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ABSTRACT

The interaction of a protein with its environment can be understood and controlled
via its 3D structure. Experimental methods for protein structure determination,
such as X-ray crystallography or cryogenic electron microscopy, shed light on bi-
ological processes but introduce challenging inverse problems. Learning-based
approaches have emerged as accurate and efficient methods to solve these in-
verse problems for 3D structure determination, but are specialized for a prede-
fined type of measurement. Here, we introduce a versatile framework to turn
biophysical measurements, such as cryo-EM density maps, into 3D atomic mod-
els. Our method combines a physics-based forward model of the measurement
process with a pretrained generative model providing a task-agnostic, data-driven
prior. Our method outperforms posterior sampling baselines on linear and non-
linear inverse problems. In particular, it is the first diffusion-based method for
refining atomic models from cryo-EM maps and building atomic models from
sparse distance matrices.

1 INTRODUCTION

Experimental methods in structural biology such as X-ray crystallography, cryogenic electron mi-
croscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy provide noisy and partial
measurements from which the 3D structure of biomolecules can be inferred. This three-dimensional
information is key for our understanding of the molecular machinery of living organisms, as well as
for designing therapeutic compounds. However, turning experimental observations into reliable 3D
structural models is a challenging computational task. For many years, reconstruction algorithms
were based on Maximum-A-Posteriori (MAP) estimation and often resorted to hand-crafted priors
to compensate for the ill-posedness of the problem. State-of-the-art algorithms for cryo-EM recon-
struction (Scheres, 2012; Punjani et al., 2017) are instances of such “white-box” algorithms. These
approaches sometimes provide estimates for the uncertainty of their answers but can only leverage
explicitly defined regularizers and do not cope well with complex noise sources or missing data.

Recently, supervised-learning approaches have emerged as an alternative to the MAP framework and
some of them established a new empirical state of the art for certain tasks, like model building (Ja-
mali et al., 2024). Typically, these supervised learning methods view the reconstruction problem as
a regression task where a mapping between experimental measurements and atomic models needs to
be learned. Some of these, like ModelAngelo, can even combine experimental data with sequence
information by leveraging a pretrained protein language model (Rives et al., 2021). However, these
methods must be trained on paired data (i.e., must be given input–output pairs) and can only cope
with a predefined type of input. If additional information is available in a format that the model was
not trained on (e.g., structural information about a fragment of the protein), or if the distribution
of input data shifts at inference time (e.g., if the noise level changes due to modifications in the
experimental protocol), a new model needs to be trained to properly cope with the new data.

In the field of imaging, scenarios where an image or a 3D model must be inferred from corrupted
and partial observations are known as “inverse problems”. To overcome the ill-posedness of these
problems, regularizers were heuristically defined to inject hand-crafted priors and turn Maximum
Likelihood Estimation (MLE) problems into MAP problems. In a similar fashion, machine learning-
based methods were recently shown to outperform hand-crafted algorithms for a wide variety of
tasks: denoising (Zhang et al., 2017), inpainting (Xie et al., 2012), super-resolution (Lim et al.,
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2017), deblurring (Nah et al., 2017), monocular depth estimation (Eigen et al., 2014), and camera
calibration (Kendall et al., 2015), among others. These methods, however, are equally limited by
their need for paired data and their poor performance in the eventuality of a distribution shift.

In contrast, the MAP approach does not require paired data and can leverage the knowledge of the
physics behind the problem through the definition of a likelihood function. As for the prior, genera-
tive models were shown to be effective tools to inject data-driven priors into MAP problems, making
inverse problems well-posed while circumventing the need for heuristic priors (Bora et al., 2017).
Among these generative methods, diffusion models gained popularity due to their powerful capabil-
ities in the unconditional generation of images (Dhariwal & Nichol, 2021), videos (Ho et al., 2022),
and 3D assets (Po et al., 2023), and were recently leveraged to solve inverse problems in image
space (Song et al., 2022; Chung et al., 2022a). The field of structural biology has also witnessed the
application of diffusion models in protein structure modeling tasks (Watson et al., 2023; Abramson
et al., 2024). The recently released generative model Chroma (Ingraham et al., 2023) stands out
in part thanks to its “programmable” framework, i.e., its ability to be conditioned on external hard
or soft constraints, but was never applied to structure determination problems like atomic model
building.

