
Score-based generative models for 
binding peptide backbones

Introduction

• Score-based generative models (SGMs) are capable of generating 
diverse, novel protein backbone structures1,2.

• A key application of SGMs in protein design is the generation of 
protein backbones that bind a pre-specified target protein.
Ø In order to obtain a functional binder, amino acid sequences for 

these generated backbones are typically designed post-hoc using 
an inverse folding model4.

• Thus far, little is known about the key model design choices that 
affect performance for this task. We attribute this to two factors:
Ø The various existing SGMs for backbone design1,2,3 differ so 

substantially in their architecture that it is impossible to identify 
individual features that improve performance.

Ø Appropriate metrics for evaluating designed backbones for 
protein binding in silico do not exist. 

• We present a generative model and evaluation pipeline – named 
LoopGen – that enables controlled comparison of model design 
choices in the context of binding protein backbone generation.

Methods

• Score-based generative models generate samples by learning to 
reverse a forward process that gradually adds noise to data. 

• Protein structures are commonly represented as a sequence of 
frames – one rotation and one translation per residue – since each 
residue’s internal structure is rigid:

• Yim et al.3 established that the noising/denoising process in an 
SGM can be conducted separately over the rotational and 
translational component of each residue in this representation:

• We implemented LoopGen using the above SGM with a GVP-GNN5 

as the score estimator and trained the model to generate binding 
peptide structures conditional on a target protein.

Ø For training, we curated a dataset of antibody complementary 
determining region (CDR) loop structures with maximum 90% sequence 
similarity, each in complex with its target protein.

• Using LoopGen, we evaluated:
Ø The effect of modelling entire residue frames (rotations + translations) 

compared to Cɑ atoms (translations only)
Ø The effect of different variance schedules, specifically the interaction 

between the schedules for rotations and translations
Ø The dependence of the model on the target epitope, using three novel 

tests: permutation, sequence scrambling, and translation of the epitope
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Results

Figure 1. Comparison between a frame-based generative model (blue) and a Cɑ atom generative model (orange) for 
antibody CDR loop structures trained using LoopGen. Although the models are comparable in terms of the RMSD of their 
generated structures to each ground truth CDR (left), the frame generative model more effectively captures the true 
distribution of distances between adjacent Cɑ atoms (middle) and generates samples with much higher diversity, measured 
by Cɑ atom RMSD between samples (right). 
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indexed by time in the noising process 
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The network is trained to approximate the 
score functions at each time t, given the 
protein’s current (noised) structure
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Figure 2. Evaluation of LoopGen-generated 
loops in terms of physicochemical plausibility. 
Ramachandran plot (top left) showing the 
backbone dihedral angle distribution for 
generated loops (orange) aligns with the 
distribution for real CDR loops from the test set 
(blue). Likewise, the minimum distance between 
Cɑ atoms in the CDR loop and the epitope is 
similar between real and generated backbones 
(top right). Finally, we conduct an analysis of 
variance schedule combinations, showing that, 
while the differences between variance 
schedules are not obvious when using ground-
truth RMSD as a metric, they become very clear 
when examining the physicochemical violation 
rates in generated loops (bottom right). Notably, 
the best-performing variance schedule 
corresponds to a sequential denoising, where the 
Cɑ atom positions (translations) are denoised 
before the residue orientations (rotations).

Figure 3. Mean pairwise RMSD between samples generated under various transformations of each test set epitope and the 
WT epitope. For each epitope in the test set, we perform the following perturbations: permutation/alignment with another 
random epitope in the test set (“Random epitope”), permutation of sequence identities within the WT epitope structure 
(“Scrambled epitope”), and translation by 20Å in the direction opposite to the CDR centroid (“Translated epitope”). For each of 
these transformations of the epitope, as well as the WT epitope, we use LoopGen to sample 10 CDR backbones. For these 
10 CDR backbones in each epitope condition, we then plot the mean pairwise RMSD (mpRMSD) within the set generated for 
that epitope condition (blue) and the mpRMSD between the generated backbones for that condition and the CDR backbones 
generated for the WT epitope (orange).

Figure 4. Example generated loop 
structures for a test set epitope (PDB 
ID: 3ULU). Notably, all loops are 
oriented correctly with respect to the 
target, with room to accommodate an 
antibody scaffold.

Future directions

• CDR-specific inverse folding model for sequence design.

• Exact likelihood computation for ranking designs – either using 
probability flow ODE or flow matching framework.

• Grafting – how to identify the optimal antibody framework for 
a designed loop?

Figure taken from https://dauparas.github.io/post/af2/
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