
A More Analysis

A.1 Objective for the Encoder, Model, and Policy

This section describes how the objective for the encoder, model, and policy (Eq. 6) is derived from
our overall objective (Eq. 1). Our aim is to maximizing the sum of (information-augmented) rewards
(Eq. 3), starting at state st:

L(θ; st) = E

[ ∞∑
t′=t

γt
′−tr̃(st′ ,at′) | st

]

= E

[ ∞∑
t′=t

γt
′−t(r(st′ ,at′) + λ(logmθ(zt′+1 | zt′ ,at′)− log φθ(zt′ | st′))) | st

]
= E [r(st,at) + λ(logmθ(zt+1 | zt,at)− log φθ(zt | st))

+

∞∑
t′=t+1

γt
′−t(r(st′ ,at′) + λ(logmθ(zt′+1 | zt′ ,at′)− log φθ(zt′ | st′))) | st

]
= E [r(st,at) + λ(logmθ(zt+1 | zt,at)− log φθ(zt | st)) + γQψ(st+1,at+1)] .

Note that the reward at the current time step, r(st,at), is not influenced by the parameters θ, so we
can drop this term:

L(θ; st)
const.
= E [λ(logmθ(zt+1 | zt,at)− log φθ(zt | st)) + γQψ(st+1,at+1)] .

The remaining difference between this objective and Eq. 5 is that the Q value term is scaled by
γ. However, this difference has no effect on the optimization problem because the parameter λ
is automatically tuned. If we scale the second term, Q, by some value (say, γ), then tuning λ to
satisfy the bitrate constraint will result in a different value for λ (one which is γ times smaller). For
optimizing this objective, we sample states st from the replay buffer.

A.2 Prior on the Initial Representation

For simplicity, we have omitted the prior m(z1) on the representation of the first observation.
This prior cannot be predicted from prior observations. Instead, we fix m(z1) to be a zero-mean,
unit-variance Gaussian. The information-augmented reward at the first time step is therefore

r̃λ(s0,a0, s1) ,���
�r(s0,a0) + λ (logmθ(z1)− log φθ(z1 | s1)) .

A.3 MaxEnt RL and the Optimal Encoder

Maximum entropy (MaxEnt) RL is a special case of our compression objective. If the high-level
policy is the identity function (πz(at | zt) = δ(at = zt)) and the prior is the uniform distribution
over Z (i.e., m(zt+1 | zt,at) = Unif(zt+1)), then we recover standard MaxEnt RL. Another way
of describing this connection is that MaxEnt RL is equivalent to imposing an information bottleneck
on the final (i.e., action) output of the policy. This connection suggests that some of the empirically-
observed benefits of MaxEnt RL might be derived from the fact that it implicitly is performing model
compression. For example, the objective from MaxEnt RL can be interpreted as optimizing for
behavior under which random actions (sampled from the prior) do not significantly decrease the
expected reward. Nonetheless, directly optimizing for the model compression objective yields a prior
that depends on time. As shown in our experiments, such a prior yields a policy that not only is more
compressed, but is also more robust to sensor failure (i.e., the open-loop setting).

In MaxEnt RL, the optimal policy can be expressed in terms of the soft value function: π(at | st) ∝
eQ̃(st,at), where Q̃(st,at) is the expected, entropy-regularized return. We can express the optimal
encoder learned by RPC in similar terms. First, we reparametrize the Q function in terms of zt
instead of at: Qπ(st, zt) = Eπz(at|zt)[Q(st,at)]. The optimization problem for the encoder is

max
φ(zt|st)

Eφ(zt|st)

[∑
t

γtr̃(st,at, st+1)

]
= Eφ(zt|st) [r(st,at) + logm(zt | zt−1, at−1)− log φ(zt | st) + γQ(st+1,at+1)] .

14



Algorithm 1 Robust Predictable Control. The updates below are written using a learning rate of η.
In practice we perform gradient steps using the Adam [24] optimizer.

1: Initialize prior mθ(zt+1 | zt,at), encoder φθ(zt+1 | st), Q function Qψ(st,at), and high-level
policy πzθ(at | zt).

