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Abstract

We consider the problem of robustly testing the norm of a high-dimensional sparse
signal vector under two different observation models. In the first model, we
are given n i.i.d. samples from the distribution N (θ, Id) (with unknown θ), of
which a small fraction has been arbitrarily corrupted. Under the promise that
∥θ∥0 ≤ s, we want to correctly distinguish whether ∥θ∥2 = 0 or ∥θ∥2 > γ, for
some input parameter γ > 0. We show that any algorithm for this task requires
n = Ω

(
s log ed

s

)
samples, which is tight up to logarithmic factors. We also

extend our results to other common notions of sparsity, namely, ∥θ∥q ≤ s for
any 0 < q < 2. In the second observation model that we consider, the data is
generated according to a sparse linear regression model, where the covariates are
i.i.d. Gaussian and the regression coefficient (signal) is known to be s-sparse. Here
too we assume that an ε-fraction of the data is arbitrarily corrupted. We show that
any algorithm that reliably tests the norm of the regression coefficient requires at
least n = Ω

(
min(s log d, 1/γ4)

)
samples. Our results show that the complexity of

testing in these two settings significantly increases under robustness constraints.
This is in line with the recent observations made in robust mean testing and robust
covariance testing.

1 Introduction

Hypothesis testing is a fundamental task in statistics and a staple of the scientific method, in which we
seek to test the validity of a pre-specified hypothesis based on empirical observations. In this work,
we are concerned with the problem of testing whether a given high-dimensional sparse signal vector
is zero under two common and well-studied observation models: 1) the Gaussian location model and
2) the Gaussian linear regression model. Specifically, in the Gaussian location model, we observe
i.i.d. samples from a d-dimensional spherical Gaussian distribution with an unknown sparse mean
vector, and seek to detect whether its ℓ2 norm is large (equivalently, we observe a set of measurements
subject to white noise, and seek to determine whether there exists an underlying (sparse) signal).
Similarly, in the Gaussian linear regression model we seek to detect whether the ℓ2 norm of the
sparse regression coefficient is large. We further assume that our samples are imperfect or even
corrupted, allowing an adversary to arbitrarily tamper with up to an ε-fraction of the observations.
Our objective is to characterize the minimum number of samples required to perform these testing
tasks, and, crucially, to understand the effect that requiring robustness to this adversarial corruption
has on the complexity of the problems.

It is known [DKS17, DK21] that, for a variety of high-dimensional tasks, robust testing becomes as
costly (in terms of sample complexity) as the corresponding estimation task. This is in contrast to the
non-robust version, where testing is typically much more efficient – often by a quadratic factor in
the dimension. However, it is unclear how sparsity enters the picture, and for instance if robustness
only starts becoming “costly” when the signal vector is sufficiently dense – i.e., whether the problem
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exhibits a phase transition. This is particularly relevant, as the non-robust versions of the problems
we consider are known to present such a phase transition at sparsity s ≈

√
d.

How does robustness affect the sample and computational complexities of testing norm of the
signal vector in high-dimensional sparse models? Does testing remain easier than learning?

This type of question, framed in a minimax setting, sits at the intersection of theoretical computer
science (where it is captured under the framework of distribution testing) and robust statistics.
Specifically, for Θ ⊆ Rd, let {pθ}θ∈Θ be a family of distributions and p0 be a reference distribution
(simple null hypothesis–in our case the standard Gaussian). Then, we say that an algorithm T reliably
tests the ℓ2-norm of θ if it satisfies the condition

max
{

Pr
X∼pn

0

[T (X) = reject ], sup
θ∈Θ

∥θ∥2≥γ

Pr
X∼pn

θ

[T (X) = accept ]
}
≤ δ (1)

where δ ∈ (0, 1] is the failure probability, which following the literature we will hereafter set to 1/3.1
The quantity of interest here is the sample complexity, that is the minimum number of samples n
required by any algorithm to solve the problem.

The above task, however, assumes access to “perfect” samples from the unknown distribution
pθ. This is often an unrealistic assumption, as a fraction of the n samples could be imperfect
or corrupted. This motivates the setting of robust testing. The problem is then similar to the
formulation in (1), with a crucial difference: the algorithm T does not have access to the i.i.d. samples
X = (X1, . . . , Xn) ∈ Rd×n, but instead to a “contaminated” version X̃ = (X̃1, . . . , X̃n) ∈ Rd×n

obtained by arbitrarily modifying up to εn of the Xi’s (i.e., an ε-fraction). We will refer to this as the
ε-corruption model.

In this work we consider two instances of the general testing task (1) in the robust testing setting.
First, let us introduce some notation common to the problems. For q ∈ (0, 2) let

Bs,q := {θ ∈ Rd : ∥θ∥q ≤ s} (2)

be the ℓq−ball of radius s in Rd. For q = 0, we get the usual notion of sparsity, and will simply write
Bs for 0 ≤ s ≤ d. Let N (θ, Id) denote the d-dimensional Gaussian with mean θ ∈ Rd and identity
covariance.

The first problem that we consider is the sparse Gaussian mean testing, in which, given an ε-corrupted
dataset of n samples from N (θ, Id), where θ ∈ Bs,q is unknown, our goal is to robustly distinguish
between (1) ∥θ∥2 = 0 , and (2) ∥θ∥2 ≥ γ (equivalently, the total variation distance between N (θ, Id)
and the standard Gaussian N (0, Id) is Ω(γ)), for some input parameter γ ∈ (0, 1].

The second problem that we consider is testing in the sparse linear regression model. In the sparse
linear regression model the data is generated according to the following process: Let X1, X2, · · · , Xn

be i.i.d. samples from N (0, Id). Let θ ∈ Bs be unknown and let ξi’s be i.i.d. samples from N (0, 1)
(and independent from the Xi’s), for 1 ≤ i ≤ n. Then, the yi’s are generated as follows:

yi = ⟨Xi, θ⟩+ ξi for all 1 ≤ i ≤ n. (3)

Note that for a given θ, the joint distribution of (Xi, yi) is N (0,Σθ), where Σθ =

[
Id θ

θT 1 + ∥θ∥2
]

.

Our aim is to robustly distinguish between (1) ∥θ∥2 = 0 , and (2) ∥θ∥2 ≥ γ, given an ε-corrupted
version of the observations (X1, y1), (X2, y2), · · · , (Xn, yn).

Note that for both the problems, one can restrict themselves to the case γ ≥ ε, as otherwise the
problem becomes trivially information-theoretically impossible.

1.1 Our Contributions

Our main contribution are the characterization of the sample complexity of robust sparse Gaussian
mean testing for a range of notions of sparsity, and a lower bound on the sample complexity of robust

1The choice of the value 1/3 here is arbitrary, and any fixed value greater than 1/2 would suffice, as one can
amplify the success probability to 1− δ, for any δ > 0, using a standard majority vote.
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testing in the sparse linear regression model. Together, these results fully answer the above question,
and provide more evidence to the belief that “robustness requirements make the testing tasks as hard
as the corresponding estimation tasks.” To establish our lower bounds, we draw upon and combine a
variety of methods from the literature, in order to upper bound the χ2-divergence between a point
and a mixture distribution before concluding by Le Cam’s two-point method. We elaborate further on
those aspects below.

1.1.1 Sparse Gaussian Mean Testing

It is known [CCT17] that, in the non-robust setting described in (1), the sample complexity of sparse
Gaussian mean testing is

n0(s, d, γ) =

Θ
(

s
γ2 log

(
1 + d

s2

))
if s <

√
d

Θ
(√

d
γ2

)
if s ≥

√
d

for q = 0, and, for q ∈ (0, 2),

nq(s, d, γ) =

Θ
(

m
γ2 log

(
1 + d

m2

))
if m <

√
d

Θ
(√

d
γ2

)
if m ≥

√
d
,

where m := max{u ∈ [d] : γ2u
2
q−1 ≤ s2} is the effective sparsity. In particular, both sample

complexities present a phase transition at
√
d, after which the sparsity no longer helps decreasing the

sample complexity of the problem, which defaults to the “folklore” non-sparse bound of Θ
(√

d
γ2

)
.

