
A Applications of Sign Equivariance557

A.1 Improving Invariant Eigenvector Networks558

Neural networks that are invariant to eigenvector symmetries have been shown to empirically improve559

graph learning models and achieve theoretically high expressive power. SignNet [Lim et al., 2023], a560

sign invariant neural network, takes the form561

f(v1, . . . , vk) = ⇢(�(v1) + �(�v1), . . . ,�(vk) + �(�vk)) (8)

for neural networks ⇢ and �. This directly enforces invariant representations, without any intermediate562

equivariant representations. However, many successful invariant models first have many equivariant563

layers before a final invariant operation as equivariant layers are more expressive: this includes564

convolutional neural networks [LeCun et al., 1989], message passing graph neural networks [Gilmer565

et al., 2017], invariant graph networks [Maron et al., 2018], and group convolutional neural net-566

works [Cohen and Welling, 2016]. Thus, sign equivariant layers may lead to better sign invariant567

networks. Moreover, sign equivariant layers may improve on other aspects of SignNet, such as568

expressiveness of node features (Proposition 1) and efficiency (Appendix A.2)569

A.2 Efficiency Gains from Sign Equivariant Networks570

Here, we show that our sign equivariant models can reduce the complexity of equivariant or invariant571

networks for two different types of applications. Throughout, we consider functions f : Rn⇥k
!572

Rn⇥k, and we consider our permutation equivariant and sign equivariant DSS-based architecture573

from Section 3.4.574

The time cost (in floating point operations) per layer of our DSS-based model is O(n(kd + d2)),575

where d is the maximum hidden dimension of the MLP and we assume constant depth MLPs. To see576

this, note that we can precompute
Pn

j=1 Vj,:, so that each
P

j 6=i Vj,: can be computed in constant577

time by subtracting Vi,: from the total sum. Then for each of the n rows, the MLPs require O(kd+d2)578

to evaluate matrix multiplications. In this process, we only form tensors of size O(n(k + d)), as the579

inputs and outputs are of size O(nk), and the hidden layers of the MLPs form tensors of size O(nd).580

A.2.1 Efficient Orthogonally Equivariant Networks581

Consider the case of O(k) equivariant models f : Rn⇥k
! Rn⇥k such that f(XQ) = f(X)Q for582

all orthogonal matrices Q 2 O(k). There are many orthogonally equivariant neural architectures583

that are specialized to the special case of k = 3, which is very useful for applications in the physical584

sciences [Thomas et al., 2018, Fuchs et al., 2020]. Here we consider models that directly work for585

general dimension k.586

Frame averaging approaches [Puny et al., 2022, Atzmon et al., 2022] require 2k forward passes of a587

base network f✓, one for each sign flip of the principal components. Letting their base network be a588

permutation equivariant DeepSets [Zaheer et al., 2017], this means that they require O(n(kd+ d2)2k)589

time to evaluate their model, where d is the hidden dimension of the base model. Note that this has590

an extra exponential 2k factor compared to our O(n(kd+ d2)) cost.591

Another general approach with universality guarantees comes from Villar et al. [2021], who analyze592

invariant polynomials to develop equivariant architectures. However, their method for O(k) invariance593

or equivariance requires forming XX>, an n ⇥ n matrix. Thus, the complexity is at least O(n2),594

which is a problem in applications, since oftentimes n is much larger than k. Variants of their method595

do not need to compute all O(n2) inner products, but it is unclear how to maintain permutation596

equivariance when doing this.597

A.2.2 Efficient Sign Invariant Networks598

Consider again the form of SignNet [Lim et al., 2023], f(V ) = ⇢([�(vi) + �(�vi)]i=1,...,k). In the599

permutation equivariant version, e.g. when � is a DeepSets [Zaheer et al., 2017] or a message passing600

neural network [Gilmer et al., 2017], � maps from Rn
! Rn⇥d, where d is the hidden dimension.601

Thus, computing �(vi) + �(�vi) for all k vectors vi require an O(nkd) sized tensor to be formed602

(even if the output space of � is Rn, a vectorized implementation computes all �(vi) + �(�vi) in603

two batched inference calls to �, which would require O(nkd) sized intermediate tensors). This is604
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a multiplicative factor larger than the sign equivariant requirement of O(n(k + d)) sized tensors.605

Moreover, it would take O(nkd2) time to compute �(vi)+�(�vi) for each i, which is a multiplicative606

factor larger than the O(n(kd+ d2)) time for the sign equivariant architecture.607

A.3 Edge Representations and Link Prediction608

A.3.1 Sign Invariant Link Prediction Decoders609

Here, we present an ansatz for universal permutation invariant and sign invariant functions for n = 2,610

that is f : R2⇥k
! Rdout . Note that SignNet is only known to be universal for such functions for611

n = 1, where there are no permutation symmetries [Lim et al., 2023].612

We will parameterize such functions as613

f(v1, . . . vk) = ' (v1 � v1, v1 � rev(v1), . . . , vk � vk, vk � rev(vk)) . (9)

Here, rev : R2
! R2 reverses the vector, so rev(a)1 = a2 and rev(a)2 = a1. Moreover, ' :614

R2⇥2k
! Rdout is a permutation invariant neural network, so '(PX) = '(X) for all 2 ⇥ 2615

permutation matrices P . Note that it is easy to parameterize permutation invariant functions '616

in a maximally expressive way, e.g. via DeepSets [Zaheer et al., 2017]. Now, we show that this617

parameterization is universal:618

Proposition 4. Functions f : R2⇥k
! Rdout of the above form are permutation invariant and sign619

invariant, and they universally approximate permutation invariant and sign invariant functions.620