2: Initialize replay buffer D ← ∅
3: Initialize dual variable log λ← log(1e− 6)
4: while not converged do
5: Sample a batch of transitions: {(st,at, rt, st+1) ∼ D}
6: Compute information cost: ct ← E[log φθ(zt | st)− logmθ(zt+1 | zt,at)] . Eq. 4
7: Compute information-regularized reward r̃← rt − λct
8: Update Q function: ψ ← ψ − η∇ψL(ψ) . Eq. 5
9: Update prior, encoder, and high-level policy: θ ← θ + η∇thetaL(st) . Eq. 6

10: Update dual variable: log λ← log λ− η(C − E[ct])
11: return πzθ(at | zt), φθ(zt | st),mθ(zt+1 | zt,at)

Using calculus of variations, we determine that the optimal encoder is given by

φ(zt | st) =
m(zt | zt−1,at−1)eQ

π(st,zt)∫
m(zt′ | zt−1,at−1)eQπ(st,zt

′)dzt′
.

Thus, the optimal encoder is trained to tilt the predictions from the prior by the Q function.

A.4 Value of information.

An optimal agent must balance these information costs against the value of information gained
from these observations. Precisely, the value of information is how much more reward an optimal
agent could receive if it observes the representation zt instead of predicting zt from the previous
representation and action. We expect that the optimal policy will only look at representations
where the value of information is greater than the cost of information. We confirm this prediction
experimentally in Fig. 4. In practice, the policy learned by RPC looks at every observation, but may
only look at a few bits from that observation.

B Experimental Details

B.1 Implementation Details

We implemented RPC on top of the SAC [17] implementation in TF-Agents [15]. Unless otherwise
noted, we used the default hyperparameters from that implementation and trained all agents for 3e6
steps. We provide pseudocode in Alg. 1.

State-based RPC. We parameterized the model mθ(zt+1 | zt,at) by predicting the difference
between the zt and zt+1. That is, we trained a 2-layer neural network (both layers have 256 units
with ReLU activations) to model p(zt+1 − zt | zt,at). We parameterized the encoder φθ(zt | st) as
a 2-layer neural network (both layers have 256 units with ReLU activations). Both the model and
encoder output the mean and (diagonal) standard deviation of a multivariate Normal distribution. We
squashed the mean to be within [−30, 30] and squashed the standard deviation to be within [0.1, 10.0].
We used the following function for squashing:

def squash_to_range(t, low=-np.inf, high=np.inf):
if low == -np.inf:

t_low = t
else:

t_low = -low * tf.nn.tanh(t / (-low))
if high == np.inf:

t_high = t
else:

t_high = high * tf.nn.tanh(t / high)
return tf.where(t < 0, t_low, t_high)

15



Unless otherwise noted, we set the dimension of zt to 50, though found this parameter has little
effect.

We parameterized the high-level policy πzθ(at | st) as a 2-layer neural network (both layers have 256
units with ReLU activations). Following the TF-Agents implementation of SAC, this network first
predicts a Normal distribution, which is then squashed by tf.tanh to only output actions within the
action space.

Image-based RPC. Our image-based version of RPC was based on DrQ [46]. Unless otherwise
specified, we used the same hyperparameters and architecture as that paper. For example, we used
the same action repeat (4 actions) and frame stack (3 frames) as that paper. The only architectural
difference was the policy network. We parameterized the encoder φθ(zt | st) as follows:

tf.keras.Sequential([
tf.keras.layers.Lambda(lambda t: tf.cast(t, tf.float32) / 255.0), # Normalize image
tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), strides=(2, 2), activation='relu'),
tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), activation='relu'),
tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), activation='relu'),
tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), activation='relu'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(tfp.layers.IndependentNormal.params_size(latent_dim), activation=_activation),
tfp.layers.IndependentNormal(latent_dim),

])

We used the same model and high-level policy as in the state-based experiments.