Here, we introduce ADP-3D (Atomic Denoising Prior for 3D reconstruction), a framework to condi-
tion a diffusion model in protein space with any observations for which the measurement process can
be physically modeled. Instead of using unadjusted Langevin dynamics for posterior sampling, our
approach performs MAP estimation and leverages the data-driven prior learned by a diffusion model
using the plug-n-play framework (Venkatakrishnan et al., 2013), (Zhu et al., 2023). We demonstrate
that our method handles a variety of external information: cryo-EM density maps, amino acid se-
quence, partial 3D structure, and pairwise distances between amino acid residues, to refine a com-
plete 3D atomic model of the protein. We show that our method outperforms a posterior sampling
baseline in average accuracy and, given a cryo-EM density map, can accurately refine incomplete
atomic models provided by ModelAngelo. ADP-3D can leverage any protein diffusion model as a
prior, which we demonstrate by showing results obtained with Chroma (Ingraham et al., 2023) and
RFdiffusion (Watson et al., 2023). We therefore make the following contributions:

• We introduce a versatile framework, inspired by plug-n-play, to solve inverse problems in
protein space with a pretrained diffusion model as a learned prior;

• We outperform an existing posterior sampling method at reconstructing full protein struc-
tures from partial structures;

• We show that a protein diffusion model can be guided to perform atomic model refinement
in simulated and experimental cryo-EM density maps;

• We show that a protein diffusion model can be conditioned on a sparse distance matrix.

2 RELATED WORK

Protein Diffusion Models. Considerable progress has been made in leveraging diffusion mod-
els for protein structure generation. While the first models could sample distance matrices (Lee
et al., 2022), they were later improved to directly sample backbone structures represented by 3D
point clouds (Anand & Achim, 2022; Trippe et al., 2022), backbone internal coordinates (Wu et al.,
2024), 3D “frames” (Yim et al., 2023). Recent methods are able to directly sample all-atom struc-
tures, including side chains (Chu et al., 2024). In RFdiffusion, Watson et al. (2023) experimentally
designed the generated proteins and structurally validated them with cryo-EM. In Chroma, Ingra-
ham et al. (2023) introduced a “conditioning” framework to generate proteins with desired properties
(e.g., substructure motifs, symmetries), but this framework was never used to enable protein struc-
ture determination from exprimental measurements. Recently, AlphaFold 3 (Abramson et al., 2024)
showed that a diffusion model operating on raw atom coordinates could be used as a tool to improve
protein structure prediction. As generative models for proteins keep improving, leveraging them in
the most impactful way becomes an increasingly important matter.

Here, we introduce a framework to efficiently condition a pretrained protein diffusion model and
demonstrate the possibility of using cryo-EM maps as conditioning information. Most of our exper-
iments are conducted using Chroma as a prior and we provide additional results using RFdiffusion
in the supplements.
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Diffusion-Based Posterior Sampling in Image Space. An inverse problem in image space can be
defined by y = Γ(x) + η where x is an unknown image, y a measurement, Γ a known operator and
η a noise vector of known distribution, potentially signal-dependent. The goal of posterior sampling
is to sample x from the posterior p(x|y), the normalized product of the prior p(x) and the likelihood
p(y|x). Bora et al. (2017) showed that generative models could be leveraged to implicitly represent a
data-learned prior and solve compressed sensing problems in image space. Motivated by the success
of diffusion models at unconditional generation (Dhariwal & Nichol, 2021), several works showed
that score-based and denoising models could be used to solve linear inverse problems like super-
resolution, deblurring, inpainting and colorization (Li et al., 2022; Choi et al., 2021; Saharia et al.,
2022; Kawar et al., 2022; Lugmayr et al., 2022; Zhu et al., 2023), leading to results of unprecedented
quality. Other methods leveraged the score learned by a diffusion model to solve inverse problems
in medical imaging (Song et al., 2021; Jalal et al., 2021; Chung & Ye, 2022; Chung et al., 2022c;b)
and astronomy (Sun et al., 2023). Finally, recent methods went beyond the scope of linear problems
and used diffusion-based posterior sampling on nonlinear problems like JPEG restoration (Song
et al., 2022), phase retrieval and non-uniform deblurring (Chung et al., 2022a). We refer to Daras
et al. (2024) for an in-depth survey of the methods leveraging diffusion models as priors in inverse
problems. Taking inspiration from these methods, and in particular from DiffPIR (Zhu et al., 2023),
we propose to leverage protein diffusion models to solve nonlinear inverse problems in protein space.