Our main result in this setting is a lower bound on robust sparse mean testing, which shows a
significantly different landscape:
Theorem 1 (Informal; see Theorems 4 and 5). For every constant ε, γ, the sample complexity of
robust sparse Gaussian mean testing in the ε-corruption model is

Ω

(
s log

ed

s

)
for q = 0, and Ω

(
m log ed

m

)
for q ∈ (0, 2), where m = max{u ∈ [d] : γ2u

2
q−1 ≤ s2}.

Moreover, our bound for standard s-sparsity is tight, in view of the known O
(

s
γ2 log

ed
s

)
sample

complexity bound for robust sparse mean estimation [Li17, DK19] (which implies the same bound for
robust testing). This not only shows that the robust testing problem is much harder than its non-robust
counterpart especially in the dense regime (and actually as hard as the robust estimation problem),
but also that the robust setting no longer presents any threshold phenomenon. If we set s = d, we
further recover the result in [DKS17] that robustness requirement increases the sample complexity of
Gaussian mean testing. Figure 1 illustrates the sample complexity of robust and non-robust sparse
Gaussian mean testing as a function of the sparsity.

The tightness of our bound, however, only follows from previous work in the case q = 0 (standard
sparsity). We provide a (near) matching upper bound for the case q ∈ (0, 2), which essentially
resolves the question: showing that the aforementioned hardness and disappearance of a phase
transition apply to all types of sparsity.
Theorem 2 (Informal; see Theorem 6). For every ε, γ, the sample complexity of robust sparse
Gaussian mean testing in the ε-corruption model is

O

(
m

ε2
log

ed

γ

)
for q ∈ (0, 2), where m = max{u ∈ [d] : γ2u

2
q−1 ≤ s2}.

Note that, for constant γ, our upper bound only differs from the lower bound of Theorem 1 by a
logarithmic dependence on the effective sparsity m. Finally, we note that while the upper bounds
from [Li17] and Theorem 2 are achieved by computationally inefficient algorithms (time complexity
exponential in s), this is actually inherent; indeed, [BB20] recently proved that any computationally
efficient algorithm for robust sparse mean estimation must have much higher sample complexity,
namely Ω(s2). A simple inspection of their proof shows that this result extends to the robust testing
problem.
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Figure 1: Sample complexity as a function of sparsity for non-robust and robust sparse Gaussian
mean testing (the behavior applies to testing in the sparse regression model as well).

1.1.2 Testing in Sparse Linear Regression Model

From the results in [CCC+19] we can deduce that the sample complexity of non-robust testing in the
sparse linear regression model is given by

n0(s, d, γ) =

Θ
(
min

(
s
γ2 log

(
1 + d

s2

)
, 1
γ4

))
if s <

√
d

Θ
(
min

(√
d

γ2 ,
1
γ4

))
if s ≥

√
d.

This expression looks very similar to the sample complexity of sparse Gaussian mean testing, except
for an additional 1/γ4 term. This term is essentially due to the fact that we can ignore the observations
Xi’s and estimate γ just by using yi’s, since their variance is 1 + γ2. This would require O

(
1/γ4

)
samples. Nevertheless, the testing in sparse linear regression still exhibits a phase transition at
s ≈

√
d as was observed in the sparse Gaussian mean testing. It is thus natural to wonder whether

the parallels between these two problems extend to the robust setting as well. We show that this is
indeed the case: the sample complexity of testing in sparse linear regression significantly increases
when introducing the robustness condition.
Theorem 3 (Informal; see Theorem 7). For any sufficiently small γ > 0, ε = γ

C for a sufficiently
large C, and s = d1−δ for any δ ∈ (0, 1), the sample complexity of testing in sparse linear regression
under ε-corruption model is

Ω

(
min

(
s log d,

1

γ4

))
.

The tightness of this bound follows from the results in [LSLC20, Theorem 2.1] which states that
any algorithm for robust sparse mean estimation can be used for robust sparse linear regression
with a polylog(1/γ) increase in the sample complexity. Hence the agnostic hypothesis selection via
tournaments algorithm in [Li17], which is a statistically optimal algorithm for robust sparse mean
estimation works in this case as well.

1.2 Our Techniques

To establish the lower bounds in Theorem 1, we combine a range of tools from information theory
and the literature on robust estimation. First, we argue that it is enough to consider the standard
sparsity case (q = 0), as this will imply the analogous result for q ∈ (0, 2). Indeed, the definition of
effective sparsity will enable us to deduce that any x ∈ Rd with ∥x∥0 = m and ∥x∥2 = γ belong to
the set Bs,q, letting us establish the lower bound given in Theorem 1 for general q from the q = 0
case. In this discussion, we therefore focus on standard sparsity, and assume that our observations are
from a distribution for which the unknown parameter θ is in the set Bs.
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To simplify further, we note that in order to establish the desired lower bound it suffices to consider the
weaker ε-Huber contamination model instead of the (more general) ε-corruption model [DK19]. In
the the ε-Huber contamination model, n i.i.d. samples from a distribution p are, after contamination,
modeled as a set of n i.i.d. samples from a distribution (1− ε)p+ εN , where N is an arbitrary and
unknown probability distribution (that is, the adversary is “oblivious:” limited to choosing, ahead of
time, a “bad” mixture component N to fool the algorithm). We thus can restrict ourselves, for our
lower bound, to the setting where the n i.i.d. samples are from some distribution in

{(1− ε)N (θ, Id) + εNε,θ : ∥θ∥0 ≤ s}

where we get to design the distributions Nε,θ. Let C̃s := {(1 − ε)N (θ, Id) + εNε,θ : ∥θ∥0 ≤
s, ∥θ∥2 ≥ γ} denote the set of ε-Huber contaminated versions of Gaussian distributions whose mean
has ℓ2 norm greater than γ. Our goal can be rephrased as choosing as suitable set of parameters
Θ and a corresponding ensemble of distributions {qθ}θ∈Θ ⊆ C̃s, and argue that no algorithm can
distinguish n samples drawn from a (randomly chosen) element qθ from n samples drawn from
N (0, Id).

To do so, define the mixture q := 1
|Θ|
∑

θ q
n
θ . (equivalently q = Eθ∼uΘ [q

n
θ ]). Le Cam’s

two-point method allows us to reduce the above indistinguishability problem to showing that
dTV(q,N (0, Id)

n
) = o(1), for which, in view of the standard inequality, dTV(q,p)

2 ≤
1
4χ

2(q || p), it suffices to show that χ2(q || N (0, Id)
n
) = o(1). By the Ingster–Suslina method,

this χ2-divergence between a point and a mixture distribution can then be simplified as

1 + χ2(q || N (0, Id)
n
) = 1 + χN (0,Id)

n(Eθ[q
n
θ ],Eθ′ [qn

θ′ ]) = Eθ,θ′
[(
1 + χN (0,Id)(qθ,qθ′)

)n]
,

(4)
where θ, θ′ ∼ uΘ, and χp(q,q

′) :=
∫

dqdq′

dp − 1 is the “χ2-correlation” between q and q′ with
respect to p. Thus, the challenge is to design an ensemble {qθ} that yields a good upper bound for
the r.h.s. of (4), while still being simple enough to analyze.

Building upon previous works [DKS17, BB20], we define our ensemble {qθ} as follows: let

Θ :=

{
θ ∈

{
− 1√

s
, 0,

1√
s

}d

: ∥θ∥0 = s

}
(5)

and, for θ ∈ Θ, qθ := (1 − ε)N (γθ, Id) + εN (µθ, Id), where µθ is chosen such that (1 −
ε)γθ + εµθ = 0. Note that indeed, for all θ ∈ Θ, qθ ∈ C̃s and ∥θ∥2 = 1. This choice of qθ

combined with the above outline will enable us to prove Theorem 1, by carefully upper bounding
Eθ,θ′

[(
1 + χN (0,Id)(qθ,qθ′)

)n]
as a function of n, d, and s.