Dual parameter λ. We updated the dual parameter λ via dual gradient ascent to satisfy the bitrate
constraint. We parametrized this variable as log λ to ensure that it remains positive. We initialized λ =
10−6 ≈ 0, and performed updates using tf.keras.optimizers.Adam(learning_rate=3e-4).
We confirmed via visual inspection that the bitrate constraint was satisfied.

RNN baseline. We based the RNN baseline experiments on SAC-RNN implementation in TF-
Agents [15].4 We trained the agent on sequences of length 20. For fair comparison, we used the same
number of transitions per batch as other agents that trained on individual transitions. The default
batch size in TF-Agent’s implementation of SAC is 256, so we trained the RNN on batches with
256 // 20 = 13 sequences.

Model-based baselines. The state-space model and latent-space models used the same model
architecture as RPC. This model was trained using standard maximum likelihood with the same
optimizer that RPC used for optimizing m(zt+1 | zt,at).

B.2 Learning Compressed Policies (Fig. 2)

We ran this experiment with 5 random seeds, with error bars depicting the [25%, 75%] quantiles
across random seeds. To compute the return of each policy, we took the average of the last 50
evaluations, corresponding to the last 5e5 training steps (out of a total of 3e6 training steps). For each
task, we normalized the return by the median return of the best performing baseline. Fig. 10 plots
returns without normalization.

B.3 Behavior of Compressed Policies (Fig. 3a (bottom))

We used the two-way task from Leurent [29]. We initially observed that the agent often crashed into
other cars, so we modified the reward function by adding a penalty of -50 when the agent crashes.
The original environment has discrete actions, so we added a wrapper around the environment that
allows RPC to command continuous actions, which would then be discretized. We trained RPC for
1e5 steps on this environment.

B.4 Behavior of Compressed Policies (Fig. 3b)

For this experiment, we used a modified version of the two-way task from Leurent [29]. We modified
the environment to disable passing, so the car was forced to remain in the same lane. To encourage

4https://github.com/tensorflow/agents/blob/master/tf_agents/agents/sac/examples/v2/train_eval_rnn.py

16



aggressive driving, we modified the reward function to be (x/2000)10, where x is the distance
traveled. We trained RPC for 2e5 steps. The “Compressed Policy” refers to RPC using a bitrate
constraint of 0.1.

B.5 Value of Information (Fig. 4 (top))

The value of observing zt is given by

ValueOfInfo(zt+1) = E

[∑
t

γtr(st,at) | zt+1

]
− E

[∑
t

γtr(st,at) | zt

]
,

while the cost of observing zt is given by

CostOfInfo(zt+1) = E[log φ(zt+1 | st+1)− logm(zt+1 | zt,at)].

Intuitively, the optimal policy will only choose to look at representations zt when
ValueOfInfo(zt+1) > CostOfInfo(zt+1). We compare these two quantities in the experiments
(Fig. 4 (top)). Note that both the cost of information and value of information depend on the
encoder, φ(st).

For this experiment, we applied RPC to the HalfCheetah-v2 environment using a bitrate constraint
of 10.0.

B.6 Sparse Representations (Fig. 4 (bottom))

For this experiment, we applied RPC to the HalfCheetah-v2 environment. Since both the encoder
φ(zt | st) and model m(zt+1 | zt,at) predict diagonal normal distributions, we can compute the
KL divergence between each coordinate. For the plot in Fig. 4 (bottom), we sorted these KLs before
plotting.

B.7 Hierarchical RL (Fig. 8)

Pre-training. We learned the representation of actions by applying RPC to the push-v2 task in
Metaworld [48]. To make the subsequent optimization easier, we set the dimension of zt to 3.

def objective_fn(z_list, horizon):
env.reset()
total_r = 0.0
for z in z_list:

for _ in range(horizon):
a = policy(z)
_, r, done, _ = env.step(a)
total_r += r
if done:

break
z = prior(z, a)

loss = -1 * total_r
cma.fmin(objective_fn)

Figure 9: Pseudocode for hierarchical RL

Hierarchical RL. We optimize over the list
of zts using CMA-ES [18]. We provide pseu-
docode in Fig. 9. The aim of this approach is
to test whether compression results in behaviors
that can transfer to new tasks. We use CMA-
ES as a black-box optimizer because of its sim-
plicity, and emphasize that more sophisticated
optimization routines (e.g., actor-critic RL with
actions corresponding to zt) would likely per-
form better.