Model Building Methods. Cryogenic electron-microscopy (cryo-EM) provides an estimate of the
3D electron scattering potential (or density map) of a protein. The task of fitting an atomic model
x into this 3D map y is called model building and can be seen as a nonlinear inverse problem in
protein space (see 4.3).

Model building methods were first developed in X-Ray crystallography (Cowtan, 2006) and au-
tomated methods like Rosetta de-novo (Wang et al., 2015), PHENIX (Liebschner et al., 2019;
Terwilliger et al., 2018) and MAINMAST (Terashi & Kihara, 2018) were later implemented for
cryo-EM data. Although they constituted a milestone towards the automation of model building,
obtained structures were often incomplete and needed refinement (Singharoy et al., 2016). Super-
vised learning techniques were applied to model building, relying on U-Net-based architectures (Si
et al., 2020; Zhang et al., 2022; Pfab et al., 2021), or combining a 3D transformer with a Hidden
Markov Model (Giri & Cheng, 2024). EMBuild (He et al., 2022) was the first method to make use
of sequence information and ModelAngelo (Jamali et al., 2024) established a new state of the art for
automated de novo model building. Trained on 3,715 experimental paired datapoints, ModelAngelo
uses a GNN-based architecture and processes the sequence information with a pretrained language
model (Rives et al., 2021). Although fully-supervised methods outperform previous approaches,
they still provide incomplete atomic models and cannot use a type of input data it was not trained
with as additional information.

Here, we propose a versatile framework to solve inverse problems in protein space, including atomic
model refinement. Our approach can cope with auxiliary measurements for which the measurement
process is known. Our framework allows any pretrained diffusion model to be plugged-in as a
prior and can therefore take advantage of future developments in generative models without any
task-specific retraining step.

3 BACKGROUND

3.1 DIFFUSION IN PROTEIN SPACE WITH CHROMA

In Chroma (Ingraham et al., 2023), the atomic structure of a protein of N amino acid residues is
represented by the 3D Cartesian coordinates x ∈ R4N×3 of the four backbone heavy atoms (N, Cα,
C, O) in each residue, the amino acid sequence s ∈ {1, ..., 20}N , and the side chain torsion angles
for each amino acid χ ∈ (−π, π]4N (the conformation of the side chain can be factorized as up to
four sequential rotations). The joint distribution over all-atom structures is factorized as

p(x, s, χ) = p(x)p(s|x)p(χ|x, s). (1)
The first factor on the right hand side, p(x), is modeled as a diffusion process operating in the space
of backbone structures x. Given a structure x at diffusion time t, Chroma models the conditional
distribution of the sequence pθ(s|x, t) as a conditional random field and the conditional distribution
of the side chain conformations pθ(χ|x, s, t) with an autoregressive model.

3
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Figure 1: Overview of ADP-3D. Our method turns partial and noisy measurements (the “conditioning in-
formation”) into a 3D structure by leveraging a pretrained diffusion model and physics-based models of the
measurement processes. Starting from a random structure xT , our method iterates between a denoising step
and a data-matching step. The denoiser comes from the pretrained diffusion model. The data-matching step
aims at maximizing the likelihood of the measurements.