Proof. Invariance of f is easy to see; let P be a 2⇥ 2 permutation matrix and si 2 {�1, 1} for each621

i. Then622

f(Pv1s1, . . . , Pvksk) = ' ((Pv1s1)� (Pv1s1), (Pv1s1)� rev(Pv1s1), . . .) (10)
= ' (P (v1s1 � v1s1), P (v1s1 � rev(v1s1)), . . .) (11)
= ' (P (v1 � v1), P (v1 � rev(v1)), . . .) (12)
= ' (v1 � v1, v1 � rev(v1), . . .) (13)
= f(v1, . . . , vk), (14)

where the second to last inequality is by permutation invariance of '. Next, we show universal623

approximation.624

Let h : R2⇥k
! Rdout be a continuous permutation invariant and sign invariant function. Then by625

the decomposition theorem in Lim et al. [2023], we can write626

h(v1, . . . , vk) = ⇢(�(v1v
>
1 ), . . . ,�(vkv

>
k )), (15)

for continuous functions ⇢ and �. As a composition of continuous functions, the function  : B ✓627

R2⇥2k
! Rdout given by  (A1, . . . , Ak) = ⇢(�(A1), . . . ,�(Ak)) is continuous, where B is the628

subset of R2⇥2k consisting of (v1v>1 , . . . , vkv>k ) such that each vi 2 R2. Note that  is permutation629

invariant on B, in the sense that for any 2⇥ 2 permutation matrix P , we have630

 (PA1P
>, . . . , PAkP

>) =  (A1, . . . , Ak), (16)

because if viv>i = Ai, then631

 (PA1P
>, . . . , PAkP

>) = h(Pv1, . . . , Pvk) = h(v1, . . . , vk) =  (A1, . . . , Ak), (17)

by permutation invariance of h.632

Now, we define our permutation invariant function ' : C ✓ R2⇥2k
! Rdout , on the domain633

C = {[v1 � v1, v1 � rev(v1), . . . , vk � vk, vk � rev(vk)] : vi 2 R2
}. (18)

We define ' by634

'(A) =  

✓
A1,1 A2,2

A2,2 A2,1

�
,


A1,3 A2,4

A2,4 A2,3

�
, . . . ,


A1,2k�1 A2,2k

A2,2k A2,2k�1

�◆
. (19)
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To see that ' is permutation invariant, we need only consider the case where P =


0 1
1 0

�
, in which635

case636

'(PA) =  

✓
A2,1 A1,2

A1,2 A1,1

�
,


A2,3 A1,4

A1,4 A1,3

�
, . . . ,


A2,2k�1 A1,2k

A1,2k A1,2k�1

�◆
(20)

=  

✓
P


A1,1 A2,2

A2,2 A2,1

�
P>, P


A1,3 A2,4

A2,4 A2,3

�
P>, . . . , P


A1,2k�1 A2,2k

A2,2k A2,2k�1

�
P>

◆
(21)

=  

✓
A1,1 A2,2

A2,2 A2,1

�
,


A1,3 A2,4

A2,4 A2,3

�
, . . . ,


A1,2k�1 A2,2k

A2,2k A2,2k�1

�◆
( perm. inv.) (22)

= '(A), (23)
where in the second equality, we use the fact that A2,2j = A1,2j , j = 1, . . . , k for A 2 C, because637

A2,2j = (vj � rev(vj))2 = (vj � rev(vj))1 = A1,2j for some vj 2 R2. Moreover, ' is clearly638

continuous and sign invariant. Defining f : R2⇥k
! Rdout using this ', we compute that639

f(v1, . . . vk) = ' (v1 � v1, v1 � rev(v1), . . . , vk � vk, vk � rev(vk)) (24)

=  

✓
v21,1 v1,1v1,2

v1,1v1,2 v21,2

�
, . . . ,


v2k,1 vk,1vk,2

vk,1vk,2 v2k,2

�◆
(25)

=  
�
v1v

>
1 , . . . , vkv

>
k

�
(26)

= h(v1, . . . , vk), (27)
so we are done.640

If ' instead comes from a universally approximating class of permutation invariant neural networks641

(rather than being an arbitrary continuous permutation invariant function), then on a compact domain642

we can get ✏ approximation of f to h by letting ' approximate  to ✏ accuracy.643

A.3.2 Proof of Proposition 1644

Proposition 1. Let f : Rn⇥k
! Rn⇥dout be a permutation equivariant function, and let V =645

[v1, . . . , vk] 2 Rn⇥k
be k orthonormal eigenvectors of an adjacency matrix A. Let nodes i and j be646

automorphic, and let zi and zj 2 Rdout be their embeddings, i.e, the ith and jth row of Z = f(V ).647

• If f is sign invariant and the eigenvalues associated with the vl are distinct, then zi = zj .648

• If f is basis invariant and v1, . . . , vk are a basis for some number of eigenspaces of A then zi = zj .649

Proof. We only prove the basis invariance claim, as the sign invariance claim is a special case; basis650

invariance is sign invariance when eigenvalues are distinct.651

Let P 2 Rn⇥n be a permutation matrix associated to an automorphism that maps node i to node j,652

so PAP> = A and Pei = ej , where el is the lth standard basis vector. Let Vt = [vr1 , . . . , vrdt ] be653

the matrix whose columns are the eigenvectors vrl that are associated to eigenvalue �i. The columns654

of Vt are thus an orthonormal basis for the eigenspace associated to �t. Note that for any of these655

eigenvectors, we have656

A(Pvrl) = PAP>(Pvrl) = PAvrl = P�ivrl = �t(Pvrl), (28)
so Pvrl is also an eigenvector of A with eigenvalue �t. As P is orthogonal, note that Pvr1 , . . . , Pvrdt657

is still an orthonormal basis of the eigenspace. Thus, there exists an orthogonal matrix Qt 2 Rdt⇥dt658

such that PVt = VtQt—see Lim et al. [2023].659

Repeat the above argument to get such a Qt for each of the eigenbases V1, . . . , Vl. We can then see660

that661

zj = f(V1, . . . , Vl)j,:
= f(V1Q1, . . . , VlQl)j,: basis invariance
= f(PV1, . . . , PVl)j,: choice of Qt

