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A Models

A.1 Workload Environment (EnvLS)

The Workload Environment (EnvLS) simulates the management and scheduling of data center (DC)
workloads, allowing for dynamic adjustment of utilization to optimize energy consumption and
carbon footprint. The environment is designed to evaluate the performance of reinforcement learning
(RL) algorithms in rescheduling delay-capable workloads within the DC.

Let Bt be the instantaneous DC workload trace at time t, with X% of the load being rescheduled
up to N simulation steps into the future. The goal of an RL agent (AgentLS) is to observe the
current time of day (SCt), the current and forecast grid CI data (CIt...t+L), and the amount of
rescheduled workload left (Dt). Based on these observations, the agent decides an action Als,t to
reschedule the flexible component of Bt to create a modified workload B̂t, thus minimizing the net
CFP =

∑N
t=0 CFPt over N steps. Here CFPt will be calculated based on the sum of the DC

IT load due to B̂t, the corresponding HVAC cooling load, and the charging and discharging of the
battery at every time step.

A.1.1 Actions (ALS)

The action space for AgentLS includes three discrete actions:

• Action 0: Decrease Utilization - This action attempts to defer the flexible portion of the
current workload (Bnonflex) to a later time. The non-flexible (Bflex) workload is processed
immediately, while the flexible workload is added to a queue for future execution.

• Action 1: Do Nothing - This action processes both the flexible (Bflex) and non-flexible
(Bnonflex) portions of the current workload immediately, without any deferral.

• Action 2: Increase Utilization - This action attempts to increase the current utilization by
processing tasks from the queue, if available, in addition to the current workload.

A.1.2 Observations (SLS)

The state space observed by the RL agent consists of several features, including:

2GitHub repository: https://github.com/HewlettPackard/dc-rl.
3Documentation: https://hewlettpackard.github.io/dc-rl.
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• Time of Day - Represented using sine and cosine transformations of the hour of the day to
capture cyclical patterns.

• Day of the Year - Represented using sine and cosine transformations to capture seasonal
variations.

• Current Workload - The current workload level, which includes both flexible and non-
flexible components.

• Queue Status - The length of the task queue, normalized by the maximum queue length.
• Grid Carbon Intensity (CI) - Current and forecasted CI values, capturing the environmental

impact of electricity consumption.
• Battery State of Charge (SoC) - The current state of charge of the battery, if available.

The observation space is a combination of these features, providing the agent with a comprehensive
view of the current state of the environment.

A.1.3 Mathematical Model

Workload Breakdown Let Bt be the total workload at time t. This workload is divided into
flexible (Bflex,t) and non-flexible (Bnonflex,t) components:

Bt = Bflex,t +Bnonflex,t

The flexible workload Bflex,t is a fraction of the total workload:

Bflex,t = α ·Bt, 0 < α < 1

where α is the flexible workload ratio.

Actions and Workload Management Depending on the action Als,t chosen by the RL agent, the
workload is managed as follows:

1. Action 0: Decrease Utilization (Queue Flexible Workload)

B̂t = Bnonflex,t

The flexible workload Bflex,t is added to a task queue Qt for future execution:

Qt+1 = Qt +Bflex,t

2. Action 1: Do Nothing
B̂t = Bt = Bnonflex,t +Bflex,t

There is no change in the task queue:
Qt+1 = Qt

3. Action 2: Increase Utilization (Process Queue)

B̂t = Bt +min(Qt, Cmax −Bt)

where Cmax is the maximum processing capacity. The processed tasks are removed from the task
queue:

Qt+1 = Qt −min(Qt, Cmax −Bt)

A.2 Data Center Environment (EnvDC)

The Data Center Environment (EnvDC ) simulates the IT and HVAC operations within a DC, enabling
the evaluation of RL algorithms aimed at optimizing cooling setpoints to reduce energy consumption
and carbon footprint.

The data center modeled is illustrated in Figure 1. The IT section includes the cabinets and servers,
while the Cooling section comprises a Cooling Tower, a chiller, and the Computer Room Air Handler
(CRAH). The setup also features a raised floor system that channels cool air from the CRAH to the
cabinets. The hot air exits the cabinets and returns to the CRAH via the ceiling.
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Figure 1: Illustration of the modeled data center, showing the IT section (cabinets and servers) and
the Cooling section (Cooling Tower, chiller, and CRAH). The airflow path is also depicted, with cool
air supplied through the raised floor and hot air returning via the ceiling. Note: We use CRAH and
CRAC interchangeably in the text, but they both represent the same device (CRAH).