Adding isotropic Gaussian noise to a backbone structure would rapidly destroy simple biophysical
patterns that proteins always follow (e.g., the scaling law of the radius of gyration with the number
of residues). Instead, Chroma uses a non-isotropic noising process as an inductive bias to alleviate
the need for the model to learn these patterns from the data. The correlation of the noise is defined in
such a way that a few structural properties are statistically preserved throughout the noising process.
Specifically, the forward diffusion process is defined by the variance-preserving stochastic process

dx = −1

2
xβtdt+

√
βtRdw, (2)

where βt is a time-dependent noising schedule and dw is a standard Wiener process of dimension
R4N×3. The matrix R ∈ R4N×4N is fixed and defined explicitly based on statistical considerations
regarding the structure of proteins (see Ingraham et al. (2023) and supplements). Starting from x0

at t = 0, a solution to this stochastic differential equation (SDE) at time t is given by

xt ∼ N (x;αtx0, σ
2
tRRT ), (3)

where αt = exp
(
− 1

2

∫ t

0
βsds

)
and σt =

√
1− α2

t .

New protein samples can be generated by sampling xT from N (0,RRT ) and integrating the fol-
lowing reverse-time SDE over t ∈ [T, 0] (Anderson, 1982):

dx =

[
−1

2
x−RRT∇x log pt(x)

]
βtdt+

√
βtRdw̄, (4)

where dw̄ is a reverse-time Wiener process. Following Tweedie’s formula (Robbins, 1992), the
score ∇x log pt(x) is an affine function of the time-dependent optimal denoiser, approximated by
x̂θ(x, t):

∇x log pt(x) =
(RRT )−1

1− α2
t

(αtE[x0|xt = x]− x), x̂θ(x, t) ≈ E[x0|xt = x]. (5)

3.2 HALF QUADRATIC SPLITTING AND PLUG-N-PLAY FRAMEWORK

An objective function of the form f(x) + g(x) can be efficiently minimized over x using a variable
splitting algorithm like Half Quadratic Splitting (HQS) (Geman & Yang, 1995). By introducing an
auxiliary variable x̃, the HQS method relies on iteratively solving two subproblems:

x̃k = proxg,γ(xk) = argmin
x̃

g(x̃) +
γ

2
∥x̃− xk∥22,

xk+1 = proxf,γ(x̃k) = argmin
x

f(x) +
γ

2
∥x− x̃k∥22,

(6)

where prox are called “proximal operators” and γ > 0 is a user-defined proximal parameter.

If f represents a negative log-likelihood over x and g represents a negative log-prior, the above
problem defines a Maximum-A-Posterior (MAP) problem. The key idea of the plug-and-play frame-
work (Venkatakrishnan et al., 2013) is to notice that the first minimization problem in equation 6 is

4
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exactly a Gaussian denoising problem at noise level σ =
√

1/γ with the prior exp(−g(x)) in x-
space. This means that any Gaussian denoiser can be used to “plug in” a prior into a MAP problem.

Once a diffusion model has been trained, it provides a deterministic Gaussian denoiser for various
noise levels, as described in equation 5. As recently shown in Zhu et al. (2023), this optimal denoiser
can be used in the plug-n-play framework to solve MAP problems in image space. Here, we propose
to apply this idea to inverse problems in protein space, leveraging a pretrained diffusion model.

4 METHODS

In this section, we formulate our method, ADP-3D (Atomic Denoising Prior for 3D reconstruction),
as a MAP estimation method in protein space and explain how the plug-n-play framework can be
used to leverage the prior learned by a pretrained diffusion model. The method is described visually
in Figure 1. We then introduce our preconditioning strategy in the case of linear problems. Finally,
we describe and model the measurement process in cryogenic electron microscopy. ADP-3D is
described with pseudo-code in Algorithm 1.