= (Pf(V1, . . . , Vl))j,: permutation equivariance
= f(V1, . . . , Vl)i,: choice of P
= zi.
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So we are done.662

A.4 Sign Invariance and Structural Node or Node-Pair Encodings663

In this section, we show that when the eigenvalues �1, . . . ,�k are distinct, then sign invariant functions664

of the orthonormal eigenvectors v1, . . . , vk give structural node or node-pair representations. This665

can also be generalized in a straightforward way to larger tuples of nodes beyond pairs, though we666

only consider nodes and node-pairs for ease of exposition. First, we give formal definitions.667

Definition 1 (Structural Representations [Srinivasan and Ribeiro, 2019]). Let A 2 Rn⇥n
be the668

adjacency matrix of a graph on node set {1, . . . , n}.669

A function f : Rn⇥n
! Rn

is a node structural representation if f(PAP>) = Pf(A) for all n⇥ n670

permutation matrices P .671

A function f : Rn⇥n
! Rn⇥n

is a node-pair structural representation if f(PAP>) = Pf(A)P>672

for all n⇥ n permutation matrices P .673

Importantly, these structural representations are permutation equivariant functions of adjacency674

matrices, not arbitrary matrices. For each adjacency matrix A, let V (A) = [v1(A), . . . , vk(A)] be a675

choice of orthonormal eigenvectors for the first k eigenvalues �1(A), . . . ,�k(A). We assume in this676

section that these first k eigenvalues are distinct for all A under consideration, so V (A) is defined up677

to sign flips. Let h : Rn⇥k
! Rn be a permutation equivariant function of sets, so h(PX) = Ph(X)678

for all permutations matrices P . Then of course h(PV (A)) = Ph(V (A)), but this does not make h a679

node structural encoding. This is because A 7! h(V (A)) is in general not a well-defined function of680

the adjacency, since the choice of V (A) is not well-defined (the choices of sign are arbitrary). If we681

constrain h to not depend on the signs (sign invariance), or to depend on the signs in a predictable way682

(sign equivariance), then we can compute structural node or node-pair encodings from eigenvectors.683

We capture these observations in the below proposition. First, we define three types of functions:684

• Let fnode : Rn⇥k
! Rn be sign invariant and permutation equivariant; that is,685

fnode(Pv1s1, . . . , Pvksk) = Pfnode(v1, . . . , vk) for si 2 {�1, 1} and P a permutation686

matrix.687

• Let fdecode : R2⇥k
! R be sign invariant; that is, fdecode(Szi, Szj) = fdecode(zi, zj) for688

S 2 diag({�1, 1}k).689

• Let fequiv : Rn⇥k
! Rn⇥k be a permutation equivariant and sign equivariant function; that690

is, fequiv(PV (A)S) = Pfequiv(V (A))S for S 2 diag({�1, 1}k) and P a permutation691

matrix.692

Proposition 5. Let A ✓ Rn⇥n
denote the matrices with distinct first-k eigenvalues. For A 2 A, let693

V (A) = [v1(A), . . . , vk(A)] be a choice of orthonormal eigenvectors of A, associated to the first-k694

(distinct) eigenvalues �1(A), . . . ,�k(A). Then695

(a) The map qnode : A ! Rn
given by qnode(A)i = fnode (fequiv(V (A)))i is well-defined and gives696

a structural node representation.697

(b) The map qpair : A ! Rn⇥n
defined by qpair(A)i,j = fdecode (fequiv(V (A))i,:, fequiv(V (A))j,:)698

is well-defined and gives a structural node-pair representation.699

Note that the identity mapping V (A) 7! V (A) is permutation equivariant and sign equivariant, so700

using fnode or fdecode directly on eigenvectors also gives structural representations. The statement701

(b) means that our link prediction pipeline with sign equivariant node features and sign invariant702

decoding produces structural node-pair representations.703

Proof. Part (a) We first show that qnode : A ! Rn is well-defined. Suppose we had another choice704

of eigenvectors, so the eigenvectors we input are V (A)S for some S 2 diag({�1, 1}k). Then705

fnode (fequiv(V (A)S)) = fnode (fequiv(V (A))S) = fnode (fequiv(V (A)) , (29)

where the first equality is by sign equivariance, and the second equality by sign invariance. Thus, the706

value of qnode(A) is unchanged.707
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Now, let P be any permutation matrix. Then for each eigenvector vi(A), i 2 [k], we have708

(PAP>)Pvi(A) = PAvi(A) = �i(A)Pvi(A), so Pvi(A) is an eigenvector of PAP> associ-709

ated to �i(A) = �i(PAP>). Hence, we denote vi(PAP>) = Pvi(A) (the choice of sign does not710

matter as q does not depend on the sign. Now, we have that711

qnode(PAP>) = fnode
�
fequiv(V (PAP>))

�
(30)

= fnode (fequiv(PV (A))) (31)
= Pfnode (fequiv(V (A))) (32)
= Pqnode(A) (33)

where the second to last equality is by permutation equivariance of fnode and fequiv.712

Part (b) That qpair : A ! Rn⇥n is well-defined follows from a similar argument to the qnode case.713

Let P be a permutation matrix, and � : [n] ! [n] its underlying permutation. We compute that714

qpair(PAP>)i,j = fdecode
�
fequiv(V (PAP>))i,:, fequiv(V (PAP>))j,:

�
(34)

= fdecode (fequiv(PV (A))i,:, fequiv(PV (A))j,:) (35)
= fdecode ([Pfequiv(V (A))]i,:, [Pfequiv(V (A))]j,:) (36)
= fdecode

