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ABSTRACT

Recent diffusion-based adversarial attack methods have shown promising results
in generating natural adversarial images. However, these methods often lack
fidelity by inducing significant distortion on the original image with even small
perturbations on the latent representation. In this paper, we propose Adversarial-
Guided Diffusion (AGD), a novel diffusion-based generative adversarial attack
framework, which introduces adversarial noise during the reverse sampling of
conditional diffusion models. AGD uses editing-friendly inversion sampling to
faithfully reconstruct images without significantly distorting them through gradients
on the latent representation. In addition, AGD enhances latent representations by
intelligently choosing sampling steps, thereby injecting adversarial semantics
more smoothly. Extensive experiments demonstrate that our method outperforms
state-of-the-art methods in both the effectiveness of generating adversarial images
for targeted attacks on multimodal large language models (MLLMs) and image
quality, successfully misleading the MLLM’s responses. We argue that the security
concerns surrounding the adversarial robustness of MLLMs deserve increased
attention from the research community.

1 INTRODUCTION

With the exponential increase in data, computational resources, and model parameters, recent advance-
ments in large language models (LLMs), particularly multimodal large language models (MLLMs),
have achieved superior performance across various tasks, such as text-to-image and image-to-text
generation, which highlights their promising potential for a wide range of applications (Li et al.,
2023; Bao et al., 2023; Zhu et al., 2023; Liu et al., 2023). Although significant research efforts
have been made to improve the alignment of LLMs, recent studies indicate that the introduction of
visual modalities in MLLMs increases their vulnerability to adversarial attacks. Specifically, these
MLLMs with visual structures could be easily misled by adversarial examples, which are generated
by introducing imperceptible perturbations to clean images (Zhao et al., 2023; Cui et al., 2024; Luo
et al., 2024). As a result, it is essential to thoroughly investigate the adversarial robustness of these
MLLMs before their deployment, and proactively address potential security vulnerabilities.

For the research of the MLLMs adversarial robustness, compared to the white-box access sce-
nario (Shayegani et al., 2024; Gao et al., 2024; Cui et al., 2024), the scenario where adversaries
have only black-box system access seek to deceive the model into returning the targeted responses
represents the most realistic and high-risk scenario (Zhao et al., 2023; Dong et al., 2023; Bailey et al.,
2023). Existing methods such as AtackVLM (Zhao et al., 2023), is the first study to comprehensively
examine the adversarial robustness of MLLMs under both black-box and targeted settings. This work
employs query-based attacks with transfer-based priors. However, adversarial perturbation-based
attacks frequently produce low-quality and unnatural adversarial images, the images differ greatly
from the actual data distribution of natural images, as shown in Figure 1 which limits the effectiveness
of robustness evaluations.

Recent research integrates adversarial example generation into the reverse process of diffusion
models (Chen et al., 2023a; Dai et al., 2023; Chen et al., 2023c; Xue et al., 2024) to produce
high-quality and realistic adversarial samples. AdvDiff (Dai et al., 2023)introduces adversarial
guidance during the reverse diffusion process; however, its sampling begins from a standard Gaussian
distribution, which does not guarantee high-quality reconstructions (see Figure 1). AdvDiffuser

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Adversarial images are crafted by different methods. The first column denotes a clean
image, other columns denote baselines and our method. We zoom in part of the lower right for a
better view.

attempts to add PGD (Madry et al., 2018) to the latent variables at each sampling step through
iterations (Chen et al., 2023b). While this enhances adversarial effectiveness, it influences the
image quality and increases computational cost. In addition, ACA (Chen et al., 2023c) perturbs the
initial latent images at the beginning of the reverse diffusion process. According to diffusion model
principles (Mao et al., 2023), this seriously distorts the generated image.

To address the above challenges, we propose AGD, an attack framework based on text-to-image
conditional diffusion models (Rombach et al., 2022). AGD introduces adversarial noise during the
reverse sampling process of conditional diffusion models and effectively generates adversarial images
for targeted attacks on MLLMs. Specifically, we employ an open-source text-to-image generation
model to generate the target text into a target image. A surrogate model with the same visual encoder
architecture as the MLLM is then used to obtain adversarial gradients. These gradients are injected
into the noise prediction during the reverse diffusion process, iteratively modifying the images
through sampling steps to generate adversarial images that mislead the MLLM’s response toward the
target text. Moreover, we incorporate edit friendly inversion to ensure faithful reconstruction of the
adversarial samples. Inspired by truncated diffusion (Meng et al., 2022), we also employ a sampling
strategy selecting specific timesteps for adversarial guidance to optimize adversarial guidance.

Our contributions are summarized as follows:

• We propose AGD, a novel framework for targeted adversarial attacks on multimodal large
language models. By introducing adversarial noise guidance into the reverse sampling
process of diffusion generative models, AGD effectively generates adversarial images for
targeted attacks to perform targeted adversarial attacks on multimodal large language models.