A.2.1 Data Center IT Model

Let B̂t be the net DC workload at time instant t obtained from the Workload Manager. The spatial
temperature difference, ∆Tsupply , given the DC configuration, is obtained from Computational Fluid
Dynamics (CFD). For a given rack, the inlet temperature Tinlet,i at CPUi is computed as:

Tinlet,i,t = ∆Tsupply,i + TCRACsupply,t

where TCRACsupply,t is the CRAC unit supply air temperature. This value is chosen by the RL agent
ADC .

Next, the CPU power curve fcpu(inlet_temp, cpu_load) and IT Fan power curve
fitfan(inlet_temp, cpu_load) are implemented as linear equations based on (1). Given a server inlet
temperature of Tinlet,i,t and a processing amount of B̂t performed by CPUi, the total rack power
consumption for rack k across all CPUs from i = 1 to K, and the total DC Power IT Consumption
can be calculated as follows:

PCPU,t =
∑
i

fcpu(Tinlet,i,t, B̃t)

PIT Fan,t =
∑
i

fitfan(Tinlet,i,t, B̃t)

Prack,k,t = PCPU,t + PIT Fan,t

Pdatacenter,t =
∑
k

Prack,k,t

A.2.2 HVAC Cooling Model

Based on the DC IT Load Pdatacenter,t, the IT fan airflow rate, Vsfan, air thermal capacity Cair, and
air density, ρair, the rack outlet temperature Toutlet,i,t is estimated from (1) using:

Toutlet,i,t = Tinlet,i,t +
Prack,k,t

Cair · ρair · Vsfan

In conjunction with the return temperature gradient information ∆Treturn estimated from CFDs,
the final CRAC return temperature is obtained as:

TCRACreturn,t = avg(∆Treturn,i + Toutlet,i,t)

We assume a fixed-speed CRAC Fan unit for circulating air through the IT Room. Hence, the total
HVAC cooling load for a given CRAC setpoint TCRACsupply,t, return temperature TCRACreturn,t,
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and the mass flow rate mcrac,fan is calculated as:

Pcool,t = mcrac,fan · Cair · (TCRACreturn,t − TCRACsupply,t)

To perform Pcool,t, the amount of cooling, the net chiller load for a chiller with Coefficient of
Performance (COP ) may be estimated as:

Pchiller,t = Pcool,t

(
1 +

1

COP

)
Next, this cooling load is passed on to the cooling tower. Assuming a cooling tower delta as a function
of temperature fct_delta(tdb), (2) the required cooling tower air flow rate is calculated as:

Vct,air,t =
Pchiller,t

Cair · ρair · fct_delta(tdb)

Finally, the Cooling Tower Load at a flow rate of Vct,air,t is calculated with respect to a reference air
flow rate Vct,air,REF and power consumption Pct,REF from the configuration object:

PCT,t = Pct,REF

(
Vct,air,t

Vct,air,REF

)3

Thus, the total HVAC load includes the cooling tower and chiller loads:

PHVAC,t = PCT,t + Pchiller,t

Based on these power values, the IT and HVAC Cooling energy consumptions can be represented as:

Ehvac,t = PHVAC,t × step size (1)
Eit,t = Pdatacenter,t × step size (2)

A.2.3 Actions (ADC)

The action space for AgentDC consists of discrete actions representing the adjustment of the CRAC
unit’s supply air temperature, limited to a range between 16°C to 23°C:

• Action 0: Decrease Temperature - The agent decreases the CRAC supply air temperature,
enhancing cooling performance but increasing energy consumption.

• Action 1: Maintain Temperature - The agent maintains the current CRAC supply air temper-
ature.

• Action 2: Increase Temperature - The agent increases the CRAC supply air temperature,
which can reduce cooling energy consumption but may increase the IT equipment tempera-
ture.

A.2.4 Observations (SDC)

The state space observed by the RL agent consists of several features, including:

• Time of Day - Represented using sine and cosine transformations of the hour of the day to
capture cyclical patterns.

• Day of the Year - Represented using sine and cosine transformations to capture seasonal
variations.

• Ambient Weather - Includes current temperature and other relevant weather conditions.
• IT Room Temperature - Average temperature in the IT room.
• Energy Consumption - Previous step cooling and IT energy consumptions.
• Grid Carbon Intensity (CI) - Current and forecasted CI values.

The observation space provides a comprehensive view of the current state of the environment to the
agent.
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A.2.5 Chiller Sizing

The chiller power consumption is calculated based on the load and operating conditions using the
following method:

Pchiller,t = calculate_chiller_power(max_cooling_cap, load, ambient_temp)

Calculation of Average CRAC Return Temperature

TCRACreturn,t = avg(∆Treturn,i + Toutlet,i,t)

Calculation of HVAC Power

Pcool,t = mcrac,fan · Cair · (TCRACreturn,t − TCRACsupply,t)

Pchiller,t = Pcool,t

(
1 +

1

COP

)
Vct,air,t =

Pchiller,t

Cair · ρair · fct_delta(tdb)

PCT,t = Pct,REF

(
Vct,air,t

Vct,air,REF

)3

PHVAC,t = PCT,t + Pchiller,t

A.2.6 Water Consumption Model

The water usage for the cooling tower is estimated using a model based on research findings from
several key sources. The model accounts for the water loss due to evaporation, drift, and blowdown.
The primary references used to develop this model include (3), (4), and guidelines from SPX Cooling
Technologies (5).