For the pusher task (which was the same as
the training task), we used one behavior zt for
a horizon of 100 steps. For the pusher_wall
task, we used two behaviors zt, each with hori-
zon 100 steps. For the button task, we used
one behavior zt for a horizon of 100 steps. For
the drawer_open task, we used two behaviors
zt, each with a horizon of 75 steps.

Action Repeat. In some tasks, actions correspond to a desired pose. Thus, action repeat would
correspond to moving to a desired pose, which seemed like a reasonable baseline in these manipulation
tasks. Our experiments highlight that the behaviors learned by RPC do more than move to a particular
pose. In addition, the behaviors learned by RPC do obstacle avoidance and objective manipulation.

17



B.8 Robustness to missing observations (Fig. 5)

For this experiment, we trained RPC using a bitrate of 0.1 of HalfCheetah-v2 and 3.0 for
Walker2d-v2. We evaluated all methods by dropping observations independently. Note that none of
the methods were trained using observation dropout, so this experiment explicitly tests robustness to
new disturbances introduced at test time.

B.9 Adversarial Robustness to Dynamics (Fig. 6 (left))

The adversary aims to apply a small perturbation to that state to make the policy perform as poorly as
possible. The adversary’s objective is

min
sadv∈B(s)

V π(sadv) = Qπ(sadv,a ∼ π(a | sadv)).

We instantiate the adversary using projected gradient descent [32] with step size 0.1. For fair
comparison, we evaluate each policy on states collected by rolling out that policy. This experiment
used the Ant-v2 environment, applying RPC using a bitrate of 0.3. We repeated this attack on 20
states sampled from each policy’s state distribution. The dark line shows the average across these 20
attacks. As expected, the agent is more vulnerable to attacks in some states than in other states.

B.10 Adversarial Robustness to Observations (Fig. 6 (right))

We optimize the adversary to corrupt the state using the following objective:
min

sadv∈B(s)
Qπ(s,a ∼ π(a | sadv)).

The adversary is optimized using PGD, using three steps of size 0.1 for each state. Note that we
only change the observation, not the true state of the environment. This difference from the previous
experiment is important, as it allows us to unroll the policy and adversary for an entire trajectory. We
used the Ant-v2 environment for this experiment.

B.11 Robust RL (Fig. 7)

We followed prior work in setting up the robust RL experiments [41]. To modify the mass, we scaled
the env.model.body_mass attribute of the environment by a fixed constant. To modify friction, we
scaled the env.model.geom_friction attribute of the environment by a fixed constant. We used
perturbations much larger than prior work [41] because we found that standard RL was already robust
to smaller ranges of perturbations.

C Proofs

C.1 Model Compression is a Lower Bound on Open-Loop Control (Lemma 5.2)

In this section we formally define the assumptions for Lemma 5.2 and then provide the proof.

First, we define an open loop policy with hidden state zt. This policy updates its hidden state as
m(zt+1 | zt,at) and produces actions by sampling p(at | zt). Note that the open-loop sequence of
actions generated by the policy is evaluated under the true system dynamics, p(st+1 | st,at). The
open loop policy does not observe the transitions from the true system dynamics.

The main idea of the proof will be to apply an evidence lower bound on the expected reward objective.
This idea alone almost completes the proof. The main technical challenge is accounting for discount
factors: a naïve application of an ELBO will result in discounted rewards but an undiscounted
information term.

Proof. The first step is to recognize that the expected discounted return objective can be written as
the expected terminal reward of a mixture of finite-length episodes. Define pH(τ) as a distribution
over length-H episodes. We can then write the expected discounted return objective as follows:

Ep(τ)

[ ∞∑
t=1

γtr(st,at)

]
=

∞∑
H=1

γHEpH(τ) [r(sH,aH)] .