• Considering edit friendly inversion sampling strategy with truncated diffusion, AGD achieves
the generation of high-fidelity adversarial images. AGD provides a novel perspective for
performing targeted adversarial attacks on multimodal large language models.

• Extensive experiments conducted across several state-of-the-art multimodal large language
models demonstrate that AGD outperforms previous state-of-the-art attack methods, includ-
ing diffusion-based models. AGD achieves superior performance in targeted adversarial
attacks with higher-quality adversarial images generation.

2 RELATED WORK

Adversarial attack on multimodal large language models. Adversarial attacks typically function
by introducing imperceptible perturbations into clean images, result in misleading the targeted
responses (Goodfellow et al., 2014; Kurakin et al., 2018; Dong et al., 2018). In the case of MLLMs,
robustness of MLLMs is highly dependent on their most vulnerable input visual modality. Attackers
can exploit the inherent weaknesses within the model’s visual structure to craft adversarial examples.
Adversarial attacks on MLLMs are generally categorized into two types: black-box (Zhao et al.,
2023; Dong et al., 2023; Bailey et al., 2023) and white-box attacks (Shayegani et al., 2024; Gao
et al., 2024; Cui et al., 2024). According to the attack objectives, these can further be divided into
untargeted (Schlarmann & Hein, 2023; Cui et al., 2024) and targeted attacks (Zhao et al., 2023; Wang
et al., 2023). Compared to the white-box access scenario, the scenario where adversaries have only
black-box access seek to deceive the model into returning the targeted responses represents the most
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realistic and high-risk scenario. For the black-box access open-source MLLMs, AttackVLM (Zhao
et al., 2023)provides a comprehensive evaluation of the robustness of them, specifically targeting
models that are susceptible to adversarial attacks. Their study highlights the challenges associated
with conducting targeted adversarial attacks on MLLMs. Our work focuses on targeted adversarial
attacks for tasks involving visual question answering (VQA) and image captioning in MLLMs.

Diffusion-based unrestricted adversarial attack. Due to the ℓp-norm distance is inadequate to
capture how human perceive perturbation accurately (Chen et al., 2023b; Shamsabadi et al., 2020;
Yuan et al., 2022), a number of unrestricted attack methods have been proposed to improve pixel-based
attack methods. In recent, diffusion models have been introduced into adversarial attack research
due to it’s (Ho et al., 2020; Song et al., 2021a;b) capable of generating natural and diverse outputs.
Diffusion-based unrestricted methods such as AdvDiff (Dai et al., 2023) and AdvDiffVLM Guo et al.
(2024) incorporate adversarial guidance during the reverse diffusion process by injecting adversarial
gradients, enabling the generation of adversarial examples. Similarly, AdvDiffuser Chen et al. (2023b)
applies Projected Gradient Descent (PGD) Madry et al. (2018) within the reverse diffusion process,
adding adversarial perturbations to the latent images at each sampling step. However, methods
like AdvDiffVLM and AdvDiffuser, which inject adversarial semantics at each timestep, tend to
significantly degrade the quality of the generated images. In addition, AdvDiff uses of a standard
Gaussian distribution as the starting point for sampling limits the high-fidelity reconstruction of
adversarial examples. In contrast, ACA Chen et al. (2023c) adds adversarial semantics into the
latent images at the starting point of the sampling process through multiple iterative sampling steps,
which leads to substantial deviations in the generated image content due to ACA modifies the latent
variables at the beginning of sampling process.

Image editing using diffusion models Image editing is one of the most fundamental tasks in
computer vision. Diffusion generative models are now being applied to image-to-image editing
tasks (Brack et al., 2024; Couairon et al., 2023; Wallace et al., 2023; Hertz et al., 2023) since their
powerful generative capabilities in text-to-image generation. SDEdit (Meng et al., 2022) achieves
image editing by introducing noise at an intermediate step in the diffusion process. However, the
resulting images often deviate significantly from the input, requiring a trade-off between realism
and editing performance. Some image editing techniques address this by using additional masks
to restrict changes to specific regions of the image (Hertz et al., 2023; Couairon et al., 2023; Chen
et al., 2024). Recently, semantic image editing methods (Mokady et al., 2023; Huberman-Spiegelglas
et al., 2024; Brack et al., 2024) relied on inverting the deterministic DDIM sampling process, where
DDIM inversion identifies an initial noise vector to reconstruct the input image when diffused along
with the prompt. Nonetheless, small errors will still incur at each timestep, often accumulating the
result in deviations from the input, and require expensive optimization to correct error (Mokady
et al., 2023). To address this, edit-friendly inversion (Huberman-Spiegelglas et al., 2024) extracts
these noise mappings for any given image, obtaining an inverted image without requiring additional
optimization. The adversarial attack method proposed in this work uses edit friendly inversion with
sampling strategy truncated diffusion, ensuring high-fidelity and efficient generation of adversarial
examples for MLLM attacks.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

