
A LOOPGEN TECHNICAL DETAILS

Score-based generative modelling via stochastic differential equations (SDEs) (Song et al., 2021)
models the process of adding noise to data with the following forward SDE:

dx = f(x, t)dt+ g(t)dw (1)

Where x are the data and w is a Brownian motion. The forward SDE has a corresponding reverse
SDE, which models how data are generated from noise:

dx =
[
f(x, t)− g(t)2∇ log pt(x)

]
dt+ g(t)dw̄ (2)

Where dt is an infinitesimal negative time step and w̄ is a Brownian motion for time moving in the
reverse direction. The score∇ log pt(x) is approximated with an estimator sθ(x, t) by optimising a
score-matching objective, typically of the form:

L(θ) = Ex,t

[
λ(t)∥∇ log pt(x)− sθ(x, t)∥22

]
(3)

Where the coefficients λ(t) are usually chosen to balance the expected magnitudes of the ground
truth scores, i.e. λ(t) = 1/E

[
∥∇ log pt(x)∥2

]
(Song et al., 2021).

An important extension of SGM that has found applications in protein design is the Riemannian
SGM framework, which extends the forward and reverse SDEs to Riemannian manifolds on which
appropriate Brownian motion and probability densities can be defined (De Bortoli et al., 2022),
including the manifold of three-dimensional proper rotations SO(3). In proteins, the orientation of
each amino acid can be represented using a three-dimensional rotation matrix (Jumper et al., 2021),
and recent generative modelling approaches have attempted to generate novel protein structures
by formulating SGM approaches for both the rotational and translational component of each residue
(Watson et al., 2023; Yim et al., 2023). The combination of a rotation and a translation in this context
is known as a frame and is a member of the Lie group SE(3). Yim et al. (2023) formalised the
theory of SGM for frames in their recent work in which they propose a protein generative modelling
approach known as FrameDiff.

To define generative models on SE(3), Yim et al. (2023) note that SE(3) may be identified as
SO(3)×R3 (Yim et al., 2023) under a proper choice of inner product, allowing diffusion processes
over translations (R3) and rotations (SO(3)) to be performed separately. Let T(t) = (R(t),X(t)),
where X(t) ∈ R3 represents a translation and R(t) ∈ SO(3) represents a rotation at time t. Let
B

(t)
M represent Brownian motion on a manifold M.1 Then, the forward diffusion process can be

described as follows:

dT(t) = [0,−1

2
PX(t)]dt+

î
dB

(t)
SO(3),dPB

(t)
R3

ó
(4)

where P is a projection matrix centering the translations at the origin. Removing the center of mass
maintains SE(3)-invariance. Notably, there is no drift term for the rotations R(t). Similarly, the
reverse process is defined as

dR(t) = ∇R log pt(T
(t))dt+ dB

(t)
SO(3)

dX(t) = P

Å
1

2
X(t) +∇x log pt(T

(t))

ã
dt+ PdB

(t)
R3

(5)

LoopGen takes inspiration from FrameDiff (Yim et al., 2023) and focuses specifically on adapting
their proposed SGM framework to make score-based generative models for frames more flexible and
more straightforward to train. FrameDiff relies on the Invariant Point Attention (IPA) architecture

1Please see De Bortoli et al. (2022) and section 2 of Yim et al. (2023) for more details on deriving the
forward and reverse processes on M.
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(Jumper et al., 2021) to predict the ground truth frame T(0) = (R(0),x(0)) for each residue, and
calculates the predicted score at each time step by backpropagating through the score function:

sθ(T
(t), t) = ∇ log pt(T

(t)|T̂(0)) (6)

=
î
∇ log pt(R

(t)|R̂(0)),∇ log pt(x
(t)|x̂(0))

ó
(7)

where the score for a frame is defined separately for rotations and translations. Importantly, this
formulation restricts the form of the estimator sθ(T(t), t) to functions that directly predict frames
T̂(0) = (R̂(0), x̂(0)). However, we note that for translations x ∈ R3, the score ∇ log pt(x) for
a Gaussian density can be predicted directly as an SO(3)-equivariant 3-vector, and likewise for
rotations R ∈ SO(3), the isomorphism between the Lie algebra so(3) and R3 can be exploited to
represent and predict the rotational score∇ log pt(R) directly as an element of R3. For the IGSO(3)
distribution (Leach et al., 2022), we note that this formulation has the key advantage of not requiring
continuous re-estimation of the infinite sum in the IGSO(3) density function (8) during the training
process, which can require significant compute and numerical instabilities. Instead, scores can be
computed before training for a discretized support (on the interval [0, 2π]), cached, and returned as
constants during training since backpropagation through the score function is no longer required.
Furthermore, the reparameterization of the scores as elements of R3 allows a much wider variety of
estimator architectures to be used, beyond functions that directly output frames.