The water usage model is formulated as follows:

1. Range Temperature Calculation: The difference between the hot water temperature entering the
cooling tower and the cold water temperature leaving the cooling tower:

range_temp = hot_water_temp − cold_water_temp

where hot_water_temp is the TCRACreturn,t, and cold_water_temp is the current CRAC setpoint
TCRACsupply,t.

2. Normalized Water Usage: The baseline water usage per unit time, adjusted for the wet bulb
temperature of the ambient air. This accounts for the environmental conditions affecting the cooling
tower’s efficiency:

norm_water_usage = 0.044 · wet_bulb_temp + (0.35 · range_temp + 0.1)

3. Total Water Usage: The normalized water usage is adjusted to ensure non-negativity and further
adjusted for drift losses, which are a small percentage of the total water circulated in the cooling
tower:

water_usage = max(0, norm_water_usage) + norm_water_usage · drift_rate

4. Water Usage Conversion: The total water usage is converted to liters per simulation timestep
interval for ease of reporting and consistency with other metrics. Given that we use N timesteps per
hour in our simulations, the conversion is as follows:

water_usage_liters_per_timestep =

(
water_usage · 1000

N

)
This model incorporates both theoretical and empirical insights, providing a comprehensive estimation
of the water consumption in a data center’s cooling tower. By considering the specific operational
parameters and environmental conditions, it ensures accurate and reliable water usage calculations,
critical for sustainable data center management.
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A.3 Battery Environment (EnvBAT )

The Battery Environment (EnvBat) simulates the battery banks operations within the DC, enabling
the evaluation of RL algorithms aimed at optimizing auxiliary battery usage to reduce energy costs
and carbon footprint. This environment is a modified version of the battery model from (6).

A.3.1 Battery Model

The battery model represents the energy storage system, considering its capacity, charging and
discharging efficiency, and rate limits. The battery state of charge (SoC) evolves based on the actions
taken by the RL agent.

Let Ebat,t be the energy stored in the battery at time t. The battery can perform three actions: charge,
discharge, or remain idle. The maximum battery capacity is Cmax, and the current state of charge is
Ebat,t.

A.3.2 Actions (ABat)

The action space for AgentBat includes three discrete actions:

• Action 0: Charge - The battery is charged at a rate of rcharge, consuming Ebat,t Wh of
energy.

• Action 1: Idle - The battery do not consume energy.

• Action 2: Discharge - The battery discharges energy at a rate of rdischarge, supplying Ebat,t

Wh of energy.

A.3.3 Observations (SBat)

The state space observed by the RL agent consists of several features, including:

• Data Center Load - The current power consumption of the data center.

• Battery SoC - The current state of charge of the battery.

• Grid Carbon Intensity (CI) - Current and forecasted CI values.

• Time of Day and Year - Represented using sine and cosine transformations to capture
cyclical patterns.

The observation space is a combination of these features, providing the agent with a comprehensive
view of the current state of the environment.

A.3.4 Mathematical Model

Battery Charging and Discharging The energy stored in the battery evolves based on the action
taken:

Ebat,t =


rcharge · ηcharge ·∆t if charging
0 if idle
rdischarge · ηdischarge ·∆t if discharging

where rcharge and rdischarge are the rates of charging and discharging the battery, respectively. These
rates determine the amount of energy added to or removed from the battery within a time step ∆t.

Charging Rate (rcharge) The charging rate rcharge is the rate at which energy is added to the
battery during the charging process. It is defined as:

rcharge = min

(
Cmax − Ebat,t

ηcharge ·∆t
, Pcharge,max

)
where Pcharge,max is the maximum allowable charging power. This rate ensures that the battery does
not exceed its maximum capacity Cmax and that charging occurs efficiently.
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Discharging Rate (rdischarge) The discharging rate rdischarge is the rate at which energy is drawn
from the battery during the discharging process. It is defined as:

rdischarge = min

(
Ebat,t

ηdischarge ·∆t
, Pdischarge,max

)
where Pdischarge,max is the maximum allowable discharging power. This rate ensures that the battery
does not discharge below zero and that discharging occurs efficiently.