Given a victim MLLM, f , a typical visual question answer or image-to-text task is defined by

fω(x, cin) = cout , (1)

where ω is the model parameter, x is the input image, cin is the input text, and cout is response text.
In image-to-text task cin is a placeholder and cout is the caption; in visual question answer tasks, cin
is the input prompt and cout is the answer. This paper focuses on targeted adversarial attacks against
MLLMs, aiming to generate adversarial images that mislead the model into responding with specific
target text, which is defined as follows:

fθ(xadv, cin) = ctar , (2)
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MLLM

Target: Young boy swinging 
bat at a game with onlookers.
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Figure 2: The main framework of our method. We adopt Stable Diffusion as our diffusion model.
Firstly, we use edit friendly inversion to extract consistent noise maps in latent space. Next, adversarial-
guided diffusion is used to generate adversarial examples by adding adversarial noise in the reverse
sampling process. Finally, the generated adversarial examples are fed into victim MLLM resulting in
targeted responses.

where xadv is the adversarial example, and ctar is the adversarial target text that the adversary expects
the victim models to return. According to principles of adversarial attacks (Goodfellow et al., 2014),
adversarial attacks on MLLMs summarized as the optimization of two objectives.

Faithfulness. The adversarial examples injected with adversarial semantics should be crafted in
such a way that the responses generated by the victim multimodal large language model align with
the target text.

Fidelity. The injection of adversarial semantics minimizes degradation of image quality, ensuring
that the generated adversarial examples remain as visually similar to the original images as possible.

3.2 DIFFUSION PROBABILITY MODEL

As an effective generative model, Diffusion model (Ho et al., 2020) has be demonstrated that it gener-
ates images of higher quality and diversity than GANs (Dhariwal & Nichol, 2021). Diffusion models
operate by defining a Markov chain and learning a denoising process to sample from a standard nor-
mal distribution N (xT ; 0, I). This process involves two phases: the forward process q(xt|xt−1) :=
N (xt;

√
1− βtxt−1, βtI) and the reverse pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)). To im-

prove upon this, Song et al. (2021a) introduced DDIM, which offers an alternative noise process not
constrained by a Markov chain. By using the same training procedure as DDPM, DDIM enables faster
sampling. In this paper, we use latent diffusion model (Rombach et al., 2022) with DDIM sampler as
our diffusion generative model. As a effective conditional diffusion model, Stable Diffusion employs
a classifier-free guidance that injects class information without relying on additional training of a
classifier (Nichol et al., 2021; Ho & Salimans, 2021).

4 METHOD

4.1 ADVERSARIAL GUIDANCE NOISE PREDICTIONS

We display the whole framework of AGD in Figure 2, where we adopt the open-source Stable
Diffusion (Rombach et al., 2022) as our diffusion model. Firstly, as discussion in §3.1, our objective
of faithfulness is to leverage diffusion model to generate adversarial samples capable of successfully
misleading MLLMs into targeted responses. Prior work demonstrates that classifier-guided diffusion
sampling can serve as a gradient-based adversarial attack method (Dhariwal & Nichol, 2021).
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Building upon this, we propose an adversarial-guided diffusion process that injects adversarial
noise during the reverse sampling phase to generate adversarial examples with targeted semantic
information. According to the definition of the score function in SDE (Song et al., 2021b) and Bayes’
theorem,

∇xt
log pθ,fω (xt|ctar) = ∇xt

log
pθ(ctar|xt)pfω (xt)

pθ(ctar)

= ∇xt
log pθ(xt) +∇x log pfω (ctar|xt) ,

(3)

where xt represents the latent image of the diffusion model, the probability distribution pθ(ctar) is
independent of xt. Therefore, taking the gradient with respect to xt results in zero.

For deterministic sampling methods like DDIM, we adopt score-based conditional diffusion, as
proposed in (Song et al., 2021b). This approach leverages the inherent relationship between diffusion
models and score matching. Specifically, if we have a model that can predict samples, denoted as
ϵθ(x), it can be utilized to derive the score function ∇xt log pθ(xt) = − 1√

1−ᾱt
ϵθ(xt). Substituting

this into the score function as follows:

∇xt log(pθ(xt)pfω (ctar|xt)) = ∇xt log pθ(xt) +∇xt log pfω (ctar|xt)

= − 1√
1− ᾱt

ϵθ(xt) +∇xt log pfω (ctar|xt) .
(4)

As introduction in §3.2, we can also obtain noise prediction based on text prompts. Finally, we define
a new noise prediction take the form as follows,

ϵ̃θ(xt|c, ctar) = ϵ̂θ(xt|c)−
√
1− ᾱt∇xt log pfω (ctar|xt) . (5)

From this, we can deduce that adversarial condition diffusion generation can be interpreted as score
guidance via an additional classifier gradient.

For adversarial guidance in the reverse diffusion process, we introduce adversarial perturbations
beginning with x̂Tadv rather beginning of sampling process noisy image xT , Tadv usually close to x0.
This is because, during the reverse sampling process of diffusion models, the initial steps primarily
focus on reconstructing the low-frequency contour information of the image. As shown in Figure 4,
this reconstruction is crucial for maintaining the accurate global structure, which significantly
influences the overall quality of the final generated image. To balance adversarial attack performance
and image quality, we apply truncated diffusion techniques from image editing, selecting specific
time steps for adversarial guidance (Meng et al., 2022; Huberman-Spiegelglas et al., 2024; Mao et al.,
2023).

