds sk,t to each wk;
5 for k = 1, . . . ,K do
6 if ut = 1 then
7 Set ηk,s,t = θt for all s ∈ [S];
8 Sample sk,t ∼ Unif[S] ;
9 Set µt,k = S−1∑

s∈S ∇fk,s(ηk,s,t);
10 Set gk,t = ∇fk,sk,t(θt−1)−∇fk,sk,t(ηk,sk,t,t) + µk,t;
11 Set ∆k,t = gk,t − hk,t;
12 Split ∆k,t ×

√
D/‖∆k,t‖ on [δ1k,t, . . . , δ

L
k,t] ;

13 for ` = 1, . . . , L (in parallel) do
14 (it,k,`c , it,k,`r ) = StoVoQ(δ`k,t, p,M, P, sk,t)
15 end
16 Reconstruct (∆̂k,t)k∈K ;
17 Update memory: hk,t+1 = hk,t + α∆̂k,t;
18 Send (‖∆k,t‖, (it,k,`c , it,k,`r )`∈[L]) to w0 ;
19 end
20 On the central node w0;
21 Reconstruct (∆̂k,t)k∈K ;
22 Update: θt = θt−1 − γt(h̄t + 1

K

∑K
k=1 ∆̂k,t) ;

23 Update averaged memory : h̄t+1

(
:= 1

K

∑
k∈[K] hk,t

)
= h̄t + α

K

∑
k∈[K] ∆̂k,t ;

24 end

942
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E Additional experiments943

In this Section, we compare by Monte Carlo the distortions achieved by different compression944

schemes for 3 types of input x. For a given (random) compressor generically denoted Q(·) and945

x ∈ Rd, we decompose Q(x) = Q‖(x) + Q⊥(x), where Q‖(x) = ‖x‖−2xx>Q(x). With these946

notations, Q‖(x) and Q⊥(x) are the components of the quantization error which are colinear and947

orthogonal to x, respectively. By construction, ‖x − Q(x)‖2 = ‖x − Q‖(x)‖2 + ‖Q⊥(x)‖2. The948

distortion is computed for K = 1 and K ∈ {8, 20} workers (depending on the experiments). We949

compare 10 compression schemes, corresponding to 7 algorithms (some with several variants): the950

signed algorithm (Sign) (see Definition 1), Top-H with H = 2 (see Definition 2), Rand-H with951

H = 2 (see Definition 3), HSQ-Span (see Appendix B.3.1) with M = 210 and a 6 bits scalar quan-952

tizer for the norm, HSQ-greed (see appendix B.3.2) with M = 210 and a 6 bits scalar quantizer for953

the norm, Polytope (see Appendix B.2) with and without quantization of the norm, three variants954

of StoVoQ with a Gaussian random codebook with M = 213 and p = N (0, (1 + 2/d) Id): GRVQ955

which is StoVoQ without the radial debiasing step, StoVoQ without quantization of rpM , and StoVoQ956

with an unbiased scalar quantization of (rpM )−1 over P = 3 bits (strictly speaking, only this last957

column corresponds to the algorithm StoVoQ, the two previous versions have been added to assess958

the influence of the debiasing by {rpM}−1 and the quantization of {rpM}−1).959

We compare those algorithms over three tasks:960

1. Task 1: Compression of a random vector from a standard Gaussian input distribution in961

dimension d = 16. We compare K = 1 to K = 20. Results are given in Appendix E.1.962

2. Task 2: Compression of “real” gradients, extracted from a training performed with a963

VGG16 on CIFAR10 with SGD, extracted at epoch 10, on which a pre-processing sim-964

ilar to DoStoVoQ is applied. The minibatch gradients on a given layer are divided into965

buckets of dimension d = 16. A normalisation is applied to sets of L = 32 buckets966

(the normalisation for the blocks of d × L = 512 coefficients are scalar quantized with967

a high-resolution scalar quantizer and sent to the parameter server). Results are given in968

Appendix E.2.1. We compare the performance with 1 and 8 workers, when all workers969

compress the same gradient. The goal of this task is to assess the impact of the actual970

distribution of the normalised minibatch gradients values w.r.t. a Gaussian distribution.971