Energy Constraints The state of charge is bounded by the battery capacity:

0 ≤ Ebat,t ≤ Cmax

Battery Power Constraints The maximum power that the battery can charge or discharge is limited
by:

Pcharge,max = u · Pcharge + v

Pdischarge,max = u · Pdischarge + v

Simple Reward Calculation The goal of the three agents (AgentLS , AgentDC , and AgentBAT )
is to minimize the cumulative carbon footprint (CFP) over a given horizon N . The CFP at each time
step t is computed as:

CFPt = (Eit,t + Ehvac,t + Ebat,t) · CIt

where:

• Eit,t: Energy consumption by IT equipment due to B̂t

• Ehvac,t: Energy consumption by HVAC systems
• Ebat,t: Energy contribution from the battery (positive when discharging, negative when

charging)
• CIt: Grid carbon intensity at time t

The total reward is then:

R = −
N∑
t=0

CFPt

The reward could have other terms that may consider queue length, water usage, average task delay,
etc.

A.4 Interconnection of Environments and Agent Actions

Figure 2 illustrates the interconnection of the different environments (EnvLS , EnvDC , and EnvBAT )
and the actions of their respective RL agents. This diagram highlights how the decisions made by each
agent impact the overall DC operations and contribute to the optimization of energy consumption and
carbon footprint.

In the Workload Environment (EnvLS), the RL agent (AgentLS) reschedules flexible workloads to
optimize utilization. This action will influence the IT load, which directly impacts the Data Center
Environment (EnvDC ). The RL agent (AgentDC ) in the data center environment adjusts the CRAC
setpoints to optimize cooling and IT operations, thus affecting the HVAC cooling load and overall
energy consumption.

The Battery Environment (EnvBAT ) is influenced by the energy demands of the data center
environment. The RL agent (AgentBAT ) manages the charging and discharging of the battery
to optimize energy usage and reduce the carbon footprint. The interconnections between these
environments ensure that the agents work together to minimize the cumulative CFP by considering
the energy consumption of IT, HVAC, and battery systems.

By observing the current state and forecast data, each agent makes informed decisions that contribute
to the overall sustainability and efficiency of the data center operations. This coordinated approach
leverages the strengths of each environment to achieve significant reductions in energy consumption
and carbon emissions.
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Figure 2: Interconnection of environments and agent actions. The figure shows how the Workload
Environment (EnvLS) interacts with the Data Center Environment (EnvDC) by rescheduling work-
loads, and how the Data Center Environment impacts the Battery Environment (EnvBAT ) through
energy demands. Each agent observes the state of its respective environment and takes actions
to optimize operations, with the overall goal of minimizing the carbon footprint (CFP) through
coordinated efforts.

B Customization of dc_config.json

The customization of the DC is done through the dc_config.json file located in the utils folder.
This file allows users to specify every aspect of the DC environment design. We show here a
part of the configuration file to indicate the different configurable elements inside SustainDC. Ad-
ditional elements can be added to this config either under an existing section or a new section,
and utils/dc_config_reader.py will automatically import the new configurations. Inside the
"data_center_configuration" SustainDC allows the user to configure the dimensions of the data
center arrangement, the compiled CFD supply and approach temperature delta values and the maxi-
mum allowable CPUs per rack. There is an extensive set of parameters that can be configured under
the "hvac_configuration" section including physical constants, parameters of the computer room
air-conditioning unit (CRAC), chiller, pumps and cooling towers. The "server_characteristics"
block allows the user to specify the properties of individual servers in the data center, including their
idle power, full load fan frequency and power.

{
"data_center_configuration" :
{

"NUM_ROWS" : 4,
"NUM_RACKS_PER_ROW" : 5,
"RACK_SUPPLY_APPROACH_TEMP_LIST" : [

5.3, 5.3, 5.3, 5.3,5.3,
5.0, 5.0, 5.0, 5.0,5.0,
5.0, 5.0, 5.0, 5.0,5.0,
5.3, 5.3, 5.3, 5.3, 5.3
],

"RACK_RETURN_APPROACH_TEMP_LIST" : [
-3.7, -3.7, -3.7, -3.7, -3.7,
-2.5, -2.5, -2.5, -2.5, -2.5,
-2.5, -2.5, -2.5, -2.5, -2.5,
-3.7, -3.7, -3.7, -3.7, -3.7
],

"CPUS_PER_RACK" : 200
},
"hvac_configuration" :
{

"C_AIR" : 1006,
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"RHO_AIR" : 1.225,
"CRAC_SUPPLY_AIR_FLOW_RATE_pu" : 0.00005663,
"CRAC_REFRENCE_AIR_FLOW_RATE_pu" : 0.00009438,
"CRAC_FAN_REF_P" : 150,
"CHILLER_COP_BASE" : 5.0,
"CHILLER_COP_K" : 0.1,
"CHILLER_COP_T_NOMINAL" : 25.0,
"CT_FAN_REF_P" : 1000,
"CT_REFRENCE_AIR_FLOW_RATE" : 2.8315,
"CW_PRESSURE_DROP" : 300000,
"CW_WATER_FLOW_RATE" : 0.0011,
"CW_PUMP_EFFICIENCY" : 0.87,
"CT_PRESSURE_DROP" : 300000,
"CT_WATER_FLOW_RATE" : 0.0011,
"CT_PUMP_EFFICIENCY" : 0.87

