APPENDIX

A LOG-LIKELIHOOD FUNCTIONS
We define here the log-likelihood functions, as mentioned in Algorithm 1.

Structure Completion. For structure completion, we use the log-likelihood function defined
in (10):
2

. )

rwa = (g ) via-stuty
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Model Refinement. In the model refinement task, we combine three sources of information with
the following three log-likelihood functions:

2

fm(X,2) = —H (I(’)” 8) VvTz —stU”x (incomplete model)
2
2
fs(s,z) =logpg(s|Rz,t =0) (sequence) @
fuly»2) = —ly — BIU(Rz,5,))||2, where x ~ po(x|R,5,t =0)  (cryo-EM density)

T" is an operator turning an all-atom model into a density map with a user-defined resolution, fol-
lowing the pdb2mrc implementation of EMAN |[Ludtke et al| (1999). Given X = (x,s,x) =

[X1,...,Xa]T € (R®)4, the Cartesian coordinates of A heavy atoms,
A
Xi — X 2
I'(X):zeR* = Ziexp <—|252”2> eR, (3)
i=1

where Z; is the atomic number of atom 7 and s = resolution/(1/27). The norm ||y — I'(X)||2 is
computed directly in Fourier space using Parseval’s theorem, up to a time-dependent resolution r;.

Pairwise Distances to Structure. We use the following log-likelihood function:

f(y,2) = —|ly — |DRz|; |- )

B OPTIMIZATION PARAMETERS

Structure Completion. All experiments are ran for 1,000 epochs, with a learning rate A of 0.3
and a momentum p of 0.9. The time schedule is linear:

t =1 — epoch/1000. 5)

Model Refinement. All experiments are ran for 4,000 epochs. The learning rates are

0 if epoch < 3,000

Aqg = 0.01 6
1 x 1075 otherwise '~ ¢ ’ ©)

Am =01, Ag = {

and all the momenta are set to 0.9. 7 is set to 5 A for the first 3,000 epochs and linearly decreases
to 1.5 A during the last 1,000 epochs. The side chain angles () are sampled every 100 epochs. The

time schedule is
t = 1 — y/epoch/4,000. @)

Pairwise Distances to Structure. All experiments are ran for 1,000 epochs, with a learning rate
A = 200/n, where n is the number of known pairwise distances, and a momentum p of 0.99. The

time schedule is
t = 1 — y/epoch/1,000. (8)



C CoMPUTE TIME

In each experiment, we run 8 replicas in parallel on a single NVIDIA A100 GPU. The typical
compute time depends on the task, the number of residues in the protein, and the diffusion model.
With Chroma, for which the compute time scales sub-quadratically with the number of residues (In-
graham et al.l 2023)), the typical compute time for protein with 100 residues is 2 minutes for the
structure completion task, 10 minutes for the “distances to structure” task and 30 minutes for the
model refinement task.

D CORRELATED DIFFUSION

We use the “R,-confined globular polymer” correlation matrix, as

defined in (Ingraham et al., 2023): —
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where a is a free parameter, v = L__ and b is chosen such that Number of residues (V)

V1-b2
the radius of gyration R, scales with the number of residues as Figure S1: Condition number of
R, ~ rN® (r ~ 2.0 A, @ ~ 0.4 (Tanner, 2016; Hong & Lei, R vs. number of residues V.
2009)). The condition number of R is shown in Figure as a

function of the number of residues.

E OTHER DIFFUSION MODELS

ADP-3D can be extended to leverage diffusion models that do not operate on Cartesian coordinates.
If the diffusion model operates in a Riemannian manifold (like SE(3)), the gradient step on the
log-likelihood needs to be generalized using the exponential map (zo = exp;, (3, Vi))-

For diffusion models that do not use a correlated diffusion process, the correlation matrix R and the
preconditioning strategy described in Section 4.2 can be ignored.

F TARGET STRUCTURES

Information on the proteins used as target structures are given in Table [ST]

G ADDITIONAL RESULTS

G.1 STRUCTURE COMPLETION

We provide additional results in Table The Evidence Lower Bound (ELBO) is computed with
Chroma and is a lower bound of the learned log-prior. Note that, as the subsampling factor increases
(i.e., as the problem becomes less constrained), the gap between our approach (MAP estimation) and
the baseline (low-temperature posterior sampling) decreases. For highly undersampled structures,
the RMSD with the target structure is high but the generated structure remains plausible under the
learned prior distribution.

