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APPENDIX

A NETWORK ARCHITECTURE AND TRAINING

Network architectures are given in Tab. 3 and largely follow the architecture in Ghosh et al. (2019).
For consistency, all the models share the same encoder/decoder structure. The full covariance repre-
sentation can be realized by predicting n-dimensional standard deviations σφ as well as n(n−1)/2-
dimensional correlation factors rφ (followed by a tanh projection into the valid [−1, 1] range), and
building the lower triangular covariance matrix5 Lφ. This way, one can ensure the symmetry and
positive semi-definiteness of the full covariance matrix, Σφ = LφL

T
φ .

VAE: xC×W×H → ENCODER→{FC1024×n : µφ, FC1024×n : logσ2
φ} → z→ DECODER→ x̂

RAE: xC×W×H → ENCODER→{FC1024×n : zφ}→ DECODER→ x̂

UAE: xC×W×H → ENCODER→{FC1024×n : µφ, FC1024×n : logσ2
φ, FC1024×n(n+1)/2 : rφ} → z→ DECODER→ x̂

ENCODER: CONV32×64 → CONV64×128 → CONV128×256 → CONV256×512 → CONV512×1024 → FLATTEN

DECODER: FCn×1024·8·8 → TCONV1024×512 → TCONV512×256[→ TCONV256×128]
CelebA → TCONV256 or128×C

MNIST: C = 1,W = H = 32, n = 16
CIFAR10: C = 3,W = H = 32, n = 128
CELEBA: C = 3,W = H = 64, n = 64

Table 3: Network architectures of the implemented VAE, RAE, and UAE models. Batch dimensions
omitted for clarity. All the encoder 2D convolution blocks contain 3×3 kernels, stride 2, and padding
1, followed by a 2D batch normalization and a Leaky-ReLU activation. The decoder transpose
convolutions share the same parameters as the encoder convolutions apart from using a 4×4 kernel.
The last transpose convolution (mapping to channel dimension) however has a 3 × 3 kernel and is
followed by a tanh activation instead (without batch normalization).

The dataset preprocessing procedure is the following. The Fashion-MNIST images are scaled from
28× 28 to 32× 32. For the training dataset, we use 50k out of the 60k provided examples, leaving
the remaining 10k for the validation dataset. For the test dataset, we use the provided examples.
In CIFAR10, we perform a size-4 padding, a random 32 × 32 crop, and a random horizontal flip
on the training data, followed by a normalization for all the dataset subsets. We use the same
training/validation/test split method as in Fashion-MNIST. In CelebA, we perform a 148×148 center
crop and resize the images to 64× 64. We use the provided training/validation/testing subsets.

All the models are implemented in PyTorch (Paszke et al., 2019) (source code available upon re-
quest) and use the library provided in Seitzer (2020) for FID computation. The models are trained
for 100 epochs, starting with a 0.005 learning rate, cut in half after every five epochs without im-
provement. The weights used in the loss functions are the following: KL-divergence (or the Wasser-
stein metric) terms are weighted with β = 2.5e−4 in the case of VAE and UAE and β = 1e−4 for
the RAE. The decoder regularization terms are weighted with γ = 1e−6 for both RAE and UAE.
We performed minimal hyperparameter search over the weights.

In computing the FID scores, we follow the same procedure as in Ghosh et al. (2019). In the
three cases of reconstruction, sampling, and interpolation, we evaluate the FID to the test set image
reconstructions as the ground-truth. In the reconstruction metric, we use the validation image re-
constructions. In sampling, we fit the training dataset latent features to a GMM (see Sec. 5.1) and
sample and reconstruct the same number of elements as in the test set. In interpolation, we apply
mid-point spherical interpolation between a random pair of validation set embeddings and use the
reconstructions of the same number of samples as in the validation set.

The network architectures largely follow the structure adopted by Ghosh et al. (2019), with the
difference of the added first two encoder layers. Nevertheless, in Tab. 2, we did not manage to
reproduce the FID values reported in Ghosh et al. (2019) on CelebA and CIFAR10, even observing
that removing the first two encoder layers reduces the overall performance. We suspect that it is

5In the 3-dimensional case: Lφ = [σ1 0 0; r1σ2σ1 σ2 0; r2σ3σ1 r3σ3σ2 σ3]
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due to the differing Tensorflow and PyTorch model implementations as well as the FID computation
libraries. However, in most cases, our implementation of the RAE attains a larger performance gain
over the VAE than reported in Ghosh et al. (2019).