18



We can now obtain a lower bound on the log of the expected return objective:

logEp(s1:∞,a1:∞,z1:∞)

[ ∞∑
t=1

γtr(st,at)

]

= log

( ∞∑
H=1

γHEp(s1:H,a1:H,z1:H) [r(sH,aH)]

)

= log

(
1− γ
γ

∞∑
H=1

γHEp(s1:H,a1:H,z1:H) [r(sH,aH)]

)
+ log

γ

1− γ

≥ (1− γ)
γ

∞∑
H=1

γH log
(
Ep(s1:H,a1:H,z1:H) [r(sH,aH)]

)
+ log

γ

1− γ
. (7)

The inequality is Jensen’s inequality. The constant 1−γ
γ was introduced because Jensen’s inequality

must be applied to a proper probability distribution.

The second step is to define a variational distribution q(s1:∞,a1:∞, z1:∞) as

q(s1:∞,a1:∞, z1:∞) =
∏
t

p(at | zt)q(zt | st)p(st+1 | st,at).

We can then obtain a lower bound on Eq. 7

logEp(s1:∞,a1:∞,z1:∞)

[
∞∑
t=1

γtr(st,at)

]

≥ 1− γ
γ

∞∑
H=1

γHEq(s1:H,a1:H,z1:H) [log r(sH,aH) + log p(s1:H,a1:H, z1:H)− log q(s1:H,a1:H, z1:H)] + log
γ

1− γ

=
1− γ
γ

∞∑
H=1

γHEq(s1:H,a1:H,z1:H)

[
log r(sH,aH) +

H∑
t=1

logm(zt+1 | zt,at)− log φ(zt | st)

]
+ log

γ

1− γ .

(8)

The final line follows from simplifying the definitions of p(s1:∞,a1:∞, z1:∞) and
q(s1:∞,a1:∞, z1:∞). Note that we have used the assumption that r(st,at) > 0 to ensure that
log r(st,at) is well defined.

Our third step is to do the opposite of the first step: recognize that expectations over a mixture of
finite-horizon episodes are equivalent to expectations over a discounted infinite-length episode. With
this, we can rewrite Eq. 8 as follows:

logEp(s1:∞,a1:∞,z1:∞)

[
∞∑
t=1

γtr(st,at)

]

≥ 1− γ
γ

Eq(s1:∞,a1:∞,z1:∞)

[
∞∑
H=1

γH
(
log r(sH,aH) +

H∑
t=1

logm(zt+1 | zt,at)− log φ(zt | st)

)]
+ log

γ

1− γ .

(9)

We can simplify the double summation using the following identity, where xt is shorthand for
logm(zt+1 | zt,at)− log φ(zt | st):

∞∑
H=1

γH
H∑
t=1

xt = γ(x1) + γ2(x1 + x2) + γ3(x1 + x2 + x3) + · · ·

= x1(γ + γ2 + γ3 + · · · ) + x2(γ
2 + γ3 + · · · ) + · · ·

= x1
γ

1− γ
+ x2

γ2

1− γ
+ x3

γ3

1− γ
+ · · ·

=
1

1− γ

∞∑
t=1

γtxt.

19



Applying this identity to Eq. 9, we get

logEp(s1:∞,a1:∞,z1:∞)

[
∞∑
t=1

γtr(st,at)

]

≥ 1− γ
γ

Eq(s1:∞,a1:∞,z1:∞)

[
∞∑
t=1

γt
(
log r(st,at) +

1

1− γ logm(zt+1 | zt,at)−
1

1− γ log φ(zt | st)
)]

+ log
γ

1− γ

≥ 1

γ
Eq(s1:∞,a1:∞,z1:∞)

[
∞∑
t=1

γt ((1− γ) log r(st,at) + logm(zt+1 | zt,at)− log φ(zt | st))

]
+ log

γ

1− γ .

Exponentiating both sides, we obtain the desired result.