One can attempt to prove Theorem 3 (the lower bound for testing in the sparse linear regression
model) in a similar vein. By restricting ourselves to the ε-Huber contamination model (which only
strengthens the resulting lower bound by constraining the adversary), we get the following set of
distributions in the sparse linear regression problem:

{(1− ε)N (0,Σθ) + εNε,θ : ∥θ∥0 ≤ s}, (6)

where Σθ :=

[
Id θ

θT 1 + ∥θ∥2
]

. Further defining D̃s := {(1 − ε)N (0,Σθ) + εNε,θ : ∥θ∥0 ≤

s, ∥θ∥2 ≥ γ}, as earlier our problem boils down to finding an ensemble {qθ} ⊆ D̃s such that
χ2(q || N (0, Id+1)

n
) = o(1) for q := 1

|Θ|
∑

θ q
n
θ .

Notice that in the sparse linear regression model, yi has marginal distribution N
(
0, 1 + ∥θ∥2

)
and

conditioned on yi the distribution of Xi is given by N
(

yiθ
1+∥θ∥2 , I − θθT

1+∥θ∥2

)
. This observation,

along with the indistinguishability result established while proving Theorem 1 encourage us to choose
Θ as in (5) and qθ in the following manner:

qθ(yi) = N
(
0, 1 + γ2

)
qθ(Xi | yi) = (1− ε)N

(
yiγθ

1 + γ2
, I − θθT

1 + γ2

)
+ εN

(
yiµθ

1 + γ2
, I − θθT

1 + γ2

)
,
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where µθ is chosen such that (1− ε)γθ + εµθ = 0. Again, note that qθ ∈ D̃. Although this setup
looks promising in giving us the right lower bound, it turns out that certain tail events can cause
χ2(q || N (0, Id+1)

n
) to blow up to infinity. To circumvent this, one of the remedies available in

the literature is to use the conditional second moment method [RXZ19, WX18]. In this method,
one carefully conditions out the rare events that preclude us from evaluating the χ2-divergence.
Specifically, we define an event E generated by the random variables (y1, y2, · · · , yn) such that
q(EC) = o(1). We then define qE as the distribution q conditioned on the “good” event E . That is,

qE(X,Y ) = q(X,Y | E) = Eθ[qθ(X,Y )1E{Y }]
q(E)

. (7)

Note that we have the relation q = q(E)qE + q(EC)qEC

. The convexity of total variation distance
consequently gives

dTV(q,N (0, Id+1)
n
) ≤ q(E) dTV(q

E ,N (0, Id+1)
n
) + q(EC) dTV(q

EC

,N (0, Id+1)
n
)

≤ dTV(q
E ,N (0, Id+1)

n
) + q(EC)

Thus, in view of the fact that q(EC) = o(1), deriving a lower bound reduces to showing that
dTV(q

E ,N (0, Id+1)
n
) is small, for which we saw earlier that it was sufficient (and more convenient)

to show that χ2
(
qE || N (0, Id+1)

n)
= o(1). This is the roadmap we will follow – first, defining a

suitable event E , before showing that χ2
(
qE || N (0, Id+1)

n)
= o(1).

The above outlines our approach to proving Theorems 1 and 3. To establish the upper bound in
Theorem 2, we show that the “Agnostic hypothesis selection via Tournaments” algorithm [DKK+16]
achieves the stated sample complexity. The argument, in turn, is very similar to the proof of the upper
bound for robust sparse mean estimation given in [Li17].

1.3 Related Work

The study of high-dimensional signals with a sparse underlying structure has enjoyed a significant
amount of attention in statistics and signal processing for the past few decades. This line of research
has led to the discovery of surprising phenomena such as phase transitions and computational hardness
in problems involving sparse signals. The main motivation to study sparse signals is that the sample
complexity of statistical tasks involving sparsity is typically significantly smaller than that of dense
signals, leading to much more data-efficient algorithms. This yields significant savings whenever
the problem is expected to exhibit such a sparse structure, e.g., for physical or biological reasons, or
due to a specific design choice when engineering a system. Yet, practical scenarios seldom involve
noise-free or perfect signals, which effectively destroys the sparsity of the signal one would have
capitalized on. This led to the study of these questions under various noise models, in order to
understand if one could still see the same type of sample size savings in these settings.

There is a large body of work on the estimation and detection of signals with a sparse structure
under noise (e.g., [DJ04, Bar02, Ver12]). Most recently, [CCT17] gave the tight characterization of
minimax rates of estimating linear and quadratic functionals of sparse signals under Gaussian noise.
The authors also derived the minimum detection level required for reliably testing the ℓ2 norm of
sparse signals under Gaussian noise. Another prominent sparse signal model studied in the literature
is that of sparse linear regression [ITV10, Ver12, RXZ19]. In the non-asymptotic setting, [CCC+19]
established the tight sample complexity of testing in the sparse linear regression model. However,
these line of works focused on random noise, and not the more challenging types of noise allowing
for adversarial corruptions – what is commonly known as seeking robust algorithms.

The systematic study of the robustness of statistical procedures was initiated in the foundational
works of Huber [Hub64] and Tukey [Tuk60]. Several statistically optimal procedures were found to
break down even under slight model misspecification or sample contamination. Although there was
substantial progress in the field of robust statistics, surprisingly, computationally efficient procedures
remained elusive until recently, even for simple tasks such as high-dimensional mean estimation.

In this regard, the past few years witnessed an incredible progress in algorithmic robust statistics.
A line of work initiated by [DKK+16] and [LRV16] provided computationally efficient optimal
robust estimators for various estimation tasks in high dimension [DKK+19]. The surprising upshot
from these papers is that even with robustness requirements, the sample complexity of many high-
dimensional estimation tasks remains essentially the same, at no extra computational cost: i.e.,
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that robustness and computational efficiency are not at odds for those estimation tasks. And still,
a subsequent result of [DKS17] shows that, surprisingly, imposing robustness constraints does
significantly increase the sample complexity of the Gaussian mean testing problem, and makes the
sample complexity as large as that of Gaussian mean estimation: that is, for testing, robustness comes
at a very high cost, and negates the usual savings that testing allows over estimation. Extending their
results on mean testing, [DK21] shows the analogue in the case of Gaussian covariance testing under
the Frobenius norm. Yet, those striking results focus on testing dense parameters; our work seeks to
combine the two lines of work – inference under sparsity guarantees, and robustness – to understand
if an analogous jump in sample complexity occurs for testing in high-dimensional sparse models.

We further note that several works have shown evidence for the existence of statistical-computation
gaps in estimation problems with sparse signal structure [BR13, CW20]. [DKS17] gave the first
evidence for the presence of an s to s2 statistical-computation gap in robust sparse mean estimation,
in the form of a Statistical Query (SQ) lower bound (i.e., for a restricted type of algorithms). This was
complemented by [Li17] and [BDLS17], which gave computationally efficient algorithms for robust
sparse estimation achieving O

(
s2
)

sample complexity. Finally, [BB20] recently used average-case
reductions to prove the algorithmic hardness of robust sparse mean estimation and robust sparse
linear regression.

2 Preliminaries and Notation

Given a probability distribution p and integer n ≥ 1, we denote by pn the n-fold product distribution
with marginals p, and given a set of distributions D write Dn = { pn : p ∈ D }. For 0 < q ≤ 2
and r > 0, we let Bq,r = {θ ∈ Rd : ∥θ∥q ≤ r} the ℓq ball of radius r. We say a vector θ ∈ Rd is
s-sparse if ∥θ∥0 ≤ s; for q ∈ (0, 2], we will accordingly say that θ is s-sparse in ℓq norm whenever
∥θ∥q ≤ s (note that s need not be an integer). We denote the uniform distribution over a set S by
uS . The delta measure (point mass) at an element x is denoted by δx. The total variation distance
between two distributions ν and µ is defined as:

dTV(ν, µ) =
1

2

∫
|dν − dµ| ,

which is to be interpreted as 1
2

∫ ∣∣∣ dνdλ − dµ
dλ

∣∣∣ dλ, where λ is any distribution dominating both ν and µ;
equivalently, dTV(ν, µ) = supS(ν(S)− µ(S)) where the supremum is over all measurable sets S.
The χ2-divergence between ν and µ is given by

χ2(ν || µ) =
∫

dνdν

dµ
− 1 ,

and satisfies dTV(ν, µ) ≤ 1
2

√
χ2(ν || µ). Finally, given a reference probability measure µ, the

χ2-correlation between ν and λ with respect to µ is defined as

χµ(ν, λ) =

∫
dνdλ

dµ
− 1 ;

note that χ2(ν || µ) = χµ(ν, ν).