G.2 EXPERIMENTS WITH RFDIFFUSION

We provide additional results using RFdiffusion (Watson et al., 2023)) as a prior for the “structure
completion” and “distances to structure” tasks (Table [S3). RFdiffusion describes backbone struc-
tures as collections of frames in R? x SO(3). We show that using a prior consistently leads to more
accurate structures than just performing gradient descent on the neg-log-likelihood.



Table S1: Information on target structures. We indicate the number of modeled residues (residues included
in the atomic model provided in the PDB file) and the number of deposited resides (number of residues in the
sequence). We selected all single-chain proteins from the CASP15 database. TBP = to be published.

PDB  Modeled Deposited Resolution Release date < CASP15 Reference
7r5b 127 127 1.77 A 2023-02-08 No [Warstat et al] (2023)
7qum 130 130 1.50 A 2023-03-01 No rDavison et al.[(2022)
Tpzt 160 160 1.84 A 2022-11-02 Yes TBP

8em5 92 103 1.95 A 2023-09-27 Yes Cuthbert et al.| (2024
8ok3 121 125 1.50 A 2023-10-25 Yes Caulton et al.| (2024
Troa 117 136 1.82 A 2022-10-12 Yes Cruz et al.{(2022)

8ork 460 460 1.64 A 2023-12-06 Yes De Rose et al.| (2023

8c6z 573 630 1.85 A 2023-05-31 Yes Dierick et al](2024)
8dys 409 603 1.80 A 2022-08-17 Yes TBP

Tuww 632 635 1.61 A 2023-06-14 Yes IPhotenhauer et al.[(2024)
8h2n 709 821 441 A 2023-10-11 Yes (Chaban et al.[(2024)
7zex 1040 1424 3.10A 2023-06-14 Yes Gambelli et al|(2024
8sxa 1153 1325 330A 2024-01-17 Yes Pourmal et al.|(2024
Txkw 499 561 3.10A 2022-04-20 No [Ye et al[(2024)
Twsm 464 520 325A 2022-01-30 No Yuan et al[(2022
7ug0 418 418 2.55A 2022-03-23 No Huang et al| (2023

Table S2: Additional structure completion results. We compare our method to Chroma (Ingraham et al., 2023)
with a SubstructureConditioner. We report the RMSD in A (best of 8) and the associated Evidence
Lower Bound (ELBO) provided by Chroma as a proxy for realism.

Subsampling factor
2 4 8 16 32 64 128

Chroma* 041 1.34 3.73 934 1595 16.27 -

PDB (#res.) Metric Method

Jesh (12) RMSD() App.3p 010 047 221 447 945 1154 -
Chroma* 7.79 672 727 756 740 910  —
ELBO(T)  App.3p 738 7.87 748 665 764 798 -
Chroma* 028 081 214 346 770 1149 1445
g (130) RMSD () App.3p 021 027 113 268 560 776 13.01
ELBO(r) Chroma® 587 608 716 713 843 889 927
ADP3D 564 647 787 756 799 876 898
RMSD () Choma* 050 161 482 1036 1615 1681 1693
Jost (160) ADP3D 023 067 264 939 1426 1547 14.07
ELBO(j) Chroma™ 599 555 539 747 852 874 9.4

ADP-3D 579 644 692 7.79 829 781 8.64

G.3 GRADIENT DESCENT FOR LINEAR CONSTRAINTS

In Figure[S2] we compare different gradient-based techniques for minimizing over z the following
objective function:

L(z) = |Mx* — MRaz||3. (10)
x* is the backbone structure of the ATAD2 protein (PDB: 7qum). M is a masking matrix with a

subsampling factor of 2. The preconditioning strategy is described in Section 4.2. Gradient descent
with preconditioning and momentum leads to the fastest convergence.