For the latent image xt at time step t, the adversarial guidance noise prediction ϵ̃θ(xt|c, ctar) is
defined by Eq. 5. While the parameters of MLLMs ω are proprietary and inaccessible, attackers
can reasonably be assumed to have knowledge of the visual encoders used in these models. This is
because developers often disclose the architecture of visual encoders in technical reports, enabling
the construction of surrogate models that utilize the same visual encoders for adversarial attacks.
Then we maximize the following objective:

max fϕ(xadv)
⊤fϕ(xtar) , (6)

where fϕ is the surrogate model such as the CLIP (Radford et al., 2021) visual encoder, which is
white-box accessibility and can obtain gradients through backpropagation. xtar = hξ(ctar) is the
target image generated by target text ctar via a public text-to-image generative model such as Stabel
Diffusion.

Thus, by maximizing objective Eq. 6, we approximate the adversarial score as follows:

∇ log pfω (ctar|xt) ≃ ∇xt(fϕ(xadv)
⊤fϕ(xtar)) , (7)

Substituting this into Eq. 5, we obtain adversarial guidance noise prediction as follows:

ϵ̃θ(xt|c, ctar) = ϵ̂θ(xt|c) + ϵadv(xt|ctar) , (8)

where ϵadv(xt|ctar) = −
√
1− ᾱt · s · sign(∇xt

(fϕ(xadv)
⊤fϕ(xtar))), s denotes scale parameter that

controls the strength of adversarial guidance. According to Eq. 8, we apply the DDIM sampler to
obtain the latent image xt−1 for the next time step.
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We introduce momentum mt to accelerate guidance over timestep t in the same target direction, the
expression of the optimization adversarial surrogate model gradient gt as:

mt ← µmt−1 + (1− µ)gt, gt =
∇xt(f̂ϕ(xadv)

⊤fϕ(xtar))

∥∇xt
(f̂ϕ(xadv)⊤fϕ(xtar))∥1

, (9)

where µ denote momentum factor and µ ∈ [0, 1), with larger µ resulting in less volatile changes
of the momentum. Moreover, the process is iterated N times at each timestep t, yielding the final
adversarial gradient that completes the current sampling step, as shown in Algorithm 1.

4.2 GENERATING NATURAL VISUAL ADVERSARIAL IMAGE VIA EDIT FRIENDLY INVERSION

As discussion in §3.1, the fidelity objective aims to minimize the discrepancy between the sampled
reconstructed image and the original image. The generation of adversarial examples targeting
MLLMs is similar to real image editing using diffusion models. Editing a real image using diffusion
models requires extracting the noise vectors that would generate that image when used within the
generative process (Mokady et al., 2023; Huberman-Spiegelglas et al., 2024). The edit friendly
inversion (Huberman-Spiegelglas et al., 2024) method proposes a technique for extracting editing-
friendly noise mappings for inversion, enabling precise image reconstruction.

For the DDIM sampling mentioned in §3.2, the generation process can be described as iteratively
sampling from the random noise vector xT ∼ N (0, I) as follows:

xt−1 = µ̂t(xt) + σtzt, t = T, . . . , 1 . (10)
The vector {xT , zT , . . . ,z1} uniquely determines the image x0 generated via Eq. 10. In other words,
these vectors {xT , zT , . . . ,z1} can be regarded as latent codes associated with the generated image.
Edit friendly inversion aims to extract these noise vectors for a given real image x0, which are then
used in Eq. 10 to reconstruct x0.

In fact, for any sequence of T + 1 images x0, . . . ,xT , where x0 represents a real image, consistent
noise mappings can be extracted by isolating zt from Eq. 10 as,

zt =
xt−1 − µ̂t(xt)

σt
, t = T, . . . , 1 , (11)

we begin by determining the sequence x0, . . . ,xT based on x0, allowing us to extract the corre-
sponding noise mapping vectors xT , zT , . . . ,z1:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ̃t, 1, . . . , T , (12)

where ϵ̃t ∼ N (0, I) represents an independent noise, ensuring that xt and xt−1 are further apart,
resulting in each extracted zt having a higher variance than in the standard generation process, which
is more suitable for editing the global structure of the image. Finally, during the reverse sampling
process, the extracted vector sequence {xT , zT , . . . ,z1}, combined with Adversarial guidance noise
predictions as described in §4.2, allows for high-quality image reconstruction through DDIM sampling
in Eq. 10. We provide complete AGD algorithm in Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. The dataset consists of both images and prompts. Following (Zhao et al., 2023), We use
validation set of ImageNet-1K as clean images, and we randomly select 1000 text descriptions from
from MS-COCO captions (Lin et al., 2014) as our adversarial target texts.