We will also rely in several occasions on the following technical lemmas: the first will be useful to
bound the χ2 correlation between Gaussians.
Lemma 1. Let ϕµ,Σ denote the density function of N (µ,Σ). Then,

EX∼ϕ0,I

[
ϕµ1,Σ1(X)ϕµ2,Σ2(X)

ϕ2
0,I(X)

]
=

exp
(
1
2

(
µ′TA−1µ′ − µT

1 Σ1µ1 − µT
2 Σ2µ2

))
det(A)

1
2 det(Σ1Σ2)

1
2

,

where A := Σ−1
1 +Σ−1

2 − I and µ′ := Σ−1
1 µ1 +Σ−1

2 µ2.

Proof. The l.h.s. can be written explicitly as

1

(2π)d/2 det(Σ1Σ2)1/2

∫
Rd

exp
(
− 1

2

(
(x− µ1)

TΣ−1
1 (x− µ1) + (x− µ2)

TΣ−1
2 (x− µ2)

))
exp

(
− 1

2x
Tx
) dx.

Integrating this quantity by completing the square gives the result.
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The second, due to Cai, Ma, and Wu, will let us bound the moment generating function of the square
of a random sum of Rademacher random variables, which will arise when we consider sparse priors
in our lower bounds.

Lemma 2 (Lemma 1 in [CMW15]). Fix d ∈ N and s ∈ [d]. Let H ∼ Hypergeometric(d, s, s), and
let ξ1, ξ2, · · · , ξs be i.i.d. Rademacher. Define the random variable Y as

Y :=

H∑
i=1

ξi.

Then there exists a function τ : (0, 1
36 ) → (1,∞) with τ(0+)=1, such that for any 0 < b < 1

36 ,

E
[
exp

(
λY 2

)]
≤ τ(b),

where λ := b
s log

ed
s .

Finally, we will require the two facts below on Gaussians and Hypergeometric distributions.

Lemma 3. Let P be the density function of N
(
0, 1 + γ2

)
for some 0 ≤ γ ≤ 1/

√
3, and Q be the

density function of N (0, 1). Then

Ey∼Q

[(
P (y)

Q(y)

)2

y2ℓ

]
≤ c · 4ℓℓℓ√

1− γ4
,

where c > 0 is a universal constant.

Proof. We have (
P (y)

Q(y)

)2

=
1

1 + γ2
exp

(
γ2y2

1 + γ2

)
.

Therefore,

Ey∼Q

[(
P (y)

Q(y)

)2

y2ℓ

]
=

1√
2π

1

1 + γ2

∫
R
y2ℓ exp

(
−y2

2

(
1− 2γ2

1 + γ2

))

=
1√

1− γ4

(
1 + γ2

1− γ2

)ℓ

Ey∼Q

[
y2ℓ
]

(a)

≤ c√
1− γ4

4ℓℓℓ,

where in (a) we used the facts that, for all ℓ ≥ 0, Ey∼N (0,1)

[
y2ℓ
]
≤ c(2ℓ)ℓ for some absolute

constant c > 0; and that γ ∈ [0, 1/
√
3].

Lemma 4. Let H ∼ Hypergeometric(d, s, s). Then,

Pr[H = h ] ≤
(

es2

h(d− s+ 1)

)h

.

Proof. This directly follows from bounds on binomial coefficients:

Pr[H = h ] =

(
s

h

)(d−s
s−h

)(
d
s

) ≤
(es
h

)h( s

d− s+ 1

)h

=

(
es2

h(d− s+ 1)

)h

.
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3 Main Results and Proofs

In this section, we formally state and give proofs for the theorems outlined informally in Section 1.1.
Recall that a lower bound or the hardness of hypothesis testing between two distributions p and q
can be characterized by the total variation distance between them. Indeed, by the Pearson-Neyman
lemma, if there exists test which successfully distinguishes between two distributions pn and qn

(which in our case will correspond to distributions over n tuples of i.i.d. samples) with probability
at least 2/3, then one must have dTV(pn,qn) ≥ 1/3. Hence, to prove indistinguishability for a
given n, it suffices to show dTV(pn,qn) = o(1); since dTV(pn,qn)

2 ≤ 1
4χ

2(qn || pn), one can
then focus on showing χ2(qn || pn) = o(1).

In our problems, we formulate pn as a product distribution (product of high-dimensional Gaussians)
and qn as a mixture distribution. In such cases, the following tensorization property of χ2-divergence
helps in upper bounding it: Let q :=

∫
qn
θ dθ be a mixture distribution. Then,

1 + χ2(q || pn) =

∫
Rn

q(x)2

pn(x)
dx =

∫
Rn

∫
qn
θ (x)dθ

∫
qn
θ′(x)dθ′

pn(x)
dx

=

∫
θ

∫
θ′

∫
Rn

qn
θ (x)q

n
θ′(x)

pn(x)
dx dθ dθ′ =

∫
θ

∫
θ′

(∫
R

qθ(x)qθ′(x)

p(x)
dx

)n

dθ dθ′

= Eθ,θ′ [(1 + χp(qθ,qθ′))
n
].

This approach is widely known as the Ingster–Suslina method [IS03], and is the starting point of
many minimax lower bounds.

3.1 Sparse Gaussian Mean Testing

In this section, we state and prove our results related to sparse Gaussian mean testing. First, we
derive the lower bounds in Theorem 1 using the techniques outlined in Section 1.2 and then show a
matching upper bound (up to logarithmic factors) for q > 0 case.
Theorem 4. Let ε, γ > 0 be fixed. Let X1, X2, · · · , Xn be i.i.d. samples from an unknown
distribution p. Moreover, suppose an ε-fraction of these n samples are arbitrarily corrupted.
Then, if there exists an algorithm that distinguishes between the cases p = N (0, Id) and
p ∈ {N (θ, Id) : ∥θ∥2 ≥ γ, ∥θ∥0 ≤ s} with probability greater than 2/3, we must have
n = Ω

(
s log ed

s

)
.

To prove this theorem, we will require the following lemma due to Diakonikolas, Kane, and Stew-
art [DKS17]; we provide below an alternative proof, which we believe is simpler than the original.
Lemma 5 ([DKS17, Lemma 6.9]). Fix θ, θ′ ∈ Rd, ε ∈ (0, 1/3], and let qθ be defined as

qθ := (1− ε)N (θ, Id) + εN
(
− (1− ε)

ε
θ, Id

)
.

Then,

1 + |χN (0,Id)(qθ,qθ′)| ≤ exp

(
⟨θ, θ′⟩2

ε4

)
.

Proof. We here provide a simple proof. Let p := 1−ε
ε , which is at least 2 since ε ≤ 1/3. The

distribution qθ can be written as follows:

qθ = Eb[N (bθ, Id)],

where b ∼ (1− ε)δ1 + εδ−p. Let ϕµ,Σ denote the density function of N (µ,Σ). Then,

χN (0,Id)(qθ,qθ′) = EX∼N (0,Id)

[
Eb[ϕbθ,Id(X)]Eb′ [ϕb′θ′,Id(X)]

ϕ2
0,Id

(X)

]
− 1

= Ebb′

[
EX∼N (0,Id)

[
ϕbθ,Id(X)ϕb′θ′,Id(X)

ϕ2
0,Id

(X)

]]
− 1.

9



By Lemma 1, we have

EX∼N (0,Id)

[
ϕbθ,Id(X)ϕb′θ′,Id(X)

ϕ2
0,Id

(X)

]
= exp (bb′ ⟨θ, θ′⟩) ,

from which

χN (0,Id)(qθ,qθ′) = Ebb′ [exp (bb
′ ⟨θ, θ′⟩)]− 1 =

∞∑
ℓ=1

Eb

[
bℓ
]2 ⟨θ, θ′⟩ℓ
ℓ!

.