3. Task 3: Compression of ”real” gradients, with multiple workers, each worker compresses972

a different minibatch stochastic gradient, computed at the same parameter (as described973

in Subsection 4.2): this is the most practical setting, and we explain the resulting trade-974

offs, especially in terms of the distribution of stochastic gradient noise (see [29]) and the975

inhomogeneity between workers. We perform this task on (i) the same setting as for task976

2, and (ii) the gradients from the LS experiment introduced in Subsection 4.1. Results are977

given in Appendix E.2.2.978

E.1 Distortion for Gaussian input979

Setup: We here compare all methods on a Gaussian input x ∼ N (0, Id) for d = 16. Monte Carlo is980

performed over 104 repetitions. Standard deviation is negligible.981

Observations. Results are provided in Table 5. We make the following observations:982

1. We first observe that in the single worker case, Sign, Top-2, HSQ-greed and StoVoQ-GRVQ983

achieve a global error or respectively 6.4, 8.7, 9.1 and 6.8. (These errors are obtained by summing984

the radial and orthogonal numbers). StoVoQ achieves an error of 11 which is slightly higher,985

Rand-2, Polytope, HSQ-span suffer a much higher errors of 110, 121, 147. This confirms the986

theoretical predictions.987

2. We observe in practice here the fundamental differences between biased / unbiased compression988

methods and also methods that ensure the independence of the compression on each individual989

worker: while all biased methods do not benefit from the multiplicity of workers, for unbiased990

and independent compression, the distortion for K = 1 is divided by K. Here, the quadratic991

errors, both radial and orthogonal, are reduced by a factor 20. Overall, over 20 workers, the error992

obtained by StoVoQ, with debiasing and scalar quantization is 0.5. This is by far the best method993

in terms of global distortion for 20 workers.994
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Table 5: Task 1: Distortion for Gaussian inputs

Method Sign Top-2 Rand-2 Polytope
Variant norm-quant.
K = 1 1.0 ‖ 5.4 4.8 ‖ 3.9 12 ‖ 98 5.8 ‖ 115 5.8 ‖ 115
K = 20 1.0 ‖ 5.4 4.7 ‖ 3.8 0.6 ‖ 4.8 0.3 ‖ 5.6 0.3 ‖ 5.6

Method HSQ-span HSQ-greed StoVoQ
Variant norm-quant. norm-quant. GRVQ Unbiased Unbiased+quant.
K = 1 3.8 ‖ 143 1.3 ‖ 7.8 1.8 ‖ 5.0 0.5 ‖ 10.5 0.5 ‖ 10.5
K = 20 0.2 ‖ 7.0 1.3 ‖ 7.5 1.7 ‖ 0.25 0.03 ‖ 0.5 0.03 ‖ 0.5

3. StoVoQ-GRVQ vs StoVoQ-Unbiased. For StoVoQ, the application of debiasing increases the non-995

radial quantization distortion, by a factor of nearly 2 (from 5 to 10), while simultaneously re-996

ducing the radial distortion, form 2 to 0.5. This increase is unavoidable to obtain the unbiased997

character, that is necessary to reduce the error beyond 1. Indeed, it is important to remark the998

radial bias for StoVoQ-GVRQ and HSQ is not negligible (1.3 and 1.8 respectively): in fact , this999

radial distortion is also of order M−2/d thus using an even larger codebook would not reduce it1000

significantly.1001

4. StoVoQ-Unbiased vs StoVoQ-Unbiased+Scalar-Quantization. We observe that the impact of the1002

scalar quantization is negligible here, which indicates that the impact of the scalar quantization1003

of the norm is limited.1004

5. HSQ vs StoVoQ-GRVQ: These two methods are somehow similar for a single worker: HSQ relies1005

on a gain-shape decomposition with the a scalar quantization of the norm and a vector quanti-1006

zation of the normalized vector using spherical codebooks whereas GRVQ uses random Gaussian1007

codebooks with a variance matched to the input variance. We observe that overall StoVoQ-GRVQ1008

slightly outperforms HSQ for K = 1. This is in favor of using Gaussian codebooks.1009

E.2 Distortion for neural networks gradients1010

E.2.1 Task 2: Impact of the distribution1011
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Figure 7: Histograms of the VGG16 gradient
buckets (blue), of Gaussian vectors (orange), and
the radial bias for the associated dimension d =
16 (green).