Victim MLLMs In this paper, to evaluate the performance of our AGD on the MLLMs attack,
We conducted targeted adversarial attack experiments on several advanced open-source multimodal
large language models, including UniDiffuser (Bao et al., 2023), which employs a diffusion-based
framework to jointly model the distribution of image-text pairs, enabling both image-to-text and
text-to-image generation. BLIP-2 (Li et al., 2023), integrates a querying transformer and a large
language model to boost image-grounded text generation. Furthermore, Img2Prompt (Guo et al.,
2023) is designed to support zero-shot VQA tasks with a plug-and-play, LM-agnostic module. In
recent, LLaVA (Liu et al., 2023) have scaled up the capabilities of large language models, utilizing
Vicuna-13B (Chiang et al., 2023) to improve performance on image-grounded text generation tasks.
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MLLM Method Text encoder (pretrained) for evaluation

RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

UniDiffuser

MF-it 0.655 0.639 0.670 0.698 0.611 0.656
MF-ii 0.709 0.695 0.722 0.733 0.637 0.700
AdvDiffuser 0.427 0.429 0.453 0.472 0.338 0.424
ACA 0.448 0.439 0.456 0.466 0.322 0.426
AGD(our) 0.718 0.706 0.732 0.744 0.650 0.710

Img2Prompt

MF-it 0.499 0.472 0.501 0.525 0.355 0.470
MF-ii 0.502 0.479 0.505 0.529 0.366 0.476
AdvDiffuser 0.492 0.464 0.493 0.521 0.357 0.465
ACA 0.502 0.479 0.505 0.525 0.358 0.473
AGD(our) 0.505 0.481 0.509 0.531 0.367 0.479

BLIP-2

MF-it 0.492 0.474 0.520 0.546 0.384 0.483
MF-ii 0.562 0.541 0.573 0.592 0.449 0.543
AdvDiffuser 0.457 0.469 0.468 0.457 0.356 0.448
ACA 0.472 0.458 0.478 0.458 0.349 0.450
AGD(our) 0.630 0.612 0.641 0.652 0.531 0.613

LLaVA

MF-it 0.389 0.441 0.417 0.452 0.288 0.397
MF-ii 0.396 0.440 0.421 0.450 0.292 0.400
AdvDiffuser 0.512 0.536 0.539 0.566 0.379 0.510
ACA 0.538 0.507 0.542 0.565 0.386 0.507
AGD(our) 0.542 0.510 0.547 0.572 0.393 0.513

Table 1: Comparison with state-of-the-art adversarial attack methods for performance of targeted
attacks against victim MLLMs. We report the CLIP score ↑ between the generated responses of
input images xadv and targeted texts ctar, as computed by different CLIP text encoders and their
ensemble/average results. The best result is bolded.

Baselines. To evaluate the performance of our method, we will compare it with existing attack
methods in state-of-the-art multimodal large models with gray-box setting, including MF-it and
MF-ii (Zhao et al., 2023), and state-of-the-art adversarial attack method based on diffusion model
AdvDiffuser (Chen et al., 2023b) and ACA (Chen et al., 2023c).

Evaluation metrics. Following (Zhao et al., 2023), we adopt CLIP score (Hessel et al., 2021),
which compares the responses generated by the victim models and predefined target texts. These
scores are computed using different CLIP. Moreover, to assess the quality of adversarial examples,
we employ three evaluation metrics: SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), and
PSNR (Hore & Ziou, 2010).

Experimental Details. We use clean images to generate adversarial images with fixed resolution
512. We set scale parameter s = 6, the number of iteration N = 50, momentum factor µ = 0.9, and
Tadv = 5. In addition, we use Stable Diffusion 2.1 (Rombach et al., 2022) with DDIM sampler (Song
et al., 2021a)(the number of forward diffusion steps T = 100) to generate target images from
the target texts, clean prompts are automatically generated using BLIP-2 (Li et al., 2023). In the
experiments, we report the average CLIP score of 1000 adversarial images after evaluation on MLLMs
and the average image evaluation metrics.

5.2 TARGETED ATTACK RESULTS ON MLLMS

As shown in Tabel 1, we evaluate effectiveness of our method on different victim MLLMs. Compared
with recent targeted adversarial attack methods: MF-ii, MF-it, diffusion-based method AdvDiffuser,
and ACA, experiment results demonstrate that our method consistently outperforms baselines in
terms of CLIP score. Specifically, our method exhibit significant improvements of targeted attack
such as UniDiffuser and BLIP-2. This observation indicates the effectiveness of our methods targeted
attack against victim MLLMs.
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Method UniDiffuser BLIP-2 LLaVA

SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑
MF-it 0.4322 0.5028 17.01 0.4428 0.4930 17.06 0.4239 0.4912 17.05
MF-ii 0.4342 0.4987 17.01 0.4342 0.4987 17.05 0.4368 0.4943 17.05
AdvDiffuser 0.3706 0.7897 6.816 0.2572 0.7566 5.699 0.2562 0.7477 5.712
ACA 0.4310 0.5320 16.54 0.4335 0.5238 16.61 0.4384 0.5172 16.75
AGD(our) 0.4579 0.3293 17.89 0.4512 0.3193 16.96 0.4539 0.3291 17.50

Table 2: Performance comparison of different methods based on SSIM, LPIPS, and PSNR metrics.