A.1 REPRESENTING THE IGSO(3) SCORE

The IGSO(3) distribution is defined over axis-angle parameterizations of three-dimensional rota-
tions. These have the form ωθ̂, where θ̂ is a unit-length axis of rotation and ω is the angle of
rotation. The density is uniform over axes θ̂, and the density over angles of rotation p(ω) has the
following form:

f(ω) =

∞∑
l=0

(2l + 1) exp [−l(l + 1)σ2]
sin ([l + 1

2 ]ω)

sin (ω2 )
(8)

p(ω) =
1− cos (ω)

π
f(ω) (9)

where σ2 is a variance parameter and the normalising constant 1−cosω
π ensures that the joint dis-

tribution over all axes and angles integrates to 1 (Leach et al., 2022). Adding noise at time t to a
sample rotation R(0) then involves sampling an incremental rotation from the corresponding time
step distribution parameterised by variance ς2t , and then right multiplying with the sample rotation
to obtain a sample from p(R(t)|R(0)):

R ∼ IGSO3(µ = I, σ2 = ς2t ) (10)

R(t) = RR(0) (11)

The score of the noised data distribution p(R(t)|R(0)) then has the following form:

∇ log p(R(t)|R(0)) =
Log

(
[R(0)]⊤R(t)

)
ω
(
[R(0)]⊤R(t)

) f ′ (ω([R(0)]⊤R(t))
)

f
(
ω([R(0)]⊤R(t))

) (12)

Where we use ω(R) to denote the angular component ω of an axis-angle representation ωθ̂ of a rota-
tion matrix R, and follow the convention of Solà et al. (2021), using Log to indicate the logarithmic
matrix map from a Lie group to Euclidean space, i.e. Log : SO(3)→ R3 here. Note that we do not
follow previous works (Yim et al., 2023; Watson et al., 2023) which represent ∇ log p(R(t)|R(0))
as an element of the tangent space at the noised rotation TR(t) = {R(t)Θ : Θ ∈ so(3)}; instead,
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the score is always represented at the tangent space at the identity rotation (i.e. so(3)), hence no
further processing is needed before passing predicted scores through the exponential map to up-
date rotations in the generation process. We see that ∇ log p(R(t)|R(0)) in this representation is
SO(3)-invariant since (R(0))⊤R(t) is SO(3)-invariant.

A.2 TRAINING DETAILS

To stabilise the score-matching loss for rotations we use coefficients:

λ(t) = 1/E
î
∥∇ log pt(R

(t)|R(0))∥2
ó

that we estimate via a Monte Carlo procedure, calculating the empirical mean norm of the scores
for each time point over 50,000 uniformly-sampled rotations R(0). For translations, we found that
scaling the ground truth score by a factor of −σt - where σt =

√
Var[x(t)|x(0)] is the standard

deviation of noised translations at time t - stabilised training significantly, noting that:

−σt∇ log pt(x
(t)|x(0)) = −σt

µ− x(t)

σt
2

=
x(t) − µ

σt

∼ N (0, I)

(13)

Which corresponds to the standard diffusion model training objective (Ho et al., 2020). A single
training step involving sampling and loss calculation is shown below (Algorithm 1) for an input
set of frames {(R(0)

i ,x
(0)
i )}Ni=1, representation of the epitope Z, score estimator sθ, rotation and

translation coefficient schedules βr and βx (from which variances are calculated), rotation score
matching coefficient λr, and time step t ∈ (0, 1). Integrals are all approximated using the trapezoid
rule. Our noising regime corresponds to the variance-preserving SDE from Song et al. (2021).

Algorithm 1 LoopGen Training Step

Require: {(R(0)
i ,x

(0)
i )}Ni=1,Z, sθ, β

r, βx, λr, t

ς2t ← 1− exp (−
∫ t

0
βr(s) ds) ▷ Var[R(t)|R(0)]