4.1 GENERAL APPROACH

Given a set of independent measurements Y = {yi}ni=1 made from the same unknown protein, our
goal is to find a Maximum-A-Posteriori (MAP) estimate of the backbone structure x∗. Following
Bayes’ rule,

x∗ = argmax
x

{
p0(x|Y)

}
= argmin

x

{
−

n∑
i=1

log p0(yi|x)︸ ︷︷ ︸
f(x)

− log p0(x)︸ ︷︷ ︸
g(x)

}
. (7)

While most of previous works leveraging a diffusion model for inverse problems aim at sampling
from the posterior distribution p(x|Y), we are interested here in scenarios where the measurements
convey enough information to make the MAP estimate unique and well-defined.

We take inspiration from the plug-and-play framework (Venkatakrishnan et al., 2013) to efficiently
solve equation 7. We propose to use the optimal denoiser x̂θ(x, t) of a pretrained diffusion model to
solve the first subproblem in equation 6. Framing the optimization loop in the whitened space of z =
R−1x, which provides more stable results, our general optimization algorithm can be summarized
in three steps:

z̃0 = R−1x̂θ(Rzt, t) Denoise at level t,

ẑ0 = argmin
z

γ

2
∥z− z̃0∥22 −

n∑
i=1

log p0(yi|z) Maximize likelihood,

zt−1 ∼ N (αt−1ẑ0, σ
2
t−1) Add noise at level t− 1.

Here, no specific assumptions have been made on the likelihood term and this framework could
hypothetically be applied on any set of measurements for which we have a physics-based model
of the measurement process. Since the second step is not tractable in most cases, we replace the
explicit minimization with a gradient step with momentum from the iterate z̃0. This step can be
implemented efficiently using automatic differentiation. The gradient of ∥z − ẑ0∥22 w.r.t z in ẑ0
being null, the method does not depend on the choice γ.

4.2 PRECONDITIONING FOR LINEAR MEASUREMENTS

We consider the case where the measurement process is linear:

y = Ax0 + η = ARz0 + η, η ∼ N (0,Σ ∈ Rm×m), (8)

with y ∈ Rm and A ∈ Rm×4N being a known measurement matrix of rank m. In this case, the
log-likelihood term is a quadratic function:

log p0(y|z) = −
1

2
∥ARz− y∥2Σ−1 + C,where ∥x∥2Σ−1 = xTΣ−1x, (9)

5
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Algorithm 1 ADP-3D (Atomic Denoising Prior for 3D reconstruction)

Inputs: log-likelihood functions {fi : (y, z) 7→ log p(yi = y|z)}ni=1, measurements {yi}.
Diffusion model: correlation matrix R, denoiser x̂θ(x, t), schedule {αt, σt}Tt=1.
Optimization parameters: learning rates {λi}, momenta {ρi}.
Initialization: zT ← N (0, I), ∀i,vi = 0
for t = T, . . . , 1 do

z̃0 ← R−1x̂θ(Rzt, t) Denoise at level t
∀i,vi = ρivi + λi∇zfi(yi, z)|z=z̃0

Accumulate gradient of log-likelihood
ẑ0 ← z̃0 +

∑
i vi Take a step to maximize likelihood

zt−1 ∼ N (αt−1ẑ0, σ
2
t−1) Add noise at level t− 1

end for
return x0 = Rz0

and C does not depend on z. As shown in the supplements, the condition number of R (i.e., the ratio
between its largest and smallest singular values) grows as a power function of the number of residues.
For typical proteins (N ≥ 100), this condition number exceeds 100, making the maximization of the
above term an ill-conditioned problem. In order to make gradient-based optimization more efficient,
we propose to precondition the problem by precomputing a singular value decomposition AR =
USVT and to set Σ = σ2USSTUT . Note that this is equivalent to modeling the measurement
process as y = AR(z + η̃) with η̃ ∼ N (0, σ2). In other words, we assume that the noise η
preserves the simple patterns in proteins, which is a reasonable hypothesis if, for example, y is
an incomplete atomic model obtained by an upstream reconstruction algorithm that leverages prior
knowledge on protein structures. The log-likelihood then becomes

log p0(y|z) = −
1

2σ2

∥∥∥∥(Im 0
0 0

)
VT z− S+UTy

∥∥∥∥2
2

+ C. (10)

The maximization of this term is a well-posed problem that gradient ascent with momentum ef-
ficiently solves (see supplementary analyses). In equation 10, S+ denotes the pseudo-inverse of
S.