�
fequiv(V (A))��1(i),:, fequiv(V (A))��1(j),:

�
(37)

= qpair(A)��1(i),��1(j) (38)

= (Pqpair(A)P>)i,j (39)

715

A.4.1 Sign Equivariance is Provably More Expressive for Link Prediction716

Our arguments in Section 2.1 and Figure 2 explain why we can expect sign equivariant models to717

be more powerful than sign invariant models in link prediction. To give a theoretically rigorous718

explanation, here we provide an example where sign equivariant models can provably compute more719

expressive link representations than sign invariant models.720

Consider a cycle graph C2k for some even length 2k, where k � 3. All nodes are automorphic in this721

graph, so any model based on structural node representations must assign the same representation722

to each node-pair. For instance, consider the eigenvalue �2 of the adjacency matrix, which is a723

simple eigenvalue with eigenvector [1,�1, 1,�1, . . . , 1,�1] [Lee et al., 1992]. Then a sign invariant724

model will lose the sign information and map each node to the same encoding, which means that725

each node-pair will also have the same encoding. However, a sign equivariant model can preserve the726

sign of each node (for instance by learning the identity function). Then for any pair of nodes that are727

one hop away, it can take a dot product to compute the pair representation �1, whereas it can take728

a dot product between any nodes that are two hops away to compute the pair representation 1. Of729

course, using more eigenvectors would allow for more complex representations to be computed.730

A.4.2 More on Sign Equivariance and Link Prediction731

Key to our method is the ability to update a positional node embedding in an equivariant way,732

which respects the graph symmetries. To elaborate, consider the aforementioned definition of node733

positional encodings as samples from a permutation equivariant probability distribution over node734

features [Srinivasan and Ribeiro, 2019]. Laplacian eigenvector positional embeddings are samples735

from the distribution of orthonormal bases of the eigenspaces of the Laplacian. Our sign equivariance736

based approach is possible because the randomness in Laplacian eigenvector positional encodings is737

exceptionally structured (consisting only of sign flips when eigenvalues are distinct). In contrast, a738

general way to obtain structural pair representations from node positional embeddings is to average739

some function over the randomness of the positional encoding (i.e., over many samples of the740

positional encoding) [Srinivasan and Ribeiro, 2019], but this is highly expensive, often intractable,741

and introduces substantial variance into the learning procedure. For instance, one may have to average742

samples of the n! assignments of unique node identifiers [Murphy et al., 2019] or approximate an743

integral over Gaussian random features [Abboud et al., 2021].744
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A.5 Proof of Proposition 2, Orthogonal Equivariance via Sign Equivariance745

Proposition 2. Consider a domain X ✓ Rn⇥d
such that each X 2 X has distinct covariance746

eigenvalues, and let RX be a choice of orthonormal eigenvectors of cov(X) for each X 2 X . If747

h : X ✓ Rn⇥d
! Rn⇥d

is sign equivariant, and if f(X) = h(XRX)R>
X , then f is well defined and748

orthogonally equivariant.749

Moreover, is h is from a universal class of sign equivariant functions, then the f of the above form750

universally approximate O(k) equivariant functions on X .751

Proof. First, we show that f is well defined. RX is only unique up to sign flips, as RXS is an752

orthonormal set of eigenvectors of cov(X) for S 2 diag({�1, 1}k). However, no matter the choice753

of signs, f(X) takes the same value, since754

h(XRXS)(RXS)> = h(XRXS)S>R>
X (40)

= h(XRX)SS>R>
X sign equivariance (41)

= h(XRX)R>
X . (42)

Next, we show that f is O(k) equivariant. Let Q 2 O(k) be any orthogonal matrix. Note that755

cov(XQ) =

✓
XQ�

1

n
11>XQ

◆> ✓
XQ�

1

n
11>XQ

◆
= Q>cov(X)Q. (43)

Thus, Q>RX is an orthonormal set of eigenvectors of cov(XQ). This means that there is a choice of756

signs S 2 diag({�1, 1}k) such that Q>RXS = RXQ. Hence, we have that757

f(XQ) = h(XQRXQ)R
>
XQ (44)

= h(XQQ>RXS)(Q>RXS)> (45)

= h(XRX)SS>R>
XQ sign equivariance (46)

= h(XRX)R>
XQ (47)

= f(X)Q>, (48)
so f is O(k) equivariant.758

Universal Approximation. Our proof of the universality of this class of functions builds on the759

proof of the universality of frame averaging [Puny et al., 2022]. Let ftarget be a continuous O(k)760

equivariant function and let ✏ > 0 be a desired approximation accuracy. Then ftarget is also sign761

equivariant (as the sign matrices S 2 diag({�1, 1}k) are orthogonal).762

Hence, by sign equivariant universality, we can choose a sign equivariant h such that763

kh(X)� ftarget(X)k < ✏ for all X 2 X (where k·k is the Frobenius norm). Define the O(k)764

equivariant f(X) = h(XRX)R>
X . Then for all X 2 X we have that765

kftarget(X)� f(X)k =
��ftarget(X)� h(XRX)R>

X

�� (49)

=
��ftarget(X)RXR>

X � h(XRX)R>
X

�� RX orthogonal (50)

=
��ftarget(XRX)R>

X � h(XRX)R>
X

�� orthogonal equivariance (51)
= kftarget(XRX)� h(XRX)k RX orthogonal (52)
< ✏. (53)

So f approximates ftarget within ✏ accuracy on X , and we are done.766

B Characterization of Sign Equivariant Polynomials767

In this Appendix, we characterize the form of the sign equivariant polynomials. This is useful,768

because for a finite group, equivariant polynomials universally approximate equivariant continuous769

functions [Yarotsky, 2022]; thus, if a model universally approximates equivariant polynomials, then it770

universally approximates equivariant continuous functions. Using equivariant polynomials to analyze771

or develop equivariant machine learning models has been done successfully in many contexts [Zaheer772

et al., 2017, Yarotsky, 2022, Segol and Lipman, 2019, Dym and Maron, 2021, Maron et al., 2019,773