σ2
t ← 1− exp (−

∫ t

0
βx(s) ds) ▷ Var[x(t)|x(0)]

for i = 1, ..., N do

R ∼ IGSO3(µ = I, σ2 = ς2t ) ▷ Sample rotational noise

R
(t)
i ← RR

(0)
i ▷ Get noised rotation

x
(t)
i ∼ N (µ = x

(0)
i exp (− 1

2

∫ t

0
βx(s) ds), σ2 = σ2

t ) ▷ Sample noised translation

end for

{(ŷr
i , ŷ

x
i )}Ni=1 ← sθ({(R(t)

i ,x
(t)
i )}Ni=1,Z, t) ▷ Predict scores for each residue

Lr ← λr(t)
∑N

i=1 ∥∇ log pt(R
(t)
i |R

(0)
i )− ŷr

i ∥2 ▷ Rotation score loss

Lx ←
∑N

i=1 ∥−σt∇ log pt(x
(t)
i |x

(0)
i )− ŷx

i ∥2 ▷ Translation score loss

L ← Lr + Lx ▷ Combined loss

return L

For generation (18), we broadly follow the procedures outlined by Ho et al. (2020) for translations
and Yim et al. (2023) for rotations, using the notation Exp to denote the exponential map from
euclidean space to a Lie group, where Exp : R3 → SO(3) in this case. We found empirically
that scaling the score term in the rotational update γg2t ŷ

r
i by a factor of 2 improved the quality of
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generated structures. For our experiments we used number of time steps T = 100 and a noise scaling
term of ζ = 0.2. We found that reasonable structures were generated for values up to ζ = 0.5.

Algorithm 2 LoopGen Generation
Require: Z, sθ, β

r, βx, ζ, T,N

γ ← 1
T

for i = 1, ... , N do ▷ Sample frames for N residues

Sample R
(1)
i ∼ UniformSO3

Sample x
(1)
i ∼ N (0, I)

end for

for t = 1− γ, 1− 2γ, ..., 0 do

gt ←
√
βr(t) ▷ Diffusion coefficient for VP-SDE

αt ← 1− exp (−
∫ t+γ

t
βx(s) ds) ▷ Var[x(t+γ)|x(t)]

σ2
t ← 1− exp (−

∫ t

0
βx(s) ds) ▷ Var[x(t)|x(0)]

{(ŷr
i , ŷ

x
i )}Ni=1 ← sθ({(R(t+γ)

i ,x
(t+γ)
i )}Ni=1,Z, t) ▷ Predict scores for each residue

for i = 1, ... N do

Sample ϵx ∼ N (0, I) ▷ Noise for translations

Sample ϵr ∼ N (0, I) ▷ Noise for rotations

x
(t)
i ←

x
(t+γ)
i −αt

σt

√
1−αt

ŷx
i + ζ

√
αtϵ

x ▷ Translation update

R
(t)
i ← R

(t+γ)
i Exp(2γg2t ŷ

r
i + ζ

√
γgtϵ

r) ▷ Rotation update

end for

end for

return {(R(0)
i ,x

(0)
i )}Ni=1

A.3 TESTS FOR EPITOPE DEPENDENCE

Here we outline the procedures for evaluating the conditionality of generated structures on the epi-
tope. The fundamental principle we use is that dependence on the epitope can be measured by esti-
mating similarity between sets of structures generated under different perturbations of the epitope.
Let X be a random variable representing a generated structure and Y another generated structure.
The quantity of interest is then the expected RMSD between X and Y, i.e. the mean pairwise RMSD
(mpRMSD):

mpRMSD = EX[EY[RMSD(X,Y)]] (14)

For a given epitope Z and a perturbed version of that epitope Z′, we compare the mpRMSD for
samples drawn from pθ(X|Z) and pθ(Y|Z′) to those generated under identical epitope conditions,
i.e. pθ(X|Z) and pθ(Y|Z). For a given set of structures generated for a WT epitope Z, with sets of

residue coordinates
¶
{x(i)

1 , ...,x
(i)
N }
©M
i=1

, the mpRMSD within the set of structures is estimated as:

mpRMSD ≈ 2

M(M − 1)

M∑
i=1

M∑
j=i+1

Ã
1

N

N∑
n=1

∥x(i)
n − x

(j)
n ∥2 (15)

Where the scaling factor is the reciprocal of M choose 2, calculating the mean RMSD over all
possible unique pairings of structures in the set. We use the within-group mpRMSD to measure
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the expected variation between CDR loop structures generated for a constant epitope ("WT epitope
vs WT epitope", figure ??). The mpRMSD between different sets of structures - where one set¶
{x(i)

1 , ...,x
(i)
N }
©M
i=1

is generated for the WT epitope Z and another set
¶
{x′(j)

1 , ...,x′(j)
N }
©K
j=1

is

generated for the perturbed epitope Z′ - is similarly estimated:

mpRMSD ≈ 1

MK

M∑
i=1

K∑
j=1

Ã
1

N

N∑
n=1

∥x(i)
n − x′(j)

n ∥2 (16)