B GRADIENT VARIANCE

In the following, we present the trivial argument that a VAE-like model with deterministic posterior
sampling (such as the unscented transform in the UAE) achieves lower variance in training than
a random-sampling VAE model. For simplicity, we observe the single-dimensional case that can
be generalized to multiple dimensions. We compare on the one hand, a VAE reconstruction loss
with random sampling from the standard normal prior N and the reconstruction loss of a VAE-like
model where we sample from a discrete uniform distribution χ of K points {χk}Kk=1 (for example
the sigma points in Eq. (5)) instead. The losses are given as

Lχ = ‖Dθ(µ+ σε)− x‖2, ε ∼ χ (20)

LN = ‖Dθ(µ+ σε)− x‖2, ε ∼ N . (21)

For a single sample εj (from theN or χ) and a single training example denoted by xi, the gradients
of the reconstruction losses w.r.t. the parameterization θ are given as

∇θLi,jχ = ∇θ‖Dθ(µi + σiεj |xi)− xi‖2, εj ∼ χ (22)

∇θLi,jN = ∇θ‖Dθ(µi + σiεj |xi)− xi‖2, εj ∼ N . (23)

The variance of the given gradient can be computed under the expectation of the data distribution

Var(∇θLjχ) = Exi‖∇θLi,jχ −∇θLjχ‖22 (24)

Var(∇θLjN ) = Exi‖∇θL
i,j
N −∇θL

j
N ‖

2
2 , (25)

for a given sample εj , where ∇θLjχ and ∇θLjN are the ’true’ gradients. For clarity, we denote
∇θLχ = ∆χ and ∇θLN = ∆N and compare the given gradients while assuming that the variance
of ∆j

χ is lower
Var(∆j

χ) ≤ Var(∆j
N ) (26)

The variances are random variables w.r.t. εj and can be generalized into an expectation

Eε∼χ[Var(∆χ)] ≤ Eε∼N [Var(∆N )] (27)

Here, the discrete distribution χ can be approximated by a mixture of Diracs or very narrow Gaussian
kernels. Therefore, an importance sampling substitution can be used to replace the χ sampling with
the normal distribution

Eε∼N [
χ(ε)

N (ε)
Var(∆N )] ≤ Eε∼N [Var(∆N )] . (28)

This is well-defined since the approximated χ distribution is contained within the support of N .
Then, the common sampling distribution allows to confirm the initial assumption through the fol-
lowing relationship

Eε∼N [(
χ(ε)

N (ε)
− 1)Var(∆N )] ≤ 0 . (29)

In practice, the expectation is approximated by a single or few samples from N . Thus, the density
χ(ε) is zero (in the case of a Dirac approximation, or near-zero in the narrow kernel case), rendering
the variance-weighting term negative and consequently the entire left side of the equation non-
positive (due to the by-definition non-negativity of the variance). This allows to conclude that the
variance of a deterministic sampling reconstruction loss gradient is lower than the random sampling
gradient.

We provide additional, empirical reasoning to the lower-gradient-variance argument. Fig. 3 shows
the isolated effects of the unscented transform on the VAE training (not considering the full UAE
model) through the infinity norm of the training gradient. Apart from observing fewer peaks in the
values, the lower norm of the training gradient in practice contributes to an overall lower gradient
variance, simply through the lower values.
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Figure 3: Comparison of the infinity norm of the training gradients (logarithm scale) for the VAE
and UT-VAE across approx. 60k training steps (100 epochs) on the CIFAR10 dataset. See Tab. 1
for the loss function definitions. In both instances, a single sample or sigma point is taken. The UT-
VAE incorporates lower-variance posterior sampling than the reparameterization trick; thus, simply
sampling at the sigma points contributes to lower values and fewer peaks of the gradient norm.