5.3 VISUALIZATION

Quantitative Comparison To evaluate the image quality of adversarial images generated by our
method, we quantitatively assess the image quality using image quality evaluation metrics such as
SSIM, LPIPS, and PNSR. As illustrated in Table 2, compared to baselines, the adversarial images
generated by our method exhibit higher image quality, especially on LPIPS. This is attributable to the
fact that we apply adversarial noise guidance while strategically selecting the timesteps for adversarial
semantics injection during the sampling process, based on the concept of truncated diffusion.

Target: Young boy swinging bat at a game with onlookers.

Adv: A young boy looks at a 
gun on a fence pole.

Cle: A blue bird sitting on 
a tree branch

Adv: A blue bird with a beak 
sitting on a twig.

Adv: A young boy swinging 
a baseball ball with a bat.

Adv: A young boy holding a 
bird on sticks in a tree.

MF-it MF-ii ACA OurCle

Figure 3: Comparison of different targeted adversarial attacks and our method on UniDiffuser. We
provide clean image, images generated by MF-ii, MF-it (Zhao et al., 2023), ACA (Chen et al., 2023c),
and our method. In addition to the visualization of adversarial examples, we display the adversarial
target text above the image and show the caption results for both the original image and the adversarial
example from different baselines below the image.

Qualitative Comparison We visualize adversarial images generated by our method and other
bashlines. As shown in Figure 3, compared to the adversarial images generated by baselines,
our method substantially preserves the structure and natural appearance of the clean images. In
contrast, MF-it and MF-ii directly introduce adversarial perturbations in terms of ℓp-norm limitation
to the clean images. Furthermore, ACA significantly changes the image structure by introducing
adversarial perturbations to latent during the early stages of the reverse process. Moreover, we present
the responses from MLLMs when input adversarial images are generated by different methods,
demonstrating that our method successfully misleads the MLLM’s response (More results see
Appendix D.1).

5.4 ABLATION STUDY

The impacts of hyperparameters. We first explore the impact of hyperparameter adversarial scale
s, inner iterations N , and momentum factor µ. We conduct experiments on UniDiffuser with s in
a range of [0.5, 7.0] with 0.5 intervals, other hyperparameters are the same as the above targeted
attack experiments. As shown in Figure 5a, we report the average CLIP score vs. LPIPS similarity
trade-off. The results show that increasing s enhances attack performance but diminishes the visual
quality of adversarial examples, our method improves the attack performance and influences the
image quality in a small range. Similarly, We conduct experiments on UniDiffuser with N varies in a
range of [5, 55] with 5 intervals and µ in a range of [0, 0.9] with 0.1 intervals. From the results in
Figure 5c, we find that larger values for N result in a greater CLIP score, but it does not seriously
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Figure 4: Visualization of generated adversarial images crafted by AGD when selecting different
phases in the reverse sampling process. The first column displays the original images, while the other
columns illustrate the effects of adversarial guidance applied at different phases for fixed timesteps.
We highlight the regions where significant structural changes are observed.

influence the quality of the generated adversarial images. This is because, in the inner loop, we
update the adversarial surrogate model gradient to find the best adversarial guidance. From the results
in Figure 5d, it’s obvious that momentum is essential for adversarial guidance, especially bigger
momentum factor µ results in greater attack performance.

The impacts of sampling strategy We explore the effects of the sampling strategy, as illustrated in
Figure 5b. The results demonstrate that the CLIP score improves as Tadv increases. This is attributed
to the stronger adversarial guidance during the reverse sampling process. Furthermore, We explore
the impact of attack phase selection on the quality of image generation. In the experiments, we
choose different phases to inject adversarial guidance in the reverse sampling process in a total of 5
steps. From Figure 4, we find that the image’s fidelity will be seriously influenced by the variance
of image structure information if the introduction of adversarial guidance is early in the sampling
process. This proves the rationality behind the sampling strategy employed in our AGD method for
selecting timesteps when introducing adversarial guidance in our method.
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Figure 5: Ablation study of the impact of hyperparameters. We plot CLIP scores (higher is better) of
the target attributes against LPIPS similarity (lower is better).