},
"server_characteristics" :
{

"CPU_POWER_RATIO_LB" : [0.01, 1.00],
"CPU_POWER_RATIO_UB" : [0.03, 1.02],
"IT_FAN_AIRFLOW_RATIO_LB" : [0.01, 0.225],
"IT_FAN_AIRFLOW_RATIO_UB" : [0.225, 1.0],
"IT_FAN_FULL_LOAD_V" : 0.051,
"ITFAN_REF_V_RATIO" : 1.0,
"ITFAN_REF_P" : 10.0,
"INLET_TEMP_RANGE" : [16, 28],
"DEFAULT_SERVER_POWER_CHARACTERISTICS":[[170, 20],

[120, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[130, 10],
[170, 10],
[130, 10],
[130, 10],
[110, 10],
[170, 10],
[170, 10],
[170, 10]],

"HP_PROLIANT" : [110,170]
}

}

C Performance of RL agents on Evaluation Metrics

In this section, we provide the numerical results we obtained from the main paper. The results are
shown in Tables 1 (advantage of multiagent vs single agent), 2 (effects of reward sharing across
agents), 3, 4, 5 and 6 (ablation across geographical locations with different weather, grid carbon
intensity and server load pattern). We observed that there is not a single algorithm that works well
across different metrics and geographical locations, and this is visually appreciated in the main paper.

Table 1: Performance with respect to evaluation metrics on single and multiple RL agent baselines.
A∗ : RL agent B∗ : non−RL baseline agent

Evaluation Metric →
Algorithm ↓

CFP
(kgCO2)

HVAC
Energy
(kwh)

IT
Energy
(kwh)

Task Queue
Water
Usage
(litre)

1:ALS + BDC + BBAT 167.61 391.6 1033.8 0.52 10433.46
2:BLS + ADC + BBAT 153.56 372.9 944.5 0.0 10930.77
3:BLS + BDC + ABAT 168.22 390.3 1029.8 0.0 10493.95
4: ALS + ADC + BBAT 155.97 374.9 941.3 0.48 10883.73
5:ALS + BDC + ABAT 168.64 391.1 1030.9 0.56 10470.43
6:BLS + ADC + ABAT 155.44 374.8 942.5 0 10883.73
7:ALS + ADC + ABAT 155.23 371.8 937.4 0.45 10826.61
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Table 2: IPPO evaluated on SustainDC with different values of collaborative reward coefficient α
(Average result over 12 runs)

Evaluation Metric →

Algorithm ↓

CFP
(kgCO2)

HVAC
Energy
(kwh)

IT
Energy
(kwh)

Task Queue
Water
Usage
(litre)

IPPO(α = 1.0) 176.3 415.2 932.8 12.5 445.6
IPPO(α = 0.8) 176.2 414.6 932.8 9.5 445.8
IPPO(α = 0.1) 176.4 415.3 932.9 15.7 446.2

Table 3: Multiagent RL framework evaluated on SustainDC for a data center located in New York
(Average result over 5 runs)

Evaluation Metric →
Algorithm ↓

CFP
(kgCO2)

HVAC
Energy
(kwh)

IT
Energy
(kwh)

Task Queue
Water
Usage
(litre)

IPPO 179.6 417.1 945.9 20.9 446.2
MAPPO 176.4 417.0 932.7 19.6 446.2
HAPPO 177.3 414.8 930.9 12.8 441.9
HAA2C 177.5 419.0 934.8 25.2 14977.1

HAD3QN 178.4 420.5 940.4 28.0 14950.9
HASAC 181.7 424.2 960.8 79.7 14842.4

Table 4: Multiagent RL framework evaluated on SustainDC for a data center located in Georgia
(Average result over 5 runs)

Evaluation Metric →
Algorithm ↓

CFP
(kgCO2)

HVAC
Energy
(kwh)

IT
Energy
(kwh)

Task Queue
Water
Usage
(litre)

IPPO 265.4 376.7 935.4 6.8 31773.5
MAPPO 263.4 370.3 935.9 0.35 31949.9
HAPPO 264.1 370.4 929.0 0.47 31890.7
HAA2C 262.7 367.1 928.3 6.6 32071.5

HAD3QN 262.8 370.7 935.1 0.0 31952.2
HASAC 263.0 367.4 932.4 0.0 32135.7

Table 5: Multiagent RL framework evaluated on SustainDC for a data center located in California
(Average result over 5 runs)