C ELBO CONSTRAINT DERIVATION

In this section, we complete the derivation of the constraint in Eq. (13) to the reformulated version
in Eq. (14). The constraint in Eq. (13) can be bounded by the maximum of the decoder output in a
single dimension i, multiplied by the number of dimensions

‖Dθ(z1)−Dθ(z2)‖p ≤ dim(x) · sup
i
{‖di(z1)− di(z2)‖p} < ε . (30)

Using the mean value theorem, the term supi{‖di(z1)− di(z2)‖p} can be reduced to

sup
i
{‖∇tdi((1− t)z1 + tz2)‖p · ‖z1 − z2‖p} < ε , (31)

Since z1 and z2 are arbitrary, the first part can be simplified and generalized over all dimensions
while separating the overall product using the Cauchy-Schwarz inequality

sup
i
{‖∇zdi(z)‖p · ‖z1 − z2‖p} < ε (32)

sup{‖∇zDθ(z)‖p} · sup{‖z1 − z2‖p} < ε , (33)

obtaining the form in Eq. (14).

D MULTI-SIGMA TRAINING

The UAE loss function defined in Tab. 1 assumes a single sigma point sample in the reconstruction
term and the decoder gradient. Similarly to the multi-sample case in the VAE, multiple sigma points
(up to 2n+1) chosen from the set {χi(µφ,Σφ)}2ni=0 can be incorporated. One strategy is expanding
the reconstruction term into an expectation Ezi∼{χi}‖x − Dθ(zi)‖22 and computing the decoder
gradient term for the sampled sigma points. An alternative is training on a single randomly chosen
sigma point but replicating the training examples. Multiple training examples were used in Burda
et al. (2016), where importance-weighted posterior samples (obtained via the reparameterization
trick) yield a tighter lower bound.

Instead of choosing the points randomly and with equal probability, different sampling strategies
can be utilized. For example, only pairs of sigma points along an axis can be chosen, conveying
the width of the posterior distribution in the given dimension. This is illustrated in Fig. 1b for an
ellipsoid with three pairs and seven sigma points in total.

Sampling sigma points is trivially lower variance than the random sampling of the VAE reparame-
terization trick, see Appendix B. However, it is biased and yields non-independent samples. Nev-
ertheless, in practice we have observed that the multi-sigma UAE models clearly outperform the
single-sigma one, evidenced by the results in Tab. 4.

15



Under review as a conference paper at ICLR 2023

Fashion-MNIST CIFAR10 CelebA

Rec. Sample Interp. Rec. Sample Interp. Rec. Sample Interp.
1x∼VAE 47.38 51.74 66.04 160.05 173.45 170.33 65.86 67.66 68.08
2x∼VAE 43.36 48.47 62.57 151.13 165.60 162.60 63.46 65.46 65.98
4x∼VAE 42.30 49.50 64.09 146.21 161.17 158.19 62.19 64.36 64.58
8x∼VAE 39.00 46.81 62.16 141.84 158.14 154.65 60.49 62.89 62.93
1x∼VAE* 31.90 39.61 55.60 136.90 156.83 151.41 45.15 50.29 53.23
2x∼VAE* 30.43 44.43 60.22 119.46 146.18 139.28 43.52 48.21 54.29
4x∼VAE* 28.89 43.16 65.13 115.04 141.73 134.61 38.75 44.47 54.24
8x∼VAE* 28.39 44.82 72.56 101.76 136.73 127.44 38.02 44.90 55.69
1x∼UAE 33.30 40.81 60.13 120.95 147.07 137.39 37.93 44.59 46.45
2x∼UAE 32.15 40.48 59.68 113.46 141.34 130.99 37.55 44.35 48.41
4x∼UAE 29.31 40.35 63.57 107.42 137.41 127.12 35.45 42.33 46.79
8x∼UAE 27.44 42.36 74.42 94.17 132.62 116.68 34.36 41.22 45.04

Table 4: Comparison of multi-sample models: in all the cases, training examples are replicated,
which results in multiple prior samples or sigma points to be utilized on the same training example.

E ABLATION STUDY OF THE LOSS COMPONENTS

This section provides an additional ablation study of the loss components used in the UAE model.
The loss functions considered are provided in Tab 5 and the obtained results are in Tab. 6. There are
four dimensions along which the results can be interpreted: Wasserstein metric, unscented transform,
full covariance representation, and the decoder regularization (gradient penalty).