We compare the within-group mpRMSD values for structures generated on the WT epitope to the
mpRMSD values between structures generated for the WT epitope and for epitopes perturbed using
three methods: permutation (swapping with another random epitope), sequence scrambling, and
translation. For permutation, to ensure that global orientation and position do not contribute to
differences in mpRMSD, we perform an alignment of a randomly-sampled epitope from the test set
with the WT epitope by aligning their centre of masses and the CDR-epitope centroid difference
vectors. The CDR is generated of the same size as the WT CDR for RMSD comparison. Epitope
scrambling was performed by shuffling the residue sequence labels of each epitope, setting Cβ
coordinates of residues whose residue identity becomes glycine to their Cα coordinates, preventing
information leakage (glycines are represented the same way during training), while Cβ coordinates
for glycines that convert into non-glycine residues were imputed with tetrahedral geometry. Epitope
translation is performed by translating all epitope atoms 20 Å along the axis connecting the epitope
centroid to the CDR centroid. Translation is performed along this axis in the direction opposite to
the CDR centroid’s position relative to the epitope centroid.

B ADDITIONAL DATA ON EPITOPE PERTURBATION EXPERIMENT

Table 1: Structural violation rates of generated CDRs under different epitope perturbations

Perturbation
Internal
Clashes
(%)

Bond
Length
(%)

Bond
Angle
(%)

Epi.-CDR
Clash
(%)

Any
Struct.
Viol. (%)

WT (baseline) 0.0 6.3 0.6 2.7 8.7
Permuted 0.1 8.1 1.0 23.1 28.5
Scrambled 0.0 7.1 0.8 2.5 9.3
Translated 0.0 6.2 0.6 0.0 6.3

Table 1 describes structural violation statistics for CDRs generated after perturbing the epitope via
permutation, sequence scrambling, and translation away from the CDR center of mass. Sequence
scrambling and translation of the epitope induced no significant effects on the physicochemical
plausibility of generated structures. However, replacement of the WT epitope with a random epitope
was accompanied by a notable increase in the rate of steric clashes between the CDR and epitope.
Since the random epitope was rotationally aligned and placed at the center of mass of the WT epitope
before CDR generation, we hypothesise that these clashes are driven by permuted epitopes which are
significantly larger or deviate in shape from the WT epitope, increasing the probability of physical
clashes with the CDR. Nevertheless, we note that even under epitope permutation, the violation
statistics intrinsic to the generated CDR (bond length, bond angle, and internal clashes) do not
deviate significantly from the results observed under WT generation. Therefore, these experiments
confirm that the model’s generated structures are robust to different perturbations of the epitope and
provide reassuring evidence of its capacity to generalise to out-of-distribution epitopes.
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C EXAMPLES OF STRUCTURES GENERATED WITH A COORDINATES-ONLY
MODEL

Figure 1: 10 generated CDR loops for a test set epitope (PDB ID: 3ULU) using LoopGen with a
diffusion model over Cα coordinates only (only Cα coordinates are shown).

D DIFFUSION VARIANCE SCHEDULES

We test four different variance schedules parameterised by coefficients {β(t)}t∈[0,1] and hyperpa-
rameters βmax and βmin. These coefficients are calculated as follows, for each schedule:

β(t) = t(βmax − βmin) Linear (17)
β(t) = log (t(exp [βmax]) + (1− t) exp [βmin]) Logarithmic (18)

β(t) =
î
t
Ä√

βmax −
√

βmin

äó2
Quadratic (19)

β(t) =
βmax − βmin

1 + exp [−(2t− 1)xmax]
Sigmoid (20)

(21)

Where in the sigmoid schedule, 2t− 1 ∈ [−1, 1] is a rescaled version of the timestep t ∈ [0, 1], and
xmax is a hyperparameter chosen to have a value of 6. For all schedules, values of βmax = 20 and
βmin = 10−4 were used for the translations and βmax = 1.5 and βmin = 0.1 for rotations (according
to Yim et al. (2023)). The coefficients β(t) are related to the variances of the forward process by the
solution to the variance-preserving SDE (Song et al., 2021):

Var[x(t)|x(0)] = 1− exp (−
∫ t

0

β(s) ds) (22)

The values of Var[x(t)|x(0)] are plotted by time step in Figure 2.
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Figure 2: The cumulative variance Var[x(t)|x(0)] of the different variance schedules as a function
of timestep t ∈ [0, 1]. We find that using the slower schedules (quadratic and sigmoid) for noising
the translations improves performance.
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