Evaluation Metric →
Algorithm ↓

CFP
(kgCO2)

HVAC
Energy
(kwh)

IT
Energy
(kwh)

Task Queue
Water
Usage
(litre)

IPPO 170.0 384.3 933.8 12.9 28141.4
MAPPO 159.3 388.2 936.1 19.5 33289.3
HAPPO 159.1 376.3 935.8 74.9 30141.8
HAA2C 158.7 381.7 933.5 54.1 30135.4

HAD3QN 161.5 378.4 929.6 25.8 30017.4
HASAC 172.9 434.4 1027.0 43.8 29277.5
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Table 6: Multiagent RL framework evaluated on SustainDC for a data center located in Arizona
(Average result over 5 runs)

Evaluation Metric →

Algorithm ↓

CFP
(kgCO2)

HVAC
Energy
(kwh)

IT
Energy
(kwh)

Task Queue
Water
Usage
(litre)

IPPO 408.7 380.8 934.8 0.60 30251.6
MAPPO 410.8 383.3 947.5 502.4 31289.6
HAPPO 405.5 381.9 936.6 0.26 30983.7
HAA2C 407.1 385.0 929.9 7.54 32706.3

HAD3QN 405.6 386.4 1094.0 0.0051 30377.3
HASAC 404.6 380.8 936.7 0.54 30878.7
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(b) Battery behavior example 2

Figure 3: Battery State of Charge (SoC) and actions taken over time under two different random
behaviors. The actions are labeled as Charge, Discharge, and Idle.

D Agents/Env behavior

D.1 Battery

The battery environment demonstrates how the battery’s state of charge (SoC) and actions evolve
over time under random behaviors. These figures illustrate two different examples generated using
distinct random seeds.

Figure 3 shows the battery’s SoC and the actions taken (Charge, Discharge, Idle) over simulated days
for two different random behaviors.

Figure 4 compares the energy consumption with and without the battery over simulated days for two
different random behaviors. This comparison illustrates the impact of battery usage on the overall
energy consumption of the data center.
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Figure 4: Energy consumption with and without the battery over time under two different random
behaviors. The comparison illustrates the effect of battery usage on overall energy consumption.
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(b) Battery behavior example 2

Figure 5: Energy added to and removed from the battery over time under two different random
behaviors. The figures show how the battery charges and discharges energy throughout the simulated
period.

Figure 5 shows the energy added to and removed from the battery over simulated days for two
different random behaviors. These figures demonstrate how the battery charges and discharges energy,
providing insights into its operational patterns.

E External variables

E.1 Workload

The Workload external variable in SustainDC represents the computational demand placed on the
data center. Workload traces are provided in the form of FLOPs (floating-point operations) required
by various jobs. By default, SustainDC includes a collection of open-source workload traces from
Alibaba (7) and Google (8) data centers. Users can customize this component by adding new workload
traces to the data/Workload folder or specifying a path to existing traces in the sustaindc_env.py
file under the workload_file configuration. Below is an example of modifying the workload
configuration:

class EnvConfig(dict):

DEFAULT_CONFIG = {
"workload_file": "data/Workload/Alibaba_CPU_Data_Hourly_1.csv",
...

}

The workload file should contain one year of data with an hourly periodicity (365*24=8760 rows).
The file structure should have two columns, where the first column does not have a name, and the
second column should be named cpu_load. Below is an example of the file structure:

,cpu_load
1,0.380
2,0.434
3,0.402
4,0.485
...

Figure 6 shows examples of different workload traces from Alibaba (v2017) and Google (v2011)
data centers. Figure 7 provides a comparison between two workload traces of Alibaba (v2017) and
Google (v2011).

E.2 Weather

The Weather external variable in SustainDC captures the ambient environmental conditions impacting
the data center’s cooling requirements. By default, SustainDC includes weather data files in the
.epw format from https://energyplus.net/weather for various locations where data centers
are commonly situated. These locations include Arizona, California, Georgia, Illinois, New York,
Texas, Virginia, and Washington. Users can customize this component by adding new weather files to
the data/Weather folder or specifying a path to existing weather files in the sustaindc_env.py file under
the weather_file configuration. Below is an example of modifying the weather configuration:
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class EnvConfig(dict):

DEFAULT_CONFIG = {
’weather_file’: ’data/Weather/USA_NY_New.York-Kennedy.epw’,
...

}

Each .epw file contains hourly data for various weather parameters, but for our purposes, we focus on
the ambient temperature. Figure 8 shows the typical average ambient temperature across different
locations over one year. Figure 9 provides a comparison of external temperatures across the different
selected locations.