Note that E[b] = 0, and that
∣∣Eb

[
bℓ
]∣∣ = ∣∣(1− ε) + (−1)ℓpℓε

∣∣ = (1− ε)
∣∣1 + (−1)ℓpℓ−1

∣∣ ≤ 2pℓ−1.
Thus, we have

|χN (0,Id)(qθ,qθ′)| ≤ 4

p2

∞∑
ℓ=2

p2ℓ| ⟨θ, θ′⟩ |ℓ

ℓ!

=
4

p2
(
exp

(
p2| ⟨θ, θ′⟩ |

)
− p2| ⟨θ, θ′⟩ | − 1

)
(a)

≤ 4

p2

(
exp

(
p4 ⟨θ, θ′⟩2

)
− 1
)

(b)

≤ exp

(
⟨θ, θ′⟩2

ε4

)
− 1,

where (a) is due to the fact that ex − x ≤ ex
2

for all x ≥ 0 and (b) follows from p ≥ 2.

With this in hand, we are now able to establish Theorem 4.

Proof of Theorem 4. For the purpose of deriving a lower bound, it is enough to consider the weaker
ε-Huber model for the corruption of samples, as then a lower bound on the sample complexity of the
hypothesis testing problem in this setting will also be a lower bound for robust sparse Gaussian mean
testing in the adversarial one.

H0 : Xi ∼ N (0, Id)

H1 : Xi ∼ (1− ε)N (θ, Id) + εNε,θ s. t. ∥θ∥2 ≥ γ and ∥θ∥0 ≤ s,

for 1 ≤ i ≤ n. Here the distributions Nε,θ need to be chosen appropriately.

Let B = {β ∈ {−1, 0, 1}d : ∥β∥0 = s} and β ∼ uB . We can think of β as being generated according
to the following process: First pick an element uniformly from the set {b ∈ {0, 1}d : ∥b∥0 = s} and
then set the non-zero elements to be i.i.d. Rademacher random variables.

Define Θ := 1√
s
B and θ := 1√

s
β, so that ∥θ∥2 = 1. Define qθ as

qθ = (1− ε)N (γθ, Id) + εN
(
− (1− ε)

ε
γθ, Id

)
.

It is immediate to see that qθ ∈ H1 for all θ ∈ Θ. Let q := Eθ∼uΘ [q
n
θ ]. Then by (4),

1 + χ2(q || N (0, Id)
n
) = Eθ,θ′

[(
1 + χN (0,Id)(qθ,qθ′)

)n]
.

By Lemma 5, we get

1 + χN (0,Id)(qθ,qθ′) ≤ exp

(
γ4⟨θ, θ′⟩2

ε4

)
= exp

(
γ4⟨β, β′⟩2

ε4s2

)
.

Hence,

1 + χ2(q || N (0, Id)
n
) ≤ Eβ,β′

[
exp

(
nγ4⟨β, β′⟩2

ε4s2

)]
. (8)

10



Now by symmetry of the problem, it suffices to evaluate the expectation for any fixed β′, say
to β0 := (1, 1, · · · , 1︸ ︷︷ ︸

s

, 0, 0, · · · , 0). We can characterize ⟨β, β0⟩ as follows: let H be a random

variable with distribution Hypergeometric(d, s, s) and let ξ1, ξ2, · · · , ξs be i.i.d. Rademacher random
variables independent of H . Then, we have Y := ⟨β, β0⟩ =

∑H
i=1 ξi, where Y can be thought of as

a symmetric random walk with Hypergeometric stopping time. We can then rewrite (8) as

1 + χ2(q || N (0, Id)
n
) ≤ E

[
exp

(
nγ4Y 2

ε4s2

)]
.

By Lemma 2, if n ≤ c ε4

γ4 · s log ed
s for a sufficiently small c > 0 (e.g., c < 1/36 suffices),

χ2(q || N (0, Id)
n
) ≤ E

[
exp

(
nγ4Y 2

ε4s2

)]
− 1 ≤ τ(c)− 1.

Since τ is continuous at 0+, we can choose c > 0 to make τ(c)− 1 arbitrarily small. This implies
that it is impossible to distinguish between H0 and H1 with high probability if n = o

(
s log ed

s

)
,

establishing the theorem.

Next, we extend this lower bound to other sparsity notions, namely, with respect to the ℓq-norms.
Theorem 5. Let ε, γ > 0 be fixed, and q ∈ (0, 2). Let X1, X2, · · · , Xn be i.i.d. samples from
an unknown distribution p. Moreover, suppose an ε-fraction of these n samples are arbitrarily
corrupted. Then, if there exists an algorithm that distinguishes between the cases p = N (0, Id)
and p ∈ {N (θ, Id) : ∥θ∥2 ≥ γ, ∥θ∥q ≤ s} with probability greater than 2/3, we must have
n = Ω

(
m log ed

m

)
, where m is the effective sparsity defined as:

m := max{u ∈ [d] : γ2u
2
q−1 ≤ s2}.

Proof. The parameter set of the alternative hypothesis in this problem is

Θ = {θ ∈ Rd : ∥θ∥q ≤ s and ∥θ∥2 ≥ γ}.

To conclude, it suffices to show that every m-sparse (in ℓ0 sense) vector with ℓ2 norm equal to γ
belongs to Θ, and then appeal to the proof of Theorem 4 (whose hard instances had mean with
magnitude exactly γ). To do so, let x ∈ Rd be m-sparse such that ∥x∥2 = γ. Then,

∥x∥2q =

(
d∑

i=1

|xi|q
) 2

q
(convexity)

≤ m
2
q−1∥x∥22 = m

2
q−1γ2

(a)

≤ s2,

where (a) is due to the definition of m, and the convexity step follows from q
2 ≤ 1. Hence x ∈ Θ.

Thus the lower bound in Theorem 4 holds here with m replacing s.

We will now proceed to show that the lower bounds in Theorems 4 and 5 are tight up to a logarithmic
factor. First, we note that the lower bound given in Theorem 4 is optimal due to the result that the
sample complexity of robust sparse Gaussian mean estimation is upper bounded by the same value
[DK19, Li17], and the folklore fact that testing is no harder than estimation. So we need to prove the
upper bound only for the cases where q > 0. We will show that the sample complexity lower bound
given in Theorem 5 is tight by proving that the algorithm for robust sparse Gaussian mean estimation
given in [Li17] works in the ℓq-norm constrained case as well (and so, again, the upper bound for
testing will follow from the upper bound for estimation), in the regime γ = Θ(ε). Intuitively, this is
because all but m coordinates of a vector θ would be small if ∥θ∥q ≤ s and ∥θ∥2 = γ. Our proof is
similar to the proof of [Li17, Fact A.1] with a minor modification.
Theorem 6. Let ε, δ > 0 and, q ∈ (0, 2) be fixed. Let X1, X2, · · · , Xn be i.i.d. samples from an
unknown distribution N (µ, Id), where ∥µ∥q ≤ s. Moreover, suppose an ε-fraction of these n samples
are arbitrarily corrupted. Then, there exists an algorithm that, for n = O

(
1
ε2

(
m log d

ε + log 1
δ

))
,

upon being given the X1, . . . , Xn outputs a µ′ such that ∥µ′ − µ∥2 ≤ O(ε) with probability 1− δ.
Here m is the effective sparsity defined as:

m = max{u ∈ [d] : ε2u
2
q−1 ≤ s2}.
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We will use the following lemma, originally stated in [DKK+16], to prove Theorem 6.
Lemma 6 ([Li17, Lemma A.5]). Let C be a class of probability distributions. Suppose that for some
fixed N, ε, γ, δ > 0 there exists an algorithm that given N independent samples from some D ∈ C, of
which up to an ε-fraction is corrupted, returns a list of M distributions such that, with probability
1− δ/3, there exists a D′ in the list with dTV(D

′, D) < γ. Suppose furthermore that with probability
1− δ/3, the distributions returned by this algorithm are all in some fixed set M. Then there exists
another algorithm, which given O

(
N + 1

ε2

(
log(|M|) + log 1

δ

))
samples from D, an ε-fraction of

which have been arbitrarily corrupted, returns a single distribution D′ so that with 1− δ probability
dTV(D

′, D) < O(γ + ε).

Proof of Theorem 6. Let MA be the set of distributions defined as follows:

MA =

{
N (µ′, Id) : ∥µ′∥0 ≤ m, ∥µ′ − µ∥2 ≤ A and, for all i, µ′

i = ki
ε√
d

for some ki ∈ Z
}
.