2020, Villar et al., 2021, Dym and Gortler, 2022, Puny et al., 2023].774
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B.1 Sign Equivariant Linear Map Characterization775

Here, we prove our result characterizing the form of the equivariant linear maps.776

Lemma 1. A linear map W : Rn⇥k
! Rn0⇥k

is sign equivariant if and only if it can be written as777

W (X) = [W1X1 . . . WkXk] (54)

for some linear maps W1, . . . ,Wk : Rn
! Rn0

, where Xi 2 Rn
is the ith column of X 2 Rn⇥k

.778

Proof. For one direction, suppose W can be written as in equation 4. To see that W is sign equivariant,779

note that for any S 2 diag({�1, 1}k), we have780

W (XS) = [s1W1X1 . . . skWkXk] = [W1X1 . . . WkXk]S = W (X)S. (55)

For the other direction, let W be a sign equivariant linear map. For any i0 2 [n0] and j0 2 [k], we can781

write the action of W as782

W (X)i0,j0 =
nX

i=1

kX

j=1

W i,j
i0,j0Xi,j , (56)

where W i,j
i0,j0 2 R are coefficients representing the linear map. Let c 6= j0 be a column that is not j0.783

Further, for any row l 2 [n], let X̃ 2 Rn⇥k be such that X̃l,c = 1, and X̃ is zero elsewhere. Then we784

have that785

W (X̃)i0,j0 = W l,c
i0,j0 . (57)

Now, let S 2 diag({�1, 1}k) have a �1 in the j0th column and a 1 elsewhere. Then X̃S = X̃ . This786

implies that787

W l,c
i0,j0 = W (X̃)i0,j0 (58)

= W (X̃S)i0,j0 (59)

= �W (X̃)i0,j0 (60)

= �W l,c
i0,j0 , (61)

where in the second to last equality we used sign equivariance. This implies that W l,c
i0,j0 = 0.788

Hence, for any i0 2 [n0], j0 2 [k0], we have that W (X)i0,j0 only depends on Xj0 , so we are done.789

B.2 Sign Invariant Polynomials Rk
! R790

For simplicity, we start with the case of sign invariant polynomials p : Rk
! R. The sign equivariant791

polynomials take a very similar form. We can write any polynomial from Rk to R in the form792

p(v) =
DX

d1,...,dk=0

Wd1,...,dkv
d1
1 · · · vdk

k (62)

for some coefficients Wd1,...,dk 2 R and some D 2 N. Sign invariance tells us that for any793

S = diag(s1, . . . , sk) 2 diag({�1, 1}k), we must have794

DX

d1,...,dk=0

Wd1,...,dkv
d1
1 · · · vdk

k = p(v) = p(Sv) =
DX

d1,...,dk=0

Wd1,...,dks
d1
1 · · · sdk

k vd1
1 · · · vdk

k . (63)

This holds for any v 2 Rk, so for all choices of d1, . . . , dk we must have795

Wd1,...,dk = sd1
1 · · · sdk

k Wd1,...,dk , for all (s1, . . . , sk) 2 {�1, 1}k. (64)

Note that sdi
i = 1 if di is an even number. Hence, there are no constraints on Wd1,...,dk if all di are796

even. On the other hand, suppose dj is odd for some j. Let si = 1 for i 6= j and sj = �1. Then the797
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constraint says that Wd1,...,dk = �Wd1,...,dk , so we must have Wd1,...,dk = 0. To summarize, we798

have799

Wd1,...,dk =

⇢
free di even for each i
0 else

(65)

Where being free means that the coefficient may take any value in R. Thus, any sign invariant p only800

has terms where each variable vi is raised to an even power. It is also easy to see that any polynomial801

p where each variable vi is raised to only even powers is sign invariant, so we have the following802

proposition:803

Proposition 6. A polynomial p : Rk
! R is sign invariant if and only if it can be written804

p(v) =
DX

d1,...,dk=0

Wd1,...,dkv
2d1
1 · · · v2dk

k , (66)

for some coefficients Wd1,...,dk 2 R and D 2 N.805

In other words, p is sign invariant if and only if there exists a polynomial q : Rk
! R such that806

p(v) = q(v21 , . . . , v
2
k).807

B.3 Sign Equivariant Polynomials Rk
! Rk808

The case of sign equivariant polynomials p : Rk
! Rk is very similar. For l 2 [k], the lth output809

dimension of any polynomial p : Rk
! Rk can be written810

p(v)l =
DX

d1,...,dk=0

W(l)
d1,...,dk

vd1
1 · · · vdk

k , (67)

where W(l)
d1,...,dk

2 R are coefficients (note the extra l index, so there are k times more coefficients811

than in the invariant case). By sign equivariance, we have812

sl · p(v)l = p(Sv)l (68)

sl ·
DX

d1,...,dk=0

W(l)
d1,...,dk

vd1
1 · · · vdk

k =
DX

d1,...,dk=0

W(l)
d1,...,dk

sd1
1 · · · sdk

k vd1
1 · · · vdk

k . (69)

As this holds for all inputs v 2 Rk, we have the following constraints on the coefficients:813

slW
(l)
d1,...,dk

= sd1
1 · · · sdk

k W(l)
d1,...,dk

(70)

W(l)
d1,...,dk

= sl · s
d1
1 · · · sdk

k W(l)
d1,...,dk

, (71)

where we use the fact that sl = 1/sl since sl 2 {�1, 1}. If dj is odd for j 6= l, then similarly to814

the invariant case, we can take si = 1 for i 6= j and sj = �1 in the above equation to see that815