6 CONCLUSION

In this paper, focusing on targeted adversarial attacks on MLLMs, we propose a diffusion-based
adversarial attack framework AGD that addresses the key challenges of robust and high-fidelity
multimodal LLM attacks. By introducing adversarial noise during the reverse sampling process and
employing edit friendly inversion and selection of sampling strategy, our method improves image
fidelity and adversarial effectiveness. Experimental results demonstrate superior performance over
existing methods in generating high-fidelity adversarial images that successfully mislead MLLM
responses, underscoring the need for further exploration of adversarial robustness in multimodal
systems. Our work underscores the critical need to enhance robust evaluation techniques in order to
mitigate security risks in MLLM applications, which will also guide future exploration in assessing
MLLMs’ vulnerability.
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APPENDIX

A IMPLEMENTATION DETAILS

In our experiments, we experiment on the clean images to generate adversarial images with fixed
resolution 512. We set scale parameter s = 6, the number of iteration N = 50, momentum factor
µ = 0.1, and Tadv = 5. In addition, we use Stable Diffusion 2.1 (Rombach et al., 2022) with DDIM
sampler (Song et al., 2021a)(the number of forward diffusion steps T = 100) to generate target
images from the target texts, clean prompts are automatically generated using BLIP-2 (Li et al., 2023).
For prompt of querying LLaVA and Img2Prompt, we provide prompt fixed to be “what is the content
of this image?”. We also provide targeted images generated from targeted text in Figure 7.

For victim MLLMs in targeted attack experiment, we choose CLIP with ViT-B/32 vision encoder as
surrogate model for UniDiffuser and Img2Prompt, CLIP with ViT-G/14 vision encoder as surrogate
model for Img2Prompt BLIP-2, and CLIP with ViT-L/14 vision encoder as surrogate model for
LLaVA.

B ALGORITHM

We provide a complete AGD algorithm in Algorithm 1. Firstly, we employ edit friendly inver-
sion (Huberman-Spiegelglas et al., 2024) to obtain the noise mapping vector xT , zT , . . . ,z1, ensuring
that the clean image x can be faithfully reconstructed. Building on this, we introduce our adversarial
guidance noise predictions, integrated with a DDIM sampler to generate adversarial images with
targeted semantic features. In Algorithm 1, we utilize momentum-based updates on the surrogate
model to compute adversarial gradients. The adversarial guidance noise predictions, refined through
multiple iterative updates at selected time steps, are then applied during the sampling process to
optimize the adversarial image generation.

Algorithm 1 The algorithm of AGD.

Input: Clean image xcle, surrogate model fϕ, target image xtar, clean image caption c, momentum
factor µ, adversarial guidance scale s, atack start tiemstep Tadv , and number of iterations N

Initialization: momentum m = 0, inner momentum m̂ = 0, consistent noise maps vectors V = {},
forward sequence S = {}, and x0 = xcle

1: Add noise to x0 obtain S via forward process Eq. 12
2: for xt ∈ S do
3: Predict xt−1 by Eq. 10, then obtain noise map zt by Eq. 11
4: V = V ∪ {zt}
5: end for
6: for t = T, . . . , Tadv, . . . , 1 do
7: if t ≤ Tadv then
8: m̂0 = mt

9: for i = 1, . . . , N do
10: Obtain gradient gi by fϕ, xtar, and x̂t−1

11: m̂i ← µm̂i−1 + (1− µ)gi
12: ϵ̃θ(x̂t|c, ctar) = ϵ̂θ(x̂t|c)−

√
1− ᾱt · s · sign(m̂i)

13: DDIM sampling x̂t−1 with ϵ̃θ(xt|c, ctar) and noise map zt
14: end for
15: ϵ̃θ(x̂t|c, ctar) = ϵ̂θ(x̂t|c)−

√
1− ᾱt · s · sign(m̂N )

16: DDIM sampling x̂t−1 with ϵ̃θ(xt|c, ctar) and noise map zt.
17: mt−1 ← µmt + (1− µ)gN
18: else
19: DDIM sampling x̂t−1 with ϵ̂θ(xt|c) and noise map zt.
20: end if
21: end for
22: Output: xadv = x̂0
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C ADDITIONAL DERIVATIONS

C.1 DETAILED DERIVATION OF ADVERSARIAL GUIDANCE NOISE PREDICTIONS

For the diffusion process forward SDE (Song et al., 2021b):

dx = f(x, t)dt+ g(t)dw . (13)

For the reverse-time SDE:

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw, (14)

Then we obtain conditional generation reverse-time SDE as follows:

dx =
[
f(x, t)− g(t)2∇x log pt (x|ctar)

]
dt+ g(t)dw . (15)

Using the Bayes’ theorem,

pθ,fω (xt|ctar) =
pθ (ctar|xt) pfω (xt)

pθ (ctar)
, (16)

then taking the gradient of the logarithm w.r.t.xt:

∇xt
log pθ,fω (xt|ctar) = ∇xt

log
pθ (ctar|xt) pfω (xt)

pθ (ctar)

= ∇xt
log pθ (xt) +∇xt

log pfω (ctar|xt)−∇xt
log pθ (ctar)

= ∇xt log pθ (xt) +∇xt log pfω (ctar|xt) .