This derivation is useful because it relates model compression to open-loop control. Precisely, it says
that a compressed model is one that will perform well under open loop rollouts.

C.2 Proof of Lemma 5.3

Proof. To start, we define the distribution over trajectories τ = (s1:∞,a1:∞, z1:∞) produced by
πopen and πreactive:

popen(τ) = p1(s1)
∏
t

p(st+1 | st,at)πz(at | zt)m(zt+1 | zt,at)

preactive(τ) = p1(s1)
∏
t

p(st+1 | st,at)πz(at | zt)φ(zt | st).

Note that R(τ) ,
∑
t γ

tr(st,at) is a deterministic function of a random variable, τ . We can now
write the difference in returns as Eπreactive [R(τ)]− Eπopen [R(τ)]. The main idea of our proof will be to
show that this difference is not too large.

Eπreactive [R(τ)]− Eπopen [R(τ)] =

∫
R(τ)(preactive(τ)− popen(τ))dτ

(a)

≤ Rmax

∫
|(preactive(τ)− popen(τ))|dτ

(b)

≤ Rmax

√
1

2
KL(preactive(τ)‖popen(τ)). (10)

We used Hölder’s inequality in (a) and Pinsker’s inequality in (b). Our second step is to relate the KL
divergence to the compression objective.

KL(preactive(τ)‖popen(τ))

= Epreactive

[
��

���log p1(s1) +
∑
t
((((

(((p(st+1 | st,at) +(((((
((

log πz(at | zt) + log φ(zt | st)

−���
��log p1(s1)−

∑
t

(((((
(((p(st+1 | st,at) +(((((

((
log πz(at | zt) + logm(zt+1 | zt,at)))

]

= Epreactive

[∑
t

log φ(zt | st)− logm(zt+1 | zt,at)

]
≤ C.

where C is the information constraint (Eq. 3). We then substitute this simplified expression for the
KL into Eq. 10:

Eπreactive [R(τ)]− Eπopen [R(τ)] ≤ Rmax

√
1

2
C.

Rearranging terms, we obtain the desired result:

Eπopen [R(τ)] ≥ Eπreactive [R(τ)]−Rmax

√
1

2
C.

20



For this result to be non-vacuous, we need that
√

1
2C < 1, so the average per-transition c must satisfy

c = (1− γ)C ≤ 2 · (1− γ):
Eπ[log φ(zt | st)− logm(zt+1 | zt,at)] ≤ 2 · (1− γ).

For example, when γ = 0.99, we would need that the average per-transition KL be less than 0.02.

D Additional Experiments

Figure 10: Learning Compressed Policies. This plot shows the same experiment as Fig. 2 on a
wider range of bitrates, without using normalized returns.

Figure 11: Robust RL: This plot shows the same experiment as Fig. 7 with error bars corresponding
to the standard deviation across five training random seeds.

Figure 12: Behavior of compressed walking
policies.

Figure 13: Adversarial Robustness: The
agent is most vulnerable just before its feet
leave the ground

21



Figure 14: Open-loop predictions of representations

Visualizing more compressed policies. In Fig. 12, we demonstrate that compressed policies also
learn different walking gaits on a locomotion task. The agent requires many more bits each time it
touches the ground, so the compressed policy takes bigger steps to minimize the number of footsteps.
See the project website for videos comparing the behaviors learned for varying levels of compression.

Behavior of attacked policies. We visualize the behavior of the adversarial attack on dynamics
described in Sec. 6.3. Visualizing the uncompressed policy in Fig. 13, we observe that the policy is
most vulnerable to attack the moment the robot launches off the ground for each step. This makes
sense, as the actions right before takeoff dictate the path taken when the robot is in the air before the
next step.

Open-loop predictions of representations. In Fig. 14, we plot the 6 coordinates of the representa-
tion zt learned by RPC for the HalfCheetah-v2 task. Recall that RPC learns a sparse representation,
so we choose the 6 coordinates with the largest variance. We observe that open-loop (i.e., autoregres-
sive) predictions from the latent-space model, mθ, closely match the true representations.

22