W(l)
d1,...,dk

= 0. If dl is even, then dl + 1 is odd, so we have that W(l)
d1,...,dk

= 0 by the same argument.816

Thus, we must have817

W(l)
d1,...,dk

=

⇢
free dl odd, and di even for each i 6= l
0 else

. (72)

Thus, the lth entry p(v)l only contains monomials of the term v2d1
1 · · · v2dl+1

l · · · v2dk
k , where each818

term besides vl is raised to an even power. We can factor out a vl and write such terms as vl ·819

v2d1
1 · · · v2dk

k . It is also easy to see that any polynomial with monomials only of this form is sign820

equivariant. Thus, we have proven Proposition 7.821

Proposition 7. A polynomial p : Rk
! Rk

is sign equivariant if and only if it can be written822

p(v)l = vl ·

0

@
DX

d1,...,dk=0

W(l)
d1,...,dk

v2d1
1 · · · v2dk

k

1

A . (73)

In vector format, p is sign equivariant if and only if it can be written as p(v) = v � pinv(v) for a823

sign invariant polynomial pinv : Rk
! Rk

.824
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B.4 Sign Equivariant Polynomials Rn⇥k
! Rn0⇥k825

Finally, we will handle the case of polynomials p : Rn⇥k
! Rn0⇥k equivariant to diag({�1, 1}k).826

This is the case we most often deal with in practice, when we have input V = [v1 . . . vk] for827

k eigenvectors vi 2 Rn of some n ⇥ n matrix. For a 2 [n0] and b 2 [k], the (a, b)th output of a828

polynomial Rn⇥k
! Rn0⇥k is829

p(V )a,b =
DX

di,j=0

W(a,b)
d

nY

i=1

kY

j=1

V
di,j

i,j , (74)

where the sum ranges over di,j 2 {0, . . . , D} for i 2 [n] and j 2 [k], and830

d = (d1,1, . . . , dn,1, d1,2, . . . , dn,k) is a shorthand to index coefficients W(a,b)
d 2 R. By sign equiv-831

ariance, we have that:832

sb · p(V )a,b = p(V S)a,b (75)

sb ·
DX

di,j=0

W(a,b)
d

nY

i=1

kY

j=1

V
di,j

i,j =
DX

di,j=0

W(a,b)
d sd̃1

1 · · · sd̃k
k

nY

i=1

kY

j=1

V
di,j

i,j , (76)

where d̃j =
Pn

i0=1 di0,j is the number of times that an entry from column j of V appears in the833

product
Qn

i=1

Qk
j=1 V

di,j

i,j . As this holds over all V , we thus have that834

W(a,b)
d = sb · s

d̃1
1 · · · sd̃k

k · W(a,b)
d . (77)

By analogous arguments to the previous subsections, if d̃j is odd for j 6= b, we have that the835

W(a,b)
d = 0. Likewise, if d̃b is even, we have W(a,b)

d = 0. Thus, the constraint on W is836

W(a,b)
d =

⇢
free

P
i di,b odd, and

P
i di,j even for each j 6= b

0 else
. (78)

In particular, this means that the only nonzero terms in the sum that defines p(V )a,b have an even837

number of entries from column j for j 6= b, and an odd number of entries from column b. Thus, each838

term can be written as Vid,b · pinv(V )d for some index id 2 [n] and sign invariant polynomial pinv.839

Moreover, it can be seen that any polynomial that only has terms of this form is sign equivariant.840

Thus, we have shown the following proposition:841

Proposition 8. A polynomial p : Rn⇥k
! Rn0⇥k

is sign equivariant if and only if it can be written842

as843

p(V )a,b =
DX

di,j=0

W(a,b)
d Vid,b · pinv(V )d, (79)

where pinv is a sign invariant polynomial, the sum ranges over all d, and id 2 [n] for each d.844

Now, we show that this implies Theorem 1. In particular, we will write p in the form845

p(V ) = W (2)
⇣
(W (1)V )� qinv(V )

⌘
, (80)

for sign equivariant linear maps W (2) and W (1), and a sign equivariant polynomial qinv. To do846

so, let D̃ denote the number of all possible d that the sum in equation 79 ranges over. We take847

W (1) : Rn⇥k̃
! RD̃n0⇥k and W (2) : RD̃n0⇥k

! Rn0⇥k. These sign equivariant linear maps have to848

act independently on each column of their input, so W (1)V = [W (1)
1 v1, . . .W

(1)
k vk] for linear maps849

W (1)
i : Rn

! RD̃n0
. We define W (1)

b to be the linear map such that (W (1)
b vb)d,a = W (a,b)

d Vid,b for850

a 2 [n0]. For the sign invariant polynomial qinv, we take qinv(V )d,a = pinv(V )d.851

Finally, we define W (2) to compute the sum in equation 79. In particular, for X = [x1, . . . , xk] 2852

RD̃n0⇥k we write W (2)X = [W (2)
1 x1, . . . ,W

(2)
k xk], where (W (2)

b xb)a =
P

d xid,b. It can be seen853

that with these definitions of W (2),W (1), and qinv, we have written p in the desired form.854
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B.5 Sign Invariant Polynomials and SignNet855