4.3 APPLICATION TO ATOMIC MODEL BUILDING

Measurement Model in Cryo-EM. In single particle cryo-EM, a purified solution of a target
protein is flash-frozen and imaged with a transmission electron microscope, providing thousands to
millions of randomly oriented 2D projection images of the protein’s electron scattering potential.
Reconstruction algorithms process these images and infer a 3D density map of the protein. Given a
protein (x, s, χ), its density map is well approximated by (De Graef, 2003)

y = B(Γ(x, s, χ)) + η ∈ RD×D×D, (11)

where Γ is an operator that places a sum of 5 isotropic Gaussians centered on each heavy atom. The
amplitudes and standard deviations of these Gaussians, known as “form factors”, are tabulated (Hahn
et al., 1983) and depend on the chemical element they are centered on. B represents the effect of
“B-factors” (Kaur et al., 2021) and can be viewed as a spatially dependent blurring kernel modelling
molecular motions and/or signal damping by the transfer function of the electron microscope. η
models isotropic Gaussian noise of variance σ2. This measurement model leads to the following
log-likelihood:

log p0(y|x, s, χ) = −
1

2σ2
∥y − B(Γ(x, s, χ))∥22 + C. (12)

Likelihood Terms in Model Refinement. We consider a 3D density map y provided by an up-
stream reconstruction method and an incomplete backbone structure x̄ ∈ Rm (m ≤ 4N ) provided
by an upstream model building algorithm (e.g., ModelAngelo (Jamali et al., 2024)). Sequencing a
protein is now a routine process (De Hoffmann & Stroobant, 2007) and we therefore consider the
sequence s as an additional source of information. The side chain angles χ are, however, unknown.

The log-likelihood of our measurements for a given backbone structure x can be decomposed as

log p0(y, s, x̄|x)= log p0(x̄|x) + p0(y, s|x) = log p0(x̄|x) + log p0(y|x, s) + log p0(s|x). (13)

6
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Figure 2: Structure Completion. Results on the ATAD2 protein (PDB:7qum, 130 residues). (a) Qualitative
results. The input structure is a subsampled version of the target structure (subsampling factor in the top row).
In the “input” row, we show the target (unknown) in gray and the locations of the known alpha carbons in
colors. We report the lowest RMSD over 8 runs. (b) RMSD vs. subsampling factor. Our method is compared
to Chroma conditioned with the SubstructureConditioner. The importance of the diffusion-based
prior is shown. We report the mean RMSD (±1 std) over 8 runs. The experimental (deposited) resolution is
indicated with a dashed line.

On the right-hand side, the last term can be approximated using the learned conditional distribution
pθ(s|x). We model x̄ = Mx + η so that the first term can be handled by the preconditioning
procedure described in the previous section. Finally, the middle term involves the marginalization
of p0(y|x, s, χ) over χ. This marginalization is not tractable but equation 12 provides a lower bound:

log p0(y|x, s) ≥ Eχ∼p0(χ|x,s)

[
log p0(y|x, s, χ)

]
≈ Eχ∼pθ(χ|x,s)

[
log p0(y|x, s, χ)

]
, (14)

using Jensen’s inequality. The expectation is approximated by Monte Carlo sampling and gradients
of χ with respect to x are computed by automatic differentiation through the autoregressive sampler
of χ, following the “reparameterization trick” (Kingma, 2013).

5 EXPERIMENTS

Experimental Setup. Our main results are obtained using the publicly released version of
Chroma1 (Ingraham et al., 2023). We provide additional results with the publicly released ver-
sion of RFdiffusion2 (Watson et al., 2023) in the supplements. We run all our experiments using
structures of proteins downloaded from the Protein Data Bank (PDB) (Burley et al., 2021). In or-
der to select proteins that do not belong to the training dataset of Chroma, here we only consider
structures that were released after 2022-03-20 (Chroma was trained on a filtered version of the PDB
queried on that date). We provide additional results on structures taken from the CASP15 dataset in
the supplements. For the proteins that are not fully modeled on the PDB, we mask out the residues
with ground truth coordinates before computing the Root Mean Square Deviation (RMSD). In each
experiment, we run 8 replicas in parallel on a single NVIDIA A100 GPU. Further details about each
target structure are provided in the supplements.