E.3 Carbon Intensity

The Carbon Intensity (CI) external variable in SustainDC represents the carbon emissions associated
with electricity consumption. By default, SustainDC includes CI data files for various locations:
Arizona, California, Georgia, Illinois, New York, Texas, Virginia, and Washington. These files are
located in the data/CarbonIntensity folder and are extracted from https://api.eia.gov/bulk/
EBA.zip. Users can customize this component by adding new CI files to the data/CarbonIntensity
folder or specifying a path to existing files in the sustaindc_env.py file under the cintensity_file
configuration. Below is an example of modifying the CI configuration:

class EnvConfig(dict):

DEFAULT_CONFIG = {
’cintensity_file’: ’data/CarbonIntensity/NY_NG_&_avgCI.csv’,
...

}

The CI file should contain one year of data with an hourly periodicity (365*24=8760 rows). The file
structure should have the following columns: timestamp, WND, SUN, WAT, OIL, NG, COL, NUC, OTH,
and avg_CI. WND, SUN, WAT, OIL, NG, COL, NUC, and OTH represent the energy sources contributing
to the carbon intensity. These sources include wind, solar, water, oil, natural gas, coal, nuclear, and
other types of energy, respectively. Below is an example of the file structure:

timestamp,WND,SUN,WAT,OIL,NG,COL,NUC,OTH,avg_CI
2022-01-01 00:00:00+00:00,1251,0,3209,0,15117,2365,4992,337,367.450
2022-01-01 01:00:00+00:00,1270,0,3022,0,15035,2013,4993,311,363.434
2022-01-01 02:00:00+00:00,1315,0,2636,0,14304,2129,4990,312,367.225
2022-01-01 03:00:00+00:00,1349,0,2325,0,13840,2334,4986,320,373.228
...

In Figure 10, the average daily carbon intensity for each selected location is shown, highlighting the
variations in carbon emissions associated with electricity consumption across different regions.

In Figure 11, a comparison of carbon intensity across all the selected locations is presented, providing
a comprehensive overview of how carbon emissions vary between these areas.

In Figure 12, we show the average daily carbon intensity against the average daily coefficient of
variation (CV) for various locations. This figure highlights an important perspective on the variability
and magnitude of carbon intensity values across different regions. Locations with a high CV indicate
greater fluctuation in carbon intensity, offering more "room to play" for DRL agents to effectively
reduce carbon emissions through dynamic actions. Additionally, locations with a high average carbon
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Figure 6: Examples of different workload traces from Alibaba and Google data centers.

E-14

https://api.eia.gov/bulk/EBA.zip
https://api.eia.gov/bulk/EBA.zip


0 5 10 15 20 25
Simulated Days

20

30

40

50

60

70

80

90

Ut
iliz

at
io

n 
(%

)

Workload Comparison
Alibaba 1 v2017
Alibaba 2 v2017
Google v2011

Figure 7: Comparison between two workload traces of Alibaba trace (2017) and Google (2011).
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Figure 8: Typical average ambient temperature across different locations across one year.
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Figure 9: Comparison between external temperature of the different selected locations.

Location Typical Weather Carbon Emissions
Arizona Hot, dry summers; mild winters High avg CI, High variation

California Mild, Mediterranean climate Medium avg CI, Medium variation
Georgia Hot, humid summers; mild winters High avg CI, Medium variation
Illinois Cold winters; hot, humid summers High avg CI, Medium variation

New York Cold winters; hot, humid summers Medium avg CI, Medium variation
Texas Hot summers; mild winters Medium avg CI, High variation

Virginia Mild climate, seasonal variations Medium avg CI, Medium variation
Washington Mild, temperate climate; wet winters Low avg CI, Low variation

Table 7: Summary of Selected Locations with Typical Weather and Carbon Emissions Characteristics

intensity value present greater opportunities for achieving significant carbon emission reductions.
The selected locations are highlighted, while other U.S. locations are also plotted for comparison.
Regions with both high CV and high average carbon intensity are identified as prime targets for DRL
agents to maximize their impact on reducing carbon emissions.

In the table bellow (7) is the summarizing the selected locations, typical weather values, and carbon
emissions characteristics:

Considering the data from (9), the U.S. states with the highest number of data centers are summarized
in Table 8. The states with the most significant number of data centers tend to be Virginia, Texas,
California, and New York. Virginia, especially, is a major hub due to its proximity to Washington
D.C. and the abundance of fiber optic cable networks. Texas and California are also prominent due to
their size, economic output, and significant tech industries. New York, particularly around New York
City, hosts numerous data centers that serve the financial sector and other industries.

The selection of these locations is justified by their significant number of data centers, which
emphasizes the potential impact of DRL agents in these regions. By targeting areas with both high
data center density and favorable carbon intensity characteristics, DRL agents can maximize their
effectiveness in reducing carbon emissions.
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Figure 10: Typical average carbon intensity across different locations over one year.