Setup. We compare the distortion for K = 11012

and 8, on stochastic gradients sampled from1013

the training of a VGG16, with SGD, at epoch1014

10. The gradients are partitioned into blocks of1015

size 29; then each block is scaled and split into1016

buckets of dimension d = 16. Those buckets1017

are then compressed using each of the possible1018

methods in dimension 16. The results presented1019

are obtained using 1000 stochastic gradient .1020

The main objective is to compare the impact1021

of the distribution of the gradients on the dis-1022

tortion of the different compressors. For ex-1023

ample, if the stochastic gradient noise is heavy1024

tailed (leading equivalently to sparse gradients),1025

methods relying on sparsification, e.g., Top-2,1026

is expected to perform significantly better than Gaussian random codebook (recall that the opti-1027

mality result Theorem 3 assumes that the distribution of the codewords matches the distribution1028

of the inputs; the choice of a Gaussian distribution for the codewords implicitly assumes that the1029

distribution of the gradients is approximately Gaussian).1030

For K = 8, we assume that each workers compresses the same gradient : we compute the error of1031

K−1
∑
k∈[K] ĝt,k − gt, where ĝt,k stands for the output of the k-th compressor on gt.1032
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Table 6: Task 2: empirical distortion from a sample of gradients sampled from a VGG-16 at epoch
10, (same gradients on each worker).

Method Sign Top-2 Rand-2 Polytope
Variant norm-quant.
K = 1 0.46‖0.35 0.35‖0.16 0.86‖4.8 0.50‖7.0 0.50‖7.1
K = 8 0.46‖0.35 0.35‖0.16 0.15‖0.61 0.07‖0.9 0.07‖0.9

Method HSQ-span HSQ-greed StoVoQ
Variant norm-quant. norm-quant. GRVQ Unbiased Unbiased+quant.
K = 1 0.24 ‖ 7.5 0.09 ‖ 0.5 0.05 ‖ 0.2 0.02 ‖ 0.36 0.02 ‖ 0.4
K = 8 0.07 ‖ 0.9 0.09 ‖ 0.4 0.04 ‖ 0.03 0.002 ‖ 0.05 0.003 ‖ 0.05

As shown in Appendix A.5, the distortion of StoVoQ is a non-decreasing function of the norm of1033

the vector to be compressed. In Figure 7, we represent simultaneously the histogram of the bucket1034

norms, and the histogram of the norms of the Gaussian vectors used in Task 1. This suggests a1035

departure from the Gaussian distribution for the stochastic gradient noise.1036

Observations Results are provided in Table 6. We highlight the following points.1037

1. Again, the unbiased version of StoVoQ achieves the best distortion.1038

2. Even though the distribution of the norms is very different from the norm of the Gaussian1039

vectors (as illustrated in Figure 7), the distortion of StoVoQ is not severely impaired. Espe-1040

cially, the error for StoVoQ for a single worker is 0.4 vs 0.7 for Top-2, while for Gaussian1041

inputs it was 11 vs 8.7 for Top-2.1042

E.2.2 Task 3: Signal-Noise ratio on the various gradients1043

Setup: We now consider that each worker computes and compresses a different stochastic gradient.1044

More precisely, we collect samples of the stochastic gradients during an epoch: [g>t,1, . . . , g
>
t,K ],1045

where gt,k is computed by the worker k on distinct minibatch of size b (all the gradients are1046

{gt,k}Kk=1 are evaluated for the same value of the parameters). The compressed version is denoted1047

{ĝt,k}Kk=1.1048

In the homogeneous setting, for all k ∈ [K], gt,k(θt) = ∇F (θt)+εt,k, with (εt,k)t,k is the stochastic1049

gradient noise E [εt,k | Ft−1] = 0, where Ft−1 collects the past observations.1050

The central node averages the quantized stochastic gradient sent by the workers: g̃t :=1051

K−1
∑K
k=1 ĝt,k. We report in Tables 4 and 8 the normalized averaged error defined as1052

T−1
∑
t∈[T ]

‖ 1
K

∑K
k=1 ĝt,k − gt,k‖2

‖ 1
K

∑K
k=1 gt,k‖2

. (28)

We here discuss in which settings we expect the multiple workers to improve w.r.t. a single worker.1053