Structure Completion. Given an incomplete atomic model of a protein, our first task is to predict
the coordinates of all heavy atoms in the backbone. This first task is designed as a toy problem,
with no immediate application to real data, to validate and evaluate our method. The forward mea-
surement process can be modeled as y = Mx where M ∈ {0, 1}(4N/k)×4N is a masking matrix
(M1 = 1) and k is the subsampling factor. We consider the case where, for each residue, the lo-
cation of all 4 heavy atoms on the backbone (N, Cα, C, O) is either known or unknown. Residues
of known locations are regularly spaced along the backbone every k residues. We compare our re-
sults to the baseline Chroma conditioned with a SubstructureConditioner (Ingraham et al.,
2023). This baseline samples from the posterior probability p(x|y) using unadjusted Langevin dy-
namics. We use 1000 diffusion steps for our method and the baseline.

1https://github.com/generatebio/chroma
2https://github.com/RosettaCommons/RFdiffusion
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Figure 3: Atomic Model Refinement. (a) Experimental density map, ModelAngelo’s incomplete model and
ADP-3D’s atomic model. (b) RMSD of alpha carbons vs. completeness (number of predicted residues / total
number of residues) with ModelAngelo (MA) and our method. For EMD-26482 (third row), we remove uni-
formly sampled residues from the ModelAngelo model until reaching sub-80% of completeness. The RMSD
is computed with respect to the deposited structure on the PDB.

In Figure 2, we show our results on ATAD2 (PDB:7qum) (Davison et al., 2022; Bamborough et al.,
2016), a cancer-associated protein of 130 residues. The protein was resolved at a resolution of 1.5 Å
using X-ray crystallography. Our method recovers the target structure without loss of information
(RMSD < 1.5 Å) for subsampling factors of 2, 4 and 8. Fig. 2.b shows that our method outperforms
the baseline and highlights the importance of the diffusion-based prior. When the subsampling factor
is large (≥ 32), the reconstruction accuracy decreases but the method inpaints unknown regions
with realistic secondary structures (see quantitative evaluation in the supplementary). Note that
making the conditioning information sparser (increasing the subsampling factor) tends to close the
gap between our method (MAP estimation) and the baseline (posterior sampling).

Atomic Model Refinement. Next, we evaluate our method on the model refinement task. We use
experimental cryo-EM maps of single-chain structures: EMD-33209 (density map of PDB:7xkwYe
et al. (2024)), EMD-32760 (density map of PDB:7wsm Yuan et al. (2022)), EMD-26482 (density
map of PDB:7ug0 Huang et al. (2023)). We directly use the publicly available versions of EMD-
33209 and EMD-32760, and run ModelAngelo (Jamali et al., 2024) with its default parameters. For
EMD-26482, the deposited map is a trimeric version of PDB:7ug0. We use the volume zone
tool of ChimeraX to select and keep the regions of the density map within 3 Å of the deposited
atomic model. We then run ModelAngelo using its default parameters. All the incomplete models
provided by ModelAngelo are cleaned by removing the residues for which the Cα atom is not
located within 3.8 ± 0.3 Å of both neighboring Cα atoms. For the model obtained from EMD-
26482, we also randomly remove uniformly sampled residues in the incomplete model, such that
the completeness gets below 80%. We provide ModelAngelo’s output (an incomplete model) to
our method, along with the density map and the sequence. To evaluate our method, we report the
RMSD of the predicted structure for the X% most well-resolved alpha carbons (compared to the
deposited structure), for X ∈ [0, 100] (X is called the “completeness”).
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Figure 4: Pairwise Distances to Structures. Results on BRD4 (PDB:7r5b, 127 residues) (a) Qualitative
results. The reconstructed structures are shown in colors, depending on the number of known pairwise dis-
tances. We report the lowest RMSD over 8 runs. The target structure is shown in gray along with its pairwise
distance matrix. (b) RMSD vs. number of known pairwise distances. Each experiment is ran 10 times with
randomly sampled distances. We report the mean of the lowest RMSD obtained over 8 replicas (±1 std). The
plot demonstrates the importance of the diffusion model. The experimental (deposited) resolution is indicated
with a dashed line.