State Data Centers
California 254
Virginia 250
Texas 239

New York 128
Illinois 122
Florida 120
Ohio 98

Washington 84
Georgia 75

New Jersey 69
Table 8: Summary of U.S. States with the Most Data Centers (ref: (9))
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Figure 11: Comparison of carbon intensity across the different selected locations.
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Figure 12: Average daily carbon intensity versus average daily coefficient of variation (CV) for the
grid energy provided from US. Selected locations are remarked. High CV indicates more fluctuation,
providing more opportunities for DRL agents to reduce carbon emissions. High average carbon
intensity values offer greater potential gains for DRL agents.

F-18



F Reward Evaluation and Customization

F.1 Load Shifting Penalty (LSPenalty)

The Load Shifting Penalty (LSPenalty) is applied to the Load Shifting Agent (AgentLS) in the
Workload Environment (EnvLS) if it fails to reschedule flexible workloads within the same day. If
Dt (the amount of rescheduled workload left) is positive at the end of the day, penalty_tasks_queue
is assigned. Additionally, we included a function that progressively increases the penalty as the hour
of the day approaches 24h. This means the penalty increases linearly from hour 23h to hour 24h.

Furthermore, there is a penalty for tasks that were dropped due to queue limits
(penalty_dropped_tasks). This penalty is added to discourage the agent from dropping tasks
and ensure that workloads are managed efficiently.

Therefore, the LSPenalty is composed of penalty_tasks_queue and penalty_dropped_tasks. Re-
lated work in this area include (10; 11; 12; 13; 14; 15; 16; 17).

F.2 Default Reward Function

The default reward function used in SustainDC for the Load Shifting Agent is implemented as
follows:

def default_ls_reward(params: dict) -> float:
"""
Calculate the reward value based on normalized load shifting
and energy consumption.

Parameters:
params (dict): Dictionary containing parameters:

- bat_total_energy_with_battery_KWh (float):
Total energy consumption with battery.

- norm_CI (float): Normalized carbon intensity.
- bat_dcload_min (float): Minimum data center load.
- bat_dcload_max (float): Maximum data center load.
- ls_tasks_dropped (int): Number of tasks dropped due to queue limit.
- ls_tasks_in_queue (int): Number of tasks currently in queue.
- ls_current_hour (int): Current hour in the simulation.

Returns:
float: Calculated reward value.

"""
# Energy part of the reward
total_energy_with_battery = params[’bat_total_energy_with_battery_KWh’]
norm_CI = params[’norm_CI’]
dcload_min = params[’bat_dcload_min’]
dcload_max = params[’bat_dcload_max’]

# Calculate the reward associated with the energy consumption
norm_net_dc_load = (total_energy_with_battery - dcload_min) /

(dcload_max - dcload_min)
footprint = -1.0 * norm_CI * norm_net_dc_load

# Penalize the agent for each task that was dropped due to queue limit
penalty_per_dropped_task = -10 # Define the penalty value per dropped task
tasks_dropped = params[’ls_tasks_dropped’]
penalty_dropped_tasks = tasks_dropped * penalty_per_dropped_task

tasks_in_queue = params[’ls_tasks_in_queue’]
current_step = params[’ls_current_hour’]
penalty_tasks_queue = 0

if current_step % (24*4) >= (23*4): # Penalty for queued tasks at the
end of the day

factor_hour = (current_step % (24*4)) / 96 # min = 0.95833, max = 0.98953
factor_hour = (factor_hour - 0.95833) / (0.98935 - 0.95833)
penalty_tasks_queue = -1.0 * factor_hour * tasks_in_queue / 10 # Penalty

for each task left in the queue

LS_penalty = penalty_dropped_tasks + penalty_tasks_queue
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reward = footprint + LS_penalty

return reward

F.3 Customization of Reward Formulations

Users can choose to use any other reward formulation by defining custom reward functions inside
utils/reward_creator.py. To create a custom reward function, you can define it as follows:

def custom_reward(params: dict) -> float:
# Custom reward calculation logic
pass

Replace the logic inside the custom_reward function with your custom reward logic.

For more examples of custom reward functions, users can check the file utils/reward_creator.py.

To use the custom reward function, you need to include it in the utils/reward_creator.py as follows:

# Other reward methods can be added here.

REWARD_METHOD_MAP = {
’default_dc_reward’ : default_dc_reward,
’default_bat_reward’: default_bat_reward,
’default_ls_reward’ : default_ls_reward,
# Add custom reward methods here
’custom_reward’ : custom_reward,

}

Additionally, you need to specify the reward function in harl/configs/envs_cfgs/dcrl.yaml:

agents:
...
ls_reward: default_ls_reward
dc_reward: default_dc_reward
bat_reward: default_bat_reward
...

This flexibility ensures that SustainDC can be adapted to a wide range of research and operational
needs in sustainable data center management.
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