More precisely, we show that the impact of enforcing unbiased independent compression for the1054

different workers increases with the "dependence" of stochastic gradients. Consider the following1055

two cases. Example 1: (large noise, low correlation between stochastic gradients) each worker1056

computes a stochastic gradient that is nearly independent of the other workers. The error made is not1057

reduced by the multiplicity of workers. Example 2: (low or no noise, strong consensus between1058

stochastic gradients) if each worker computes the same gradient, we recover task 2. The variance1059

reduction obtained by using multiple workers and independent compressors is proportional to the1060

number of workers. More generally, this is true when the noise is small w.r.t. the gradient of the1061

function.1062

This signal/noise ratio fundamentally impacts the performance of algorithms using compressions1063

operators: in example 2, it is crucial to use unbiased and independent workers, while in example 1,1064

it is more important to reduce the distortion for a single worker.1065
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Table 7: Task 3: normalized distortion for a mini-batch of size 4096 of a VGG-16 at epoch 10.

Method Sign Top-2 Rand-2 Polytope
Variant norm-quant.
K = 1 0.3‖0.2 0.5‖0.2 0.5‖6.2 0.2‖7.3 0.2‖7.3
K = 8 0.3‖0.1 0.5‖0.1 0.09‖1.8 0.06‖2.0 0.06‖2.0

Method HSQ-span HSQ-greed StoVoQ
Variant norm-quant. norm-quant. GRVQ Unbiased Unbiased+quant.
K = 1 0.2 ‖ 8.5 0.09 ‖ 0.5 0.06 ‖ 0.2 0.02 ‖ 0.4 0.02 ‖ 0.4
K = 8 0.09 ‖ 2.3 0.09 ‖ 0.4 0.1 ‖ 0.07 0.01 ‖ 0.1 0.01 ‖ 0.1

Many factors impact this “consensus” between workers: first of all the mini-batch size. The noise1066

variance is inversely proportional to b: as b increases, each stochastic gradient becomes closer to1067

∇F (θ). More generally, all variance reduction techniques tend to increase the “consensus”. On1068

the other hand, heterogeneity between workers increases the discrepancy between gradients (but1069

memory techniques as in DoStoVoQ-DIANA mitigate this discrepancy). Finally, performing several1070

steps [36], as in Local-SGD also has a similar impact of averaging the noise over several iterations,1071

and thus increases the consensus.1072

We thus evaluate all algorithms on two tasks:1073

1. First, on gradients extracted from the LSR task: in this task, data is distributed on all1074

workers, that compute a batch gradient. The gradients obviously depend on the workers1075

(each worker has access to a different subset of the data), but because the workers are1076

homogeneous, these gradients have a strong consensus. We give the results in Table 8. We1077

observe that the reduction by a factor 8 is preserved when using K = 8. This explains why1078

our method outperforms HSQ in Figure 2.1079

2. Second, on gradients from the VGG16 trained with SGD on CIFAR. On this task, the1080

noise level is much higher and the consensus much weaker. This is expected in very high1081

dimensional models and non convex objective (roughly speaking, the gradients on different1082

workers nearly point in random descent directions). We thus do not see any strong effect1083

of the number of workers on the distortion for b ≤ 512. Increasing further the batch size,1084

to b = 4096, we recover the gain of multiple workers. Results are given in Table 7. The1085

distortion is twice smaller with StoVoQ-unbiased than with any other method. While a1086

batch of 4096 is very high, very large batch were used in a successful training of CIFAR1087

and IMAGENET in Lin et al. [24]. More generally, when communication cost is a major1088

concern, increasing the batch size and the number of local iterations is natural, to increase1089

the quality of updates transmitted.1090

Table 8: Task 3: normalized distortion for LSR (see Section 4).

Method Sign Top-2 Rand-2 Polytope
Variant norm-quant.
K = 1 0.05‖0.3 0.4‖0.2 0.6‖6.3 0.3‖7.3 0.3‖7.3
K = 8 0.04‖0.09 0.4‖0.08 0.1‖1.3 0.07‖1.4 0.07‖1.4

Method HSQ-span HSQ-greed StoVoQ
Variant norm-quant. norm-quant. GRVQ Unbiased Unbiased+quant.
K = 1 0.3 ‖ 9.4 0.09 ‖ 0.5 0.1 ‖ 0.3 0.03 ‖ 0.6 0.03 ‖ 0.6
K = 8 0.08 ‖ 1.9 0.09 ‖ 0.1 0.1 ‖ 0.06 0.008 ‖ 0.1 0.008 ‖ 0.1
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