First, we will show that there exists a N (µ′, Id) ∈ MA such that ∥µ′ − µ∥2 ≤ O(ε). Let J ⊆ [d] be
the set of indices of m coordinates of µ with largest magnitude. Define µ′ as a vector with coordinates
µ′
j =

ε√
d

[√
dµj

ε

]
1J , where [·] is the rounding operator. Then we have

∥µ′ − µ∥22 =
∑
j∈J

(µj − µ′
j)

2 +
∑
j∈JC

µ2
j ≤ ε2m

d
+
∑
j∈JC

µ2
j . (9)

The first term of the r.h.s. is at most ε2; as for the second, it can be upper bounded as follows:∑
j∈JC

µ2
j =

∑
j∈JC

|µj |2−q|µj |q ≤ max
u∈JC

|µu|2−q
∑
j∈JC

|µj |q

(a)

≤
∥µ∥2−q

q ∥µ∥qq
(m+ 1)

2−q
q

=
∥µ∥2q

(m+ 1)2/q−1

≤ s2(m+ 1)1−2/q
(b)

≤ ε2,

where (a) uses the fact that maxu∈JC |µu| is the (m+ 1)th largest coordinate of µ and (b) is by the
definition of m. Hence, we get ∥µ′ − µ∥2 ≤

√
2ε (and, in particular, µ′ ∈ MA for every A ≥

√
2ε).

It is easy to see that, for all A > 0, |MA| ≤
(
d
m

)
(A

√
d/ε)m: there are

(
d
m

)
different ways to

select the non-zero coordinates, and for each chosen set of non-zero coordinates there are at most
(A

√
d/ε)m elements in MA.

Now, consider the following algorithm: First, use a naive pruning algorithm with N samples as
input, to output an approximation of µ, denoted by µ0. Such a pruning is given and analyzed
in [DKK+16], which outputs µ0 such that ∥µ0 − µ∥2 ≤ B := O

(√
d log(N/δ)

)
with probability

at least 1− δ. Next, round each coordinate of µ0 to its nearest integer multiple of ε√
d

, and output the
set of distributions

M′ =

{
N (µ′′, I) : ∥µ′′∥0 ≤ m, ∥µ′′ − µ0∥2 ≤ B and, for all i, µ′′

i = ki
ε√
d

for some ki ∈ Z
}
.

By the triangle inequality, with probability at least 1− δ we have M′ ⊆ M2B . Hence, by Lemma 6
there exists an algorithm that, with probability 1− δ, outputs a µ′ such that ∥µ′ − µ∥2 ≤ O(ε) and
the number of samples required is

O

(
N +

log |M2B |+ log 1
δ

ε2

)
= O

(
log
(
d
m

)
+m log d

ε + log 1
δ

ε2

)

= O

(
m log ed

m +m log d
ε + log 1

δ

ε2

)
.

This proves Theorem 6.
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3.2 Testing in Sparse Linear Regression Model

In this section, we state the formal version of Theorem 3, and provide its proof.
Theorem 7. Let γ > 0 be sufficiently small, ε = γ

C for a sufficiently large C, and s = d1−δ for some
δ ∈ (0, 1). Let (X1, y1), (X2, y2), · · · , (Xn, yn) be i.i.d. samples obtained from the sparse linear
regression model described in (3). Moreover, suppose an ε-fraction of these n samples are arbitrarily
corrupted. Then, if there exists an algorithm that distinguishes between the cases ∥θ∥2 = 0 and
∥θ∥2 ≥ γ with probability greater than 2/3, we must have n = Ω

(
min

(
s log d, 1

γ4

))
.

Proof. Given (X1, y1), (X2, y2), · · · , (Xn, yn) as in the statement, let X := (X1, X2, · · · , Xn) and
Y := (y1, y2, · · · , yn). As noted earlier, while deriving a lower bound, it is enough to consider the
weaker ε-Huber model for the corruption of samples. We define a hypothesis testing task compliant
with the ε-Huber contamination model: a lower bound on the sample complexity of this hypothesis
testing task will then constitute a lower bound for the robust testing in sparse linear regression
model. Let Θ := {θ ∈ {− 1√

s
, 0, 1√

s
}d : ∥θ∥0 = s} and p := 1−ε

ε . Further, denote the probability
distribution under the hypotheses H0 and H1 by p and q, respectively. We define H0 and H1 as
follows:

H0 : (Xi, yi)
i.i.d.∼ N (0, Id+1)

H1 : θ ∼ uΘ

yi
i.i.d.∼ N

(
0, 1 + γ2

)
q(Xi | yi, θ) = qθ(Xi | yi) = (1− ε)N

(
yiγθ

1 + γ2
, I − γ2θθT

1 + γ2

)
+ εN

(
− (1− ε)

ε

yiγθ

(1 + γ2)
, I − γ2θθT

1 + γ2

)
(10)

Note that we can rewrite

qθ(Xi | yi) = Eb

[
N
(

byiγθ

1 + γ2
, I − γ2θθT

1 + γ2

)]
, where b ∼ (1− ε)δ1 + εδ−p ;

in particular, qθ is an ε-Huber contaminated version of N (0,Σγθ), where Σγθ =

[
Id γθ
γθT 1 + γ2

]
and thus a valid distribution to consider in this problem. A natural approach to prove the impossibility
of detection between H0 and H1 would be to try and show that χ2(q || p) = o(1). However, as
previously discussed, this method does not yield a useful lower bound for this problem, due to
low-probability events which cause χ2(q || p) to blow up.

To circumvent this issue, we take recourse in an alternative approach, the conditional second moment
method [RXZ19, WX18]. In this method, we first define a high-probability event E and then evaluate
χ2
(
qE || p

)
, where qE is the distribution q conditioned on the event E . The idea is that, by this

conditioning, we can rule out the rare events that cause χ2(q || p) to go to infinity. Indeed, suppose
the event E is chosen so that q(E) = o(1), and that we are able to show that χ2

(
qE || p

)
= o(1). This

latter statement implies that dTV(q
E ,p) = o(1), and so, from the relation q = q(E)qE +q(EC)qEC

and the convexity of total variation distance, we have

dTV(q,p) ≤ q(E) dTV(q
E ,p) + q(EC) dTV(q

EC

,p) ≤ dTV(q
E ,p) + q(EC) = o(1) ,

which proves the impossibility result.

We now implement this roadmap. For ν > 0, we define the event E as follows:

E =

{
Y ∈ Rd :

∥Y ∥22
n

≤ 2 + ν

}
, (11)

so that the conditional probability distribution qE is given by

qE = q(X,Y | E) = Eθ[qθ(X,Y )1E{Y }]
q(E)

. (12)
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We will later choose ν such that E is asymptotically a high-probability event, and for now focus

on establishing that χ2
(
qE || p

)
= o(1). Note that χ2

(
qE || p

)
= Ep

[(
qE

p

)2]
− 1. Now, since

qE

p = Eθ[qθ(X,Y )1E{Y }]
q(E)p(X,Y ) , we have(

qE

p

)2

=
1

q(E)2
Eθ,θ′

[
qθ(X,Y )qθ′(X,Y )

p(X,Y )2
1E{Y }

]
,

and so

Ep

[(
qE

p

)2
]
=

1

q(E)2
Eθ,θ′

[
EY

[
q(Y )2

p(Y )2
EX

[
qθ(X | Y )qθ′(X | Y )

p(X)2

]
1E{Y }

]]
,

where Y ∼ N (0, 1)
n and X ∼ N (0, Id)

n. Since E is a high-probability event, we have q(E) =
1− o(1). Thus,

Ep

[(
qE

p

)2
]
= (1 + o(1))Eθ,θ′

EY

[
q(Y )2

p(Y )2
EX

[
qθ(X | Y )qθ′(X | Y )

p(X)2

]
1E{Y }

]
︸ ︷︷ ︸

:=Z

. (13)

We will evaluate Eθ,θ′ [Z] by splitting it into two cases depending on the value of | ⟨θ, θ′⟩ |. Let
τ := ε2

4eγ2 log d (the choice of value for this threshold will become clear in the course of the argument).