For completeness, here we state the form of the sign invariant polynomials p : Rn⇥k
! R on856

inputs V = [v1, . . . , vk] 2 Rn⇥k. The derivation very closely follows that of the sign equivariant857

polynomials from Rn⇥k
! Rn0⇥k in Appendix B.4, so we omit this derivation.858

Proposition 9. A polynomial p : Rn⇥k
! R is sign invariant if and only if it can be written859

p(V ) =
DX

di,j=0

Wd

nY

i=1

kY

j=1

V
di,j

i,j , (81)

where Wd 6= 0 for d = (d1,1, . . . , dn,1, d1,2, . . . , dn,k) only if
Pn

i=1 di,j is even for each column860

j 2 [k].861

In particular, p is sign invariant if and only if there is a polynomial q : Rn⇥n⇥k
! R such that862

p(V ) = q([Vi1,j · Vi2,j ]i12[n],i22[n],j2[k]).863

The polynomials V 7! Vi1,j · Vi2,j for i1, i2 2 [n] and j 2 [k] are thus generators of the ring of sign864

invariant polynomials from Rn⇥k
! R.865

Notably, Lim et al. [2023] propose universal sign invariant neural architectures, but do not characterize866

or otherwise use the sign invariant polynomials. Instead, their proof of universality uses topological867

constructions and shows that all sign invariant continuous functions can be decomposed in a simple868

form—namely, ⇢([�(vi) + �(�vi)]i=1,...,k) for continuous functions ⇢ and �. Our characterization869

of sign invariant polynomials provides another path to developing and analyzing the expressive power870

of sign invariant architectures.871

In particular, we can give an alternative proof for the universality of SignNet.872

Proposition 10 (Universality of SignNet). Let f : X ✓ Rn⇥k
! R be a continuous sign invariant873

function on a compact domain X , and let ✏ > 0. Then there exists a continuous ⇢ : Rn2k
! R and874

continuous � : Rn
! Rn2

such that |f(V )� ⇢([�(vi) + �(�vi)]i=1,...,k)| < ✏ for all V 2 X .875

Proof. First, let p be a sign invariant polynomial that approximates f to within ✏ on X . Then using876

Proposition 9, let q be a polynomial such that p(V ) = q([Vi1,j · Vi2,j ]i12[n],i22[n],j2[k]).877

Define � : Rn
! Rn2

to map a v 2 Rn to the vector of pairwise products of elements in v scaled by878

1/2, that is879

�(v) =
1

2
vec(vv>) (82)

Then �(v) + �(�v) is equal to the vector of pairwise products of v. Finally, we let ⇢ = q, which880

gives that881

p(V ) = ⇢([�(vi) + �(�vi)]i=1,...,k), (83)

and hence882

|f(V )� ⇢([�(vi) + �(�vi)]i=1,...,k)| = |f(V )� p(V )| < ✏ (84)

for all V 2 X .883

Given the form of the sign invariant polynomials, this proof is quite simple. However, it is technically884

weaker than the result of Lim et al. [2023], as they invoke the strong Whitney embedding theorem885

and only require � to map to R2n instead of Rn2

. Still, further arguments could reduce the dimension886

required to about 2n in this polynomial-based proof; as the Gram matrix vv> is rank one, it can be887

recovered almost always from about 2n of its entries [Pimentel-Alarcón et al., 2016].888

C Sign Equivariant Architecture Universality889

In this section, we prove Proposition 3 on the universality of our proposed sign equivariant architec-890

tures, which we restate here:891
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Proposition 3. Functions of the form v 7! v �MLP(|v|) universally approximate continuous sign892

equivariant functions f : Rk
! Rk

.893

Compositions f2 � f1 of functions fl as in equation 6 universally approximate continuous sign894

equivariant functions f : Rn⇥k
! Rn0⇥k

.895

We prove the two statements of the proposition in the next two subsections.896

C.1 Universality for functions Rk
! Rk897

Proof. Let X ✓ Rk be a compact set, let ✏ > 0, and let ftarget : X ! Rk be a continuous sign898

equivariant function that we wish to approximate within ✏. Choose a sign equivariant polynomial p899

that approximates ftarget to within ✏/2 on X . By compactness, we can choose a finite bound B > 0900

such that |vi| < B for all v 2 X .901

By Proposition 7, we can write p(v)l = vl ·
PD

d1,...,dk=0 Wd1,...,dkv
2d1
1 · · · v2dk

k . By the universal902

approximation theorem for multilayer perceptrons, we can choose a MLP : X ! Rk such that903

approximates q(v) =
PD

d1,...,dk=0 Wd1,...,dkv
2d1
1 · · · v2dk

k up to ✏/(2B). Note that q(|v|) = q(v), so904

v 7! MLP(|v|) also approximates q within ✏/(2B) accuracy.905

Thus, for all v 2 X , we have that906

|f(v)i � p(v)i| = |vi ·MLP(|v|)i � vi ·
DX

d=1

Wd1,...,dkv
2d1
1 · · · v2dk

k | (85)

= |vi||MLP(|v|)i �
DX

d=1

Wd1,...,dkv
2d1
1 · · · v2dk

k | (86)

 B · |MLP(|v|)i �
DX

d=1

Wd1,...,dkv
2d1
1 · · · v2dk

k | (87)

< ✏/2, (88)
so kf � pk1 < ✏/2 on X and we are done by the triangle inequality.907

C.2 Universality for functions Rn⇥k
! Rn0⇥k908

Recall that each layer of our sign equivariant network from Rn⇥k
! Rn0⇥k takes the form909

fl(V ) = [W (l)
1 v1, . . . ,W

(l)
k vk]� SignNetl(V ).

Proof. Let X ✓ Rn⇥k be compact, and let ftarget : X ! Rn0⇥k be a continuous sign equivariant910

function that we wish to approximate. Since X is compact, we can choose a finite bound B > 0 such911

that |Vij | < B for all V 2 X . Let p : X ✓ Rn⇥k
! Rn0⇥k be a sign equivariant polynomial that912

approximates ftarget up to ✏/2 accuracy. Using Proposition 8, we can write913

p(V )a,b =
DX

di,j=0

W(a,b)
d Vid,b · pinv(V )d,

for some sign invariant polynomials pinv(V )d. We will have one network layer f1 approximate the914

summands, and have the second network layer f2 compute the sum.915

First, we absorb the coefficients W(a,b)
d into the sign invariant part, by defining the sign invariant916

polynomial qinv(V )d,a,b = W(a,b)
d pinv(V )d, so we can write917

p(V )a,b =
DX

di,j=0

Vid,b · qinv(V )d,a,b.