Tab. 6 is divided into two parts: the top part models use the analytical form of the KL divergence
(Eq. 9) while the bottom part use the Frobenius norm mismatch derived from the Wasserstein metric
(Eq. 10). It is clearly visible that the latter models strongly outperform the former, in all datasets
and configurations. The loss function allows for a sharper posterior and thus larger expressiveness
of the model (see Appendix F).

Considering the unscented transform models, it is interesting to note that applying it in the case of
a diagonal posterior and standard KL divergence loss (UT-VAE row) can lead to large regressions
in the sampling and interpolation metrics (as seen in Fashion-MNIST and CelebA while CIFAR10
seems to be more robust). It seems to have a detrimental effect on the structure of the latent space
under assumptions of orthogonality. However, the VAE* can benefit from the unscented transform
sampling, evidenced by the CIFAR10 metrics.

Considering the full covariance models, interesting interplays can be noticed. Overall, modeling
the full covariance posterior in the context of the analytical KL divergence loss is not beneficial, as
evidenced in the VAE-fullΣφ row. However, in the VAE* case, it appears that the Wasserstein metric
enables the model to utilize correlations in a stable way (VAE*-fullΣφ row). This is evidenced by
the improvements on CIFAR10 and CelebA while Fashion-MNIST generally appears to not benefit
from the full covariance. As mentioned in Sec. 6, we assume the lower-dimensional input space to
be the cause. Then, applying the unscented transform in conjunction with the full covariance model
brings performance improvements on CIFAR10, both in the case of UT-VAE-fullΣφ vs. VAE-
fullΣφ as well as UT-VAE*-fullΣφ vs. VAE*-fullΣφ, with mixed results on the other datasets.

Finally, it appears that the decoder regularization helps the unscented transform models achieve a
much more structured latent space, both in the KL divergence and Wasserstein metric cases, and
both for the diagonal and full covariance posteriors. Without the unscented transform, the decoder
regularization is beneficial in the VAE* case but not in the KL divergence case.

F AGGREGATED POSTERIOR VISUALIZATION

In Fig. 4 we present detailed plots on the posterior distributions of VAE and VAE* for the first 16
dimensions. The VAE clearly shows signs of posterior collapse; we have observed that more than
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Loss function Posterior sampling

LVAE ‖x−Dθ(z)‖22+‖µφ‖
2
2+

∑
i σ

2
φ,i−2 log σφ,i z=µφ+σφ�ε, ε∼N (0,I)

LUT-VAE ‖x−Dθ(z)‖22+‖µφ‖
2
2+

∑
i σ

2
φ,i−2 log σφ,i z∼{χi(µφ,diag(σ2

φ))}
2n
i=0

LUT-VAE-GP ‖x−Dθ(z)‖22+‖µφ‖
2
2+

∑
i σ

2φ,i−2 log σφ,i+max(σφ)‖∇zDθ(z)‖22 z∼{χi(µφ,diag(σ2
φ))}

2n
i=0

LVAE-fullΣφ
‖x−Dθ(z)‖22+‖µφ‖

2
2+tr(Σφ)−2tr(logLφ) z=µφ+Lφε, ε∼N (0,I)

LVAE-fullΣφ-GP ‖x−Dθ(z)‖22+‖µφ‖
2
2+tr(Σφ)−2tr(logLφ)+λmax(Σφ)‖∇zDθ(z)‖22 z=µφ+Lφε, ε∼N (0,I)

LUT-VAE-fullΣφ
‖x−Dθ(z)‖22+‖µφ‖

2
2+tr(Σφ)−2tr(logLφ) z∼{χi(µφ,Σφ)}2ni=0

LUT-VAE-fullΣφ-GP ‖x−Dθ(z)‖22+‖µφ‖
2
2+tr(Σφ)−2tr(logLφ)+λmax(Σφ)‖∇zDθ(z)‖22 z∼{χi(µφ,Σφ)}2ni=0

LVAE* ‖x−Dθ(z)‖22+‖µφ‖
2
2+‖diag(σ2

φ)−I‖2F z=µφ+σφ�ε, ε∼N (0,I)