(17)

D ADDITIONAL EXPERIMENTS

D.1 VISUALIZATION OF THE TARGETED ATTACK RESULTS

We visualize adversarial images generated by our method and other baselines on different victim
MLLMs. As shown in Figure 6, compared to the adversarial images generated by baselines, our
method substantially preserves the structure and natural appearance of the clean images. In contrast,
MF-it and MF-ii directly introduce adversarial perturbations in terms of ℓp-norm limitation to the
clean images, ACA significantly changes the image structure by introducing adversarial perturbations
to latent during the early stages of the reverse process. Furthermore, we present the responses from
MLLMs when input adversarial images are generated by different methods. In a nutshell, our method
consistently surpasses baselines across various MLLMs in terms of both generated image quality and
attack results.

D.2 LEVERAGING AGD FOR ENSEMBLE ATTACKS

Furthermore, we conduct a experment to compare ensemble attacks founded on our method with
founded on other baselines. For ensemble attacks, we compute adversarial gradients gt as follows:

gt =
∇xt

∑Nm

i=1(f̂ϕ,i(xadv)
⊤fϕ,i(xtar))

∥∇xt

∑Nm

i=1(f̂ϕ,i(xadv)⊤fϕ,i(xtar))∥1
, (18)

where Nm is the number of surrogate models. As shown in Table 3, our AGD achieved better
results transferability when using conventional ensemble attacks strategy. These findings uncover the
potential of our ADG for constructing ensemble adversarial attacks on MLLMs.

D.3 COMPARISON OF CLIP-LPIPS TRADE-OFF FOR DIFFERENT ATTACK METHODS

The results in Figure 8 show that the CLIP-LPIPS trade-off of different attack methods on UniDiffuser.
The top left corner represents the ideal attack method with maximum target semantics alignment
without deviating from the initial image. It’s obvious that our method is closest to the ideal region
when CLIP score is high, demonstrating advantages of our method for robust and high-fidelity MLLM
Attacks.
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Target: Young boy swinging bat at a game with onlookers.

Adv: A young boy looks at a 
gun on a fence pole.

Cle: A blue bird sitting on 
a tree branch

Adv: A blue bird with a beak 
sitting on a twig.

Adv: A young boy swinging 
a baseball ball with a bat.

Adv: A young boy holding a 
bird on sticks in a tree.

MF-it MF-ii ACA OurCle

(a) UniDiffuser
Target: A red and blue kit flying in the bright blue sky.

Adv: A plane flying through 
the air with smoke coming 
out of it.

Cle: The head of an ostrich. Adv: An ostrich with an angry 
look on its face.

Adv: The ostrich's head. Adv: An ostrich is looking

MF-it MF-ii ACA OurCle

(b) BLIP-2
Target: A crowd of people getting on a tour bus.

Adv: A group of people 
looking at a bus at the stop.

Cle: A man holding a large 
fish.

Adv: A man holding a large 
fish on a dock.

Adv: a big fish in a small 
pond looking forward.

Adv: A man kneeling down 
and holding a fish on a pond.

MF-it MF-ii ACA OurCle

(c) Img2Prompt

Figure 6: Comparison of different targeted adversarial attacks and our method on different MLLMs.
e provide clean image, images generated by MF-ii, MF-it (Zhao et al., 2023), ACA (Chen et al.,
2023c), and our method. In addition to the visualization of adversarial examples, we display the
adversarial target text above the image and show the caption results for both the original image and
the adversarial example from different baselines below the image.

Figure 7: An illustration of target images generated from target text by Stable Diffusion.
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MLLM Method Text encoder (pretrained) for evaluation LPIPS↓
RN50 RN101 ViT-B/16 ViT-B/32 ViT-L/14 Ensemble

UniDiffuser
MF-it 0.638 0.626 0.652 0.668 0.550 0.627 0.3636
MF-ii 0.689 0.675 0.702 0.715 0.614 0.679 0.3642
AGD(our) 0.717 0.704 0.728 0.741 0.647 0.707 0.3313

Img2Prompt
MF-it 0.506 0.480 0.511 0.531 0.366 0.479 0.3636
MF-ii 0.505 0.479 0.510 0.531 0.361 0.477 0.3642
AGD(our) 0.508 0.483 0.514 0.533 0.368 0.481 0.3313

BLIP-2
MF-it 0.476 0.459 0.487 0.507 0.358 0.458 0.3636
MF-ii 0.486 0.464 0.494 0.514 0.364 0.464 0.3642
AGD(our) 0.630 0.612 0.641 0.652 0.531 0.613 0.3313

LLaVA
MF-it 0.538 0.508 0.546 0.568 0.390 0.510 0.3636
MF-ii 0.537 0.509 0.545 0.569 0.391 0.510 0.3642
AGD(our) 0.543 0.514 0.550 0.573 0.397 0.515 0.3313

Table 3: Ensemble Attacks by our method. We report the CLIP score ↑ between the generated
responses of input images xadv and targeted texts ctar, as computed by different CLIP text encoders
and their ensemble/average results. We also provide LPIPS to compare image quailty. The best result
is bolded.
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Figure 8: Comparison of the CLIP-LPIPS trade-off of different attack methods on UniDiffuser. We
plot CLIP scores (higher is better) of the target text against LPIPS similarity (lower is better).
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