G.4 COMPARISON TO DPS

We adapted the Diffusion Posterior Sampling (DPS) algorithm (Chung et all} 2022) to tackle the
structure completion problem. The central idea of DPS is to combine a reverse diffusion step with




Table S3: Results for the “structure completion” and “distances to structure” tasks on additional targets with
two different priors (Chroma and RFdiffusion). We report the lowest RMSD over 8 runs and the number of
outputs with less than 1.5 A RMSD between parenthesis. We compare our method to gradient descent on the
negative log-likelihood (“No prior”).

. Fraction of given coordinates Fraction of given distances

FDE - Prior 12 18 1732 /8 1716
No prior 6.46 (0) 10.23 (0) 15.79 (0) 11.46 (0) 14.60 (0)
8em5  RFdiffusion 1.20 (8) 3.50 (0) 16.45 (0) 1.65 (0) 4.75 (0)
Chroma 0.09 (8) 1.57 (0) 14.26 (0) 1.29 (3) 1.86 (0)
No prior 6.17 (0) 8.98 (0) 19.67 (0) 13.11 (0) 14.66 (0)
8ok3  RFdiffusion 1.16 (8) 3.73 (0) 18.48 (0) 3.87 (0) 9.62 (0)
Chroma 0.10 (6) 1.58 (0) 11.43 (0) 1.10 (5) 1.19 (3)
No prior 6.69 (0) 8.59 (0) 15.16 (0) 13.75 (0) 14.59 (0)
7roa  RFdiffusion 0.62 (8) 4.01 (0) 15.04 (0) 2.40 (0) 3.16 (0)
Chroma 0.13 (8) 2.89 (0) 11.57 (0) 1.08 (5) 1.44 (4)
Sork No prior 6.39 (0) 9.70 (0) 15.12 (0) 23.68 (0) 22.41 (0)
or RFdiffusion 0.98 (8) 3.47 (0) 16.67 (0) 0.87 (2) 2.29 (0)
Chroma 0.17 (6) 1.76 (0) 15.94 (0) 1.30 (4) 1.34 (3)
No prior 6.32 (0) 10.20 (0) 17.00 (0) 23.11 (0) 24.13 (0)
8c6z  RFdiffusion 1.16 (8) 4.13 (0) 17.78 (0) 3.69 (0) 4.12(0)
Chroma 0.16 (8) 2.40 (0) 15.22 (0) 1.42 4) 1.46 (2)
No prior 6.08 (0) 9.37 (0) 14.74 (0) 18.72 (0) 19.25 (0)
8dys  RFdiffusion 1.23(8) 4.13 (0) 17.78 (0) 1.61 (0) 2.98 (0)
Chroma 0.22 (3) 2.42 (0) 18.74 (0) 1.65 (0) 1.63 (0)
No prior 6.41 (0) 9.55(0) 18.14 (0) 25.31(0) 26.78 (0)
7uww  RFdiffusion 1.30 (8) 4.55(0) 21.24 (0) 1.90 (0) 3.13(0)
Chroma 0.15 (8) 2.67 (0) 16.12 (0) 1.48 (1) 1.47 (1)
No prior 6.35 (0) 9.37 (0) 16.57 (0) 26.25 (0) 26.24 (0)
8h2n  RFdiffusion 1.04 (8) 4.44 (0) 20.30 (0) 4.43 (0) 5.10 (0)
Chroma 0.17 (8) 2.22 (0) 15.59 (0) 1.49 (1) 1.52 (0)
No prior 6.35(0) 9.43 (0) 18.14 (0) 41.77 (0) 40.22 (0)
7zcx  RFdiffusion 1.31(8) 4.36 (0) 22.95 (0) 6.09 (0) 5.81(0)
Chroma 0.21 (4) 2.36 (0) 17.33 (0) 1.99 (0) 1.74 (0)
No prior 6.12 (0) 9.19 (0) 14.32 (0) 34.06 (0) 34.43 (0)
8sxa  RFdiffusion 0.95 (8) 4.06 (0) 15.70 (0) 1.87 (0) 2.64 (0)
Chroma 0.19 (8) 2.02 (0) 10.78 (0) 1.65 (0) 1.86 (0)

a gradient-ascent step on the log-likelihood. Instead of computing the gradient from the iterate x;
(w.r.t. x¢), DPS suggests to denoise the current estimate (Xg = X¢(x;)) and compute the gradient
from the iterate X (w.r.t. x;). The magnitude of the gradient step is controlled by a parameter
named (’.