Case 1: | ⟨θ, θ′⟩ | ≤ τ . In this case we drop the 1E{Y } term in the expression for Z, simply upper
bounding it by 1. Note that in the absence of 1E{Y } term, Z becomes a product of
expectations, enabling the following simplification:

Eθ,θ′ [Z1{| ⟨θ, θ′⟩ | ≤ τ}]

≤ Eθ,θ′

[(
Ey

[
q(y)2

p(y)2
Ex

[
qθ(x | y)qθ′(x | y)

p(x)2

]])n

1{| ⟨θ, θ′⟩ | ≤ τ}
]
, (14)

where y ∼ N (0, 1) and x ∼ N (0, Id). By substituting for qθ from (10) and using
Corollary 7, we get

Ex

[
qθ(x | y)qθ′(x | y)

p(x)2

]
≤ 1√

1− γ4 ⟨θ, θ′⟩2
Eb,b′

[
exp

(
γ2y2bb′ ⟨θ, θ′⟩

)]
. (15)

Note that E[b] = 0 and, for ε ∈ (0, 1/2],
∣∣Eb

[
bℓ
]∣∣ =

∣∣(1− ε) + (−1)ℓpℓε
∣∣ = (1 −

ε)
∣∣1 + (−1)ℓpℓ−1

∣∣ ≤ 2pℓ−1. Therefore,

Eb,b′
[
exp

(
γ2y2bb′ ⟨θ, θ′⟩

)]
= Eb,b′

[
1 +

∞∑
ℓ=1

γ2ℓy2ℓbℓb′ℓ ⟨θ, θ′⟩ℓ

ℓ!

]

≤ 1 +

∞∑
ℓ=2

γ2ℓy2ℓEb

[
bℓ
]2| ⟨θ, θ′⟩ |ℓ

ℓ!

≤ 1 +
4

p2

∞∑
ℓ=2

γ2ℓy2ℓp2ℓ| ⟨θ, θ′⟩ |ℓ

ℓ!
.

By monotone convergence theorem, it then follows that

Ey

[
q(y)2

p(y)2
Eb,b′

[
exp

(
γ2y2bb′ ⟨θ, θ′⟩

)]]
≤ Ey

[
q(y)2

p(y)2

]
+

4

p2

∞∑
ℓ=2

γ2ℓp2ℓ| ⟨θ, θ′⟩ |ℓ

ℓ!
Ey

[
q(y)2

p(y)2
y2ℓ
]
.
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Now, we use Lemma 3 and the fact that ℓ! ≥
(
ℓ
e

)ℓ
. Recalling that we chose τ = ε2

4eγ2 log d ,
we get

Ey

[
q(y)2

p(y)2
Eb,b′

[
exp

(
γ2y2bb′ ⟨θ, θ′⟩

)]]
≤ 1√

1− γ4

(
1 +

4c

p2

∞∑
ℓ=2

γ2ℓ4ℓeℓp2ℓ| ⟨θ, θ′⟩ |ℓ
)

=
1√

1− γ4

(
1 +

64c

p2
γ4p4e2| ⟨θ, θ′⟩ |2

(1− γ2p24e| ⟨θ, θ′⟩ |)

)

≤ 1√
1− γ4

(
1 +

64cγ4p2e2| ⟨θ, θ′⟩ |2

1− 1
log d

)
.

(16)

where c > 0 is the constant from Lemma 3. By (15), and (16) and for large enough d we
have

Ey

[
q(y)2

p(y)2
Ex

[
qθ(x | y)qθ′(x | y)

p(x)2

]]
≤ 1√

1− γ4

1√
1− γ4 ⟨θ, θ′⟩2

(
1 +

64cγ4p2e2| ⟨θ, θ′⟩ |2

1− 1
log d

)

≤ exp
(
γ4
)
exp

(
γ4 ⟨θ, θ′⟩2

)
exp

(
128e2c · γ4 ⟨θ, θ′⟩2

ε2

)
.

Substituting in (14), we get, for some absolute constant C > 0 (which one can take to be
C := 256e2c),

Eθ,θ′ [Z1{| ⟨θ, θ′⟩ | ≤ τ}] ≤ exp
(
nγ4

)
Eθ,θ′

[
exp

(
C
nγ4 ⟨θ, θ′⟩2

ε2

)
1{| ⟨θ, θ′⟩ | ≤ τ}

]

≤ exp
(
nγ4

)
Eθ,θ′

[
exp

(
C
nγ4 ⟨θ, θ′⟩2

ε2

)]
.

Let β :=
√
sθ and β′ :=

√
sθ′. Then, we can rewrite the abolve inequality as

Eθ,θ′ [Z1{| ⟨θ, θ′⟩ | ≤ τ}] ≤ exp
(
nγ4

)
Eβ,β′

[
exp

(
C
nγ4 ⟨β, β′⟩2

ε2s2

)]
.

From there, we can use an argument similar to that in the proof of Theorem 4.
It suffices to evaluate the expectation by fixing β′, say to β0, where β0 =
(1, 1, · · · , 1︸ ︷︷ ︸

s

, 0, 0, · · · , 0). The random variable G := ⟨β, β0⟩ is then a symmetric

random walk with Hypergeometric(d, s, s) stopping time. By Lemma 2, for n =

o
(
min

(
ε2s
γ4 log ed

s ,
1
γ4

))
, we have

Eθ,θ′ [Z1{| ⟨θ, θ′⟩ | ≤ τ}] ≤ exp
(
nγ4

)
Eθ,θ′

[
exp

(
C
nγ4G2

ε2s2

)]
= 1 + o(1) , (17)

which concludes the analysis of this case.

Case 2: | ⟨θ, θ′⟩ | > τ . From (13) we can rewrite

Eθ,θ′ [Z1{| ⟨θ, θ′⟩ | > τ}]

= Eθ,θ′

[
EY

[
q(Y )2

p(Y )2

n∏
i=1

Exi

[
qθ(xi | yi)qθ′(xi | yi)

p(xi)2

]
1E{Y }

]
1{| ⟨θ, θ′⟩ | > τ}

]
.

(18)

To proceed further, we will rely on the following technical lemma, a corollary of Lemma 1
whose proof we defer to the end of the section:
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Lemma 7. Let ϕµ,Σ denote the density function of N (µ,Σ). Then, for µ1 = γbθy
1+γ2 ,

µ2 = γb′θ′y
1+γ2 , Σ1 = I − γ2θθT

1+γ2 , and Σ2 = I − γ2θ′θ′T

1+γ2 , we have

EX∼ϕ0,I

[
ϕµ1,Σ1(X)ϕµ2,Σ2(X)

ϕ2
0,I(X)

]
≤ 1√

1− γ4 ⟨θ, θ′⟩2
exp

(
γ2y2bb′ ⟨θ, θ′⟩

)
.

Invoking Lemma 7, we then can bound the inner expectations as

Exi

[
qθ(xi | yi)qθ′(xi | yi)

p(xi)2

]
≤ 1√

1− γ4 ⟨θ, θ′⟩2
Ebi,b′i

[
exp

(
γ2y2i bib

′
i ⟨θ, θ′⟩

)]
. (19)

Let b = (b1, b2, · · · , bn) and b′ = (b′1, b
′
2, · · · , b′n) be i.i.d. random variables, where bi, b′i ∼

(1− ε)δ1 + εδ−p. Then

n∏
i=1

Ebi,b′i

[
exp

(
γ2y2i bib

′
i ⟨θ, θ′⟩

)]
= Eb,b′

[
exp

(
γ2

(
n∑

i=1

bib
′
iy

2
i

)
⟨θ, θ′⟩

)]

≤ Eb,b′

[
exp

(
γ2

∣∣∣∣∣
n∑

i=1

bib
′
iy

2
i

∣∣∣∣∣ | ⟨θ, θ′⟩ |
)]

≤ exp
(
γ2p2∥Y ∥22| ⟨θ, θ

′⟩ |
)
. (20)

Using (19) and (20) we get

EY

[
q(Y )2

p(Y )2

n∏
i=1

EXi

[
qθ(Xi | yi)qθ′(Xi | yi)

p(Xi)2

]
1E{Y }

]

≤ 1

(1− γ4)
n/2

EY

[
q(Y )2

p(Y )2
exp

(
γ2p2∥Y ∥22| ⟨θ, θ

′⟩ |
)
1E{Y }

]
,

which by using the definition of E in (11) can be bounded as

EY

[
q(Y )2

p(Y )2

n∏
i=1

EXi

[
qθ(Xi | yi)qθ′(Xi | yi)

p(Xi)2

]
1E{Y }

]

≤
exp

(
γ2p2n(2 + ν)| ⟨θ, θ′⟩ |

)
(1− γ4)

n/2
EY

[
q(Y )2

p(Y )2

]
=

exp
(
γ2p2n(2 + ν)| ⟨θ, θ′⟩ |

)
(1− γ4)

n .