We show qualitative and quantitative results in Figure 3. For all structures, ADP-3D improves the
accuracy of the ModelAngelo model for the same level of completeness. Note that the RMSD can
only be computed up to the completeness level of the deposited structure. We provide additional
results in the supplements and investigate on the influence of the resolution of the input density map
and we perform an ablation study on the conditioning information.

Pairwise Distances to Structure Finally, we assume we are given a set of pairwise distances
between alpha carbons and we use our method to predict a full 3D structure. This task is a sim-
plification of the reconstruction problem in paramagnetic NMR spectroscopy, where one can obtain
information about the relative distances and orientations between pairs of atoms via the nuclear
Overhauser effect and sparse paramagnetic restraints, and must deduce the Cartesian coordinates of
every atom (Koehler & Meiler, 2011; Kuenze et al., 2019), (Schwieters et al., 2003; Wishart et al.,
2008; Nerli & Sgourakis, 2019). Formally, our measurement model is y = ∥Dx∥2 ∈ Rm, where
D ∈ {−1, 0, 1}m×4N is the distance matrix and the norm is taken row-wise (in xyz space). D
contains a single “1” and a single “-1” in each row and is not redundant (the distance between a
given pair of atoms is measured at most once). m corresponds to the number of measured distances.

We evaluate our method on the bromodomain-containing protein 4 (BRD4, PDB:7r5b (Warstat
et al., 2023)), a protein involved in the development of a specific type of cancer (NUT midline
carinoma) (French, 2010) and targeted by pharmaceutical drugs (Da Costa et al., 2013). For a given
number m, we randomly sample m pairs of alpha carbons (without redundancy) between which we
assume the distances to be known. Our results are shown in Figure 4. When 500 pairwise distances
or more are known, our method recovers the structural information of the target structure (RMSD <
1.77 Å, the resolution of the deposited structure resolved with X-ray crystallography). We conduct
the same experiment without the diffusion model and show a drop of accuracy, highlighting the
importance of the generative prior. Note that, when the diffusion model is removed, increasing the
number of measurements increases the number of local minima in the objective function and can
therefore hurt the reconstruction quality (plot in Fig. 4, orange curve, far-right part).

6 DISCUSSION

This paper introduces ADP-3D, a method to leverage a pretrained protein diffusion model for protein
structure determination. ADP-3D is not tied to a specific diffusion model and allows for any data-
driven denoisers to be plugged in as priors. Our method can therefore continually benefit from the
development of more powerful or more specialized generative models.

Considering real data (e.g., cryo-EM, X-ray crystallography or NMR data) raises complex and ex-
citing challenges, as experimental measurements of any one specific task typically require a lot of
domain-specific processing. For example, in a real scenario, NMR experiments cannot probe long
pairwise distances above 6 Å. Taking these constraints into account and applying ADP-3D to real

9
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NMR data would be an exciting direction for future work. In cryo-EM, most of the analyzed proteins
are multi-chain while the current implementation of ADP-3D only supports single-chain structures.
Extending our framework to multi-chain structures, which would possible using diffusion models
like Chroma, would be an impactful future direction.

In cases where the measurement process cannot be faithfully modeled due to complex nonideali-
ties, or when the measurement process is not differentiable, our framework reaches its boundaries.
Exploring the possibility of finetuning a pretrained diffusion model on paired data for conditional
generation constitutes another promising avenue for future work.

CODE AVAILABILITY

Our code is publicly available at: https://github.com/qt7391/adp-3d-anonymous
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