LUT-VAE* ‖x−Dθ(z)‖22+‖µφ‖
2
2+‖diag(σ2

φ)−I‖2F z∼{χi(µφ,diag(σ2
φ))}

2n
i=0

LUT-VAE*-GP ‖x−Dθ(z)‖22+‖µφ‖
2
2+‖diag(σ2

φ)−I‖2F+max(σφ)‖∇zDθ(z)‖22 z∼{χi(µφ,diag(σ2
φ))}

2n
i=0

LVAE*-fullΣφ
‖x−Dθ(z)‖22+‖µφ‖

2
2+‖Lφ−I‖2F z=µφ+Lφε, ε∼N (0,I)

LVAE*-fullΣφ-GP ‖x−Dθ(z)‖22+‖µφ‖
2
2+‖Lφ−I‖2F+λmax(Σφ)‖∇zDθ(z)‖22 z=µφ+Lφε, ε∼N (0,I)

LUT-VAE*-fullΣφ
‖x−Dθ(z)‖22+‖µφ‖

2
2+‖Lφ−I‖2F z∼{χi(µφ,Σφ)}2ni=0

LUT-VAE*-fullΣφ-GP ‖x−Dθ(z)‖22+‖µφ‖
2
2+‖Lφ−I‖2F+λmax(Σφ)‖∇zDθ(z)‖22 z∼{χi(µφ,Σφ)}2ni=0

Table 5: The loss functions used for the models in Tab. 6.

Fashion-MNIST CIFAR10 CelebA

Rec. Sample Interp. Rec. Sample Interp. Rec. Sample Interp.

VAE 47.38 51.74 66.04 160.05 173.45 170.33 65.86 67.66 68.08
UT-VAE 47.48 74.67 69.99 155.72 175.89 166.37 58.09 250.2 122.5
UT-VAE-GP 50.98 74.57 71.19 153.23 172.40 163.82 54.68 215.6 92.81
VAE-fullΣφ 59.21 63.73 72.97 181.56 189.49 184.59 87.38 88.09 87.32
VAE-fullΣφ-GP 60.51 64.76 73.54 189.27 199.04 196.23 117.9 189.8 166.0
UT-VAE-fullΣφ 82.40 134.7 139.7 174.11 187.37 179.07 92.39 267.4 169.1
UT-VAE-fullΣφ-GP 70.61 107.0 96.36 153.62 179.43 173.14 98.50 250.1 154.4

VAE* 33.72 40.39 59.76 136.90 156.83 151.41 45.15 50.29 53.23
UT-VAE* 33.57 40.31 57.21 134.21 153.09 147.32 48.29 56.14 54.14
UT-VAE* -GP 32.46 39.88 59.65 131.28 151.29 145.11 40.48 47.63 50.93
VAE*-fullΣφ 36.23 42.73 62.95 133.98 153.15 148.04 42.26 49.12 62.58
VAE*-fullΣφ-GP 35.41 41.97 61.10 125.65 148.35 139.16 40.08 47.40 50.58
UT-VAE*-fullΣφ 35.78 42.97 66.75 126.00 149.52 141.67 43.00 53.39 51.22
UT-VAE*-fullΣφ-GP 33.30 40.81 60.13 120.95 147.07 137.39 37.93 44.59 46.45

Table 6: Full ablation study of the models between the VAE and UAE (in the UT-VAE*-fullΣφ-GP
row), using the Wasserstein metric denoted by *, unscented transform (UT), full covariance matrix,
and the decoder gradient penalty (GP) components.

half of the 128 dimensions are nearly equal to the prior. This considerably hurts the generative
power of the VAE model. In contrast, the VAE* model has very low variance in all dimensions,
which reflects a nearly deterministic encoder at the end of the training.

G QUALITATIVE RESULTS

Qualitative results on Fashion-MNIST and CIFAR10 are provided in Fig. 5 and Fig. 6. The same
setup as in Fig. 2 is employed. It can be seen that the CIFAR10 images appear considerably richer
and sharper, consistent with the results in Tab. 2 and Tab. 4.
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Figure 4: Comparison of the distribution of absolute means and variances of 1000 posterior samples
for the VAE and the VAE* models on the CIFAR10 dataset. Top rows show the absolute means
and the lower rows the variances of the first 16 dimensions. For the VAE* all the means differ from
zero while the variances are close to zero, whereas for the VAE, 10 of 16 dimensions are effectively
deactivated.
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Figure 5: Qualitative results on CIFAR10 dataset.
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Figure 6: Qualitative results on Fashion-MNIST dataset.
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