Recall that | ⟨θ, θ′⟩ | ≤ H
s , where H ∼ Hypergeometric(d, s, s). Therefore, plugging the

above equation in (18) yields, letting λ := γ2p2n(2+ν)
s ,

Eθ,θ′ [Z1{| ⟨θ, θ′⟩ | > τ}] (21)

≤ 1

(1− γ4)
nEθ,θ′

[
exp

(
γ2p2n(2 + ν)

s
s| ⟨θ, θ′⟩ |

)
1{| ⟨θ, θ′⟩ | > τ}

]
≤ 1

(1− γ4)
nEH [exp (λH)1{H > sτ}]

≤ exp
(
2nγ4

)
EH [exp (λH)1{H > sτ}]. (22)
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We use Lemma 4 to evaluate the r.h.s. in the above equation as follows:

EH [exp(λH)1{H > sτ}] =
s∑

h=⌈sτ⌉

exp(λh) Pr[H = h ]

≤
s∑

h=⌈sτ⌉

exp(λh)

(
es2

h(d− s+ 1)

)h

=

s∑
h=⌈sτ⌉

exp

(
λh− h log

h(d− s+ 1)

es2

)

≤
∞∑

h=⌈sτ⌉

exp

(
−h

(
log

τ(d− s+ 1)

es
− λ

))

=

exp

−sτ

(
log

τ(d− s+ 1)

es
− λ

)
︸ ︷︷ ︸

:=T


1− exp

(
−
(
log τ(d−s+1)

es − λ
)) . (23)

Substituting for λ in T , we get

T = log
τ(d− s+ 1)

es
− γ2n(2 + ν)(1− ε)2

ε2s
.

Recall that we already have fixed τ = ε2

4eγ2 log d , but kept ν (which appears in the definition

of E , in (11)) as a free parameter. Set ν := log log d
n . From the theorem statement, we have

ε = γ
C and s = d1−δ , and thus,

T = log

(
(d− s+ 1)ε2

4e2γ2s log d

)
− γ2(2n+ log log d)(1− ε)2

ε2s
= Θ

(
log d− log log d− n

s

)
.

If n = o(s log d), this implies T = ω(1). Since sτ is an increasing function of dimen-
sion, (23) then further gives that

EH [exp(λH)1{H > sτ}] = o(1)

Therefore, by (21), if n = o
(
min

(
s log d, 1

γ4

))
,

Eθ,θ′ [Z1{| ⟨θ, θ′⟩ | > τ}] = o(1).

which concludes the analysis of the second case.

Plugging the bounds derived in Case 1 and Case 2 in (13) imply that Ep

[(
qE

p

)2]
= 1 + o(1)

whenever n = o
(
min

(
s log d, 1/γ4

))
, and so

χ2
(
qE || p

)
= o(1).

It remains to show that E is a high probability event for the chosen ν, i.e., ν = log log d
n . Let Qχ2

n

denote the Q-function of χ2 distribution with n degrees of freedom. Then, by the definition of E ,

q
(
EC
)
= Qχ2

n
(n(2 + ν))

(a)

≤ Qχ2
n
(n(1 +

√
ν + ν/2))

(b)

≤ exp

(
−1

4
nν

)
= exp

(
−1

4
log log d

)
= o(1),
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where (a) is due to the fact that 1 + u ≥
√
u + u/2 for all u ≥ 0 and (b) is due to standard

concentration inequalities for χ2
n random variables.

This was the last piece missing: by the argument outlined at the beginning of this proof, we conclude
that

dTV(p,q) = o(1)

that is, that it is impossible to distinguish between H0 and H1 with constant probability, as long as
n = o

(
min

(
s log d, 1

γ4

))
. This concludes the proof of Theorem 7.

To conclude, it only remains to prove the technical lemma we invoked in the above proof, Lemma 7.

Proof of Lemma 7. Plugging in the values of µ1, µ2,Σ1,Σ2 in Lemma 1, we can expand

EX∼ϕ0,I

[
ϕµ1,Σ1

(X)ϕµ2,Σ2
(X)

ϕ2
0,I(X)

]
=

1 + γ2

det(A)1/2
exp

(1
2
U
)
, (24)

where A = I + γ2(θθT + θ′θ′T ) and

U = γ2y2(bθ + b′θ′)TA−1(bθ + b′θ′)− b2γ2y2 +
b2γ4y2

1 + γ2
− b′2γ2y2 +

b′2γ4y2

1 + γ2
.

Using the matrix inversion identity, we then have

A−1 =
(
I + γ2[θ, θ′][θ, θ′]T

)−1

= I − γ2[θ, θ′]

[
1 + γ2 γ2 ⟨θ, θ′⟩
γ2 ⟨θ, θ′⟩ 1 + γ2

]−1

[θ, θ′]T

= I − γ2

(1 + γ2)2 − γ4 ⟨θ, θ′⟩2
(
(1 + γ2)(θθT + θ′θ′T )− γ2 ⟨θ, θ′⟩ (θ′θT + θθ′T )︸ ︷︷ ︸

:=V

)
.

Thus,

U = γ2y2∥bθ + b′θ′∥2−b2γ2y2−b′2γ2y2−
γ4y2

(
(bθ + b′θ′)TV (bθ + b′θ′)

)
(1 + γ2)2 − γ4 ⟨θ, θ′⟩2

+
b2γ4y2

1 + γ2
+
b′2γ4y2

1 + γ2
.

For sufficiently small γ, i.e., smaller than some absolute constant γ0 > 0 (recalling that θ, θ′ are unit
vectors, and so V is bounded), we get

U ≤ 2γ2y2bb′ ⟨θ, θ′⟩ . (25)

Using the matrix determinant identity, we have

det(A) = det(I + γ2[θ, θ′][θ, θ′]T ) = det

(
I + γ2

[
1 ⟨θ, θ′⟩

⟨θ, θ′⟩ 1

])
= (1 + γ2)2 − γ4 ⟨θ, θ′⟩2 .

Thus,
1 + γ2

det(A)1/2
=

1√
1− γ4⟨θ,θ′⟩2

(1+γ2)2

≤ 1√
1− γ4 ⟨θ, θ′⟩2

. (26)

Eqs. (24), (25) and (26) together prove the lemma.

4 Discussion and Future Work

In this section, we discuss some of the limitations of our results, which we believe are ground for
possible future work. Firstly, we suspect that our lower bounds are not tight with respect to the
parameters γ and ε. The dependence on γ and ε in Theorems 4 and 5, is Ω

(
ε4/γ4

)
. While the

exact dependence on these parameters is still an open problem even for robust Gaussian mean testing
(non-sparse), we conjecture that the actual dependence on these parameters should scale as ε2/γ4,
and hence believe that our dependence on these parameters is suboptimal. In the current proof, the
bottleneck appears while obtaining an upper bound for the chi-squared correlation between two
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Huber-contaminated distributions, and we suspect that more advanced techniques might be required
to get the right dependence on γ and ε.

Furthermore, we restricted ourselves to the case when the covariance of the Gaussian distributions
under consideration are identity matrices (“spherical Gaussians”); of course, handling the case
of arbitrary covariances is a natural and important question. We believe that deriving the sample
complexity in the case of non-identity (and unknown) covariance matrices would require significant
additional effort, as well as new techniques and ideas. It is worth pointing out that we are not
aware of any work addressing the sample complexity results for non-identity covariances even in the
non-robust (but sparse) setting.
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