Now, let dhidden 2 N denote the number of all possible d that appear in the sum, multiplied by n0.918

We define f1 : X ! Rdhidden⇥k as follows. As SignNet [Lim et al., 2023] universally approximates919
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sign invariant functions on compact sets, we can let SignNet1 : X ! Rdhidden⇥k be a SignNet that920

approximates qinv(V ) up to ✏/(2B) accuracy, so921

|SignNet1(V )(d,a),b � qinv(V )d,a,b| <
✏

2B · dhidden
. (89)

For b 2 [k], we also define the weight matrices W (1)
b 2 Rdhidden⇥n of the layer by letting the (d, a)th922

row (W (1)
b )(d,a),: for any a 2 [n] only be nonzero in the idth index, where it is equal to 1. Thus,923

(W (1)
b vb)(d,a) = Vid,b. (90)

Hence, the first layer takes the form924

f1(V )(d,a),: =
⇥
Vid,1 · SignNet1(V )(d,a),1 . . . Vid,k · SignNet1(V )(d,a),k

⇤
2 Rk. (91)

Now, for the second layer, we let SignNet(V )i,j = 1 for all i 2 [n], j 2 [k], which can be925

represented exactly. Then for each column b 2 [k] we will define weight matrices W (2)
b such that926

(W (2)
b )a,(d,i) = 1 if a = i and is 0 otherwise. Then we can see that927

f2 � f1(V )a,b =
X

d

Vid,b · SignNet1(V )(d,a),b. (92)

To see that this approximates the polynomial p, for any V 2 X we can bound928

|p(V )a,b � f2 � f1(V )a,b| =

�����
X

d

Vid,b ·
�
qinv(V )d,a,b � SignNet1(V )(d,a),b

�
����� (93)



X

d

|Vid,b|
���qinv(V )d,a,b � SignNet1(V )(d,a),b

��� (94)

 B
X

d

���qinv(V )d,a,b � SignNet1(V )(d,a),b
��� (95)

< B
X

d

✏

2Bdhidden
(96)


✏

2
(97)

By the triangle inequality, f2 � f1 is ✏-close to ftarget, so we are done.929

930

D Experimental Details931

D.1 Miscellaneous Experimental Details932

We ran the experiments on a HPC server with CPUs and GPUs. Each experiment was run on a single933

NVIDIA V100 GPU with 32GB memory. The runtimes for some of our experiments are included in934

the main paper. Our codes for our models and experiments will be open-sourced and permissively935

licensed.936

D.2 Link Prediction in Nearly Synthetic Graphs937

The base graphs H we generate are Erdös-Renyi or Barabási-Albert graphs with 1000 nodes. We938

use NetworkX [Hagberg et al., 2008] to generate and process the graphs. The Erdös-Renyi graphs939

have edge probability p = .05 and the Barabási-Albert graphs have m = 20 new edges per new node.940

Let V = [v1, . . . , vk] be Laplacian eigenvectors of the graph. We take k = 16 in these experiments.941

The unlearned decoder baseline simply takes the predicted probability of a link between i and j to942

be proportional to the dot product of the eigenvectors embeddings of node i and node j; this has no943

learnable parameters. In other words, the node embeddings zi and zj are taken to be Vi,: and Vj,:944

respectively, and the edge prediction is z>i zj . The learned decoder baseline takes the same zi and zj ,945
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but takes the edge prediction to be MLP(zi � zj). Every other method learns node embeddings zi946

and zj , and takes the edge prediction to be z>i zj .947

Each model is restricted to around 25,000 learnable parameters (besides the Unlearned Decoder,948

which has no parameters). We train each method for 100 epochs with an Adam optimizer [Kingma949

and Ba, 2015] at a learning rate of .01. The train/validation/test split is 80%/10%/10%, and is chosen950

uniformly at random.951

D.3 Details on n-body Simulations952

We follow the experimental setting and build on the code of Puny et al. [2022] (no license as far as953

we can tell) for the n-body learning task. The code for generating the data stems from Kipf et al.954

[2018] (MIT License) and Fuchs et al. [2020] (MIT License). There are 3000 training trajectories,955

2000 validation trajectories, and 2000 test trajectories. We modify the data generation code to apply956

to general dimensions d > 3. We do not change any of the scaling factors in doing so. For each957

dimension d, we use the same hyperparameters for both the frame averaging model and the sign958

equivariant model.959

D.4 Node Classification on CLUSTER960

In Section 4.3, we show results for the node classification task CLUSTER [Dwivedi et al., 2022a],961

where the task is to cluster nodes in graphs drawn from Stochastic Block Models [Abbe, 2017].962

Models are restricted to a 100k learnable parameter budget. We largely follow the experimental963

setting of Rampasek et al. [2022], except we report results for the eigenvector based methods on 5964

runs instead of 10.965

We test several eigenvector based methods within the GraphGPS framework and codebase [Rampasek966

et al., 2022] (MIT License), which is a state of the art Transformer / GNN hybrid. Firstly, we make967

use of the PEG style GraphGPS, which means that the MPNN in each GraphGPS layer takes as edge968

features eij = kVi � Vjk
2, where Vi 2 Rk is the eigenvector embedding of node i. This is fully O(k)969

invariant (which is much stricter than sign / basis invariance), so we relax this to just be sign invariant970

in our model by learning a diagonal matrix D such that eij = V >
i DVj . Also, the standard GraphGPS971

only updates eigenvector representations (in a non-equivariant manner) before most of the neural972

network modules. When we add our sign equivariant model, we update eigenvector representations973

within each GraphGPS layer.974
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