We compare ADP-3D to the adaptation of DPS for the structure completion task on PDB: 8ok 3
with a subsampling factor of 4. We compare the distribution of final RMSDs over 64 replicas and
the total runtime. We perform a sweep over ¢’ for DPS. Both methods are ran over 1,000 steps.
As shown in Figure[S3] ADP-3D leads to more accurate reconstructions. Moreover, since ADP-3D
does not need to compute gradients through the denoiser, it is approximately six times faster than
DPS, per iteration.

G.5 ABLATION STUDY FOR MODEL REFINEMENT

In Figure [S4 we analyze the importance of the different input measurements for atomic model
refinement. Removing the partial atomic model leads to the largest drop in accuracy. The cryo-EM
density map is the second most important measurement, followed by the generative prior and the
sequence.

G.6 INFLUENCE OF RESOLUTION ON MODEL REFINEMENT

We use ChimeraX (Meng et al} 2023} [Tang et al.] 2007) to simulate the 3D density maps of the TecA
bacterial toxin (PDB: 7pzt), at different resolutions. We run ModelAngelo (Jamali et al.| [2024) on
the simulated maps, using the known sequence and the default parameters. We show our results in
Figure For both input resolutions (2.0 A and 4.0 A), our method improves on ModelAngelo’s
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Figure S2: Gradient Descent for Linear Constraint. Convergence speed of different optimization techniques
on a linear inverse problem (structure completion with a subsampling factor of 2), without the diffusion prior.
Using preconditioning with momentum leads to the fastest convergence. The “loss” corresponds to the sum of
squared distances between unmasked atom coordinates.
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Figure S3: Comparison to DPS. We compare ADP-3D to DPS for the structure comple-
tion task on PDB : 80k 3, with a subsampling factor of 4. (a) Distribution of final RMSDs over 64 replicas. For
DPS, we perform a sweep over the parameter ¢’, controlling the magnitude of the gradient step. (b) Comparison
of runtime for the same experiment.

accuracy for a fixed completeness level (and reaches a higher completeness for the same accuracy).
As the resolution of the map improves (gets smaller), the completeness of the output of ModelAngelo
increases and the output of ADP-3D improves.

G.7 VARIABILITY OF THE OUTPUT ON THE MODEL REFINEMENT TASK

In Figure[S6 we show the spread of final RMSDs obtained over 40 replicas of the same experiment
(refinement of 7pzt with 2 A density map). Some of the runs fail to reach sub-2A RMSD, but
we show that these outliers can be removed by measuring how well the structures fit into the input
density map (using the log-likelihood function). This outlier removal process can therefore operate
without access to ground truth information, making it straightforward to apply on new molecules.

H ADDITIONAL VIDEO

We provide one additional video showing the predicted structure throughout the diffusion process,
for the three tasks explored in this paper.
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Figure S4: Ablation Study. For atomic model refinement, we combine three sources of conditioning infor-
mation (incomplete model, density map and sequence) with the data-driven prior of the diffusion model. Here
we highlight the importance of each conditioning information, and that of the generative prior. (a) Qualitative
reconstructions with the target structure in transparency. (b) RMSD of alpha carbons vs. completeness. We
use the same structure as in Fig. 4 (PDB: 7pzt), and a cryo-EM map at 2.0 A resolution.
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Figure S5: Atomic Model Refinement. Results on the TecA bacterial toxin (PDB: 7pzt, 160 residues).
(a) Qualitative results. From left to right: the input density map at 2.0 A resolution, the incomplete model
given by ModelAngelo and our refined models (1 output and 5 outputs), overlaid on the target structure in
transparency. (b) RMSD of alpha carbons vs. completeness (number of predicted residues / total number of
residues) with ModelAngelo (MA) and our method. We run 5 experiments and report the mean of the lowest

RMSD on a-carbons over 8 replicas (£1 std). The spread of RMSD is further described in the supplements.
The experimental (deposited) resolution is indicated with a dashed line.
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