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Figure I: Visualization of different part concepts and their corresponding activations on different
shapes of known and novel classes. Red indicates higher activations and similarities.

I In-depth Analysis of the Method1

Part Concept Visualization. In order to reveal what part concepts can learn, we show concept2

activation maps between some part concepts and part features in Fig. I. We can see that part concepts3

can activate similar semantic parts of both known and novel shapes, such as legs, arms, bottles,4

backrests, planes, and screens. This confirms that part concepts can effectively generalize knowledge5

learned from known classes to novel classes and represent novel classes as the composition of part6

concepts. For example, a chair can be represented as {legs, arms, a backrest, and a plane}. We notice7

that part concepts can be robustly discovered and activated even if geometric structures are slightly8

different, e.g., arms of chairs, sofas, and benches.9

Feature Visualization of Novel Classes. We show the feature distribution of novel classes learned10

by all compared methods on the high similarity task of ModelNet in Fig. II. DTC [2] mingles features11

of different novel classes together and impedes novel class recognition. The feature distributions12

of AutoNovel [3], NCL [9], UNO [1] and IIC [4] are less confusing but there is no clear category13

boundary for different novel classes. Kmeans+ can produce better intra-class consistency and can14
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Figure II: Learned embeddings visualized by 2D t-SNE. We use the ModelNet high-similarity task
for the experiment. Each color denotes a different novel class.
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Figure III: (a) The accuracy curves of known classes during training. (b) The clustering accuracy
curves of novel classes during training.

separate most novel classes. A possible reason is that pseudo labels by K-means clustering on the15

unlabeled training set can reflect the overall distribution to some extent. However, some shapes16

are incorrectly grouped into the wrong class due to the poor discrimination of learned features. By17

exploring the part concept compositions of different novel classes, our method can push away the18

embedding regions of novel classes to a greater extent compared to other methods and achieve much19

tighter intra-class representations.20

Train Curves. As described in Sec. 3.1, the learned features of compared methods are gradually21

biased to known classes during the training process and lose generalizability to novel classes. To22

further confirm our analysis, we demonstrate the converging curves of known class accuracy and23

novel class cluster accuracy during the training of seven methods on the high similarity task of24

ModelNet in Fig III. As shown in Fig. IIIa, the known class accuracy of all methods increases quickly25

in the first 30 epochs and grows slowly after 100 epochs. However, in Fig. IIIb, with the increase26

in the known class accuracy after 50 epochs, the clustering accuracies for novel classes of UNO,27

IIC, and Kmeans+ start to decrease. This indicates the known class accuracy competes with the28

novel class clustering accuracy, and features beneficial to known class recognition instead turn out to29

harm the generalization to novel classes. The clustering accuracy of our method stays stable after30

60 epochs. Meanwhile, the trend of the cluster accuracy is consistent with that of the known class31

accuracy suggesting that learned features on known classes encourage the recognition of novel ones.32

This good generalization is attributed to the fact that part concepts construct a shared embedding33

space between known and novel classes.34
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II Ablation Study35

To further investigate our proposed model components, we conduct additional ablation experiments36

in Tab. I. In ②, ③ and ④, both Poincareé distance and Lsd are proposed to encourage sharper part37

concept activation. Each of these two modules can be used individually to obtain performance38

gains (+3.7% vs +8.5%, +5.1% vs +7.4%), and they can be used together to achieve an even bigger39

improvement (+9.5% vs +15.2%). Without Poincareé distance and Lsd, using Lsc and Lcd alone40

can only achieve minor improvements as shown in ⑤ and ⑥. This is because that part concepts are41

less diverse and tend to encode the global feature of known classes that are hard to be generalized42

to novel classes. Since novel shapes may contain new part concepts that are not present in known43

classes, we concatenate the local part features Zl with the part composite features Zp. As shown in44

⑧, this design can obtain better results on low-similarity novel classes (+0.7% vs + 1.8%).45

Table I: Ablation experiments. PCB means part concept bank. LGA, Poincaré, Concat and PRE are
local geometric aggregation, Poincaré distance, concatenate the local part features Zl and position
relation encoder as shown in Fig. 2.

LGA PCB Poincaré Lsd Lsc Lcd Concat PRE High Low

① ✓ ✓ ✓ 58.4 48.7
② ✓ ✓ ✓ ✓ 62.1 57.2
③ ✓ ✓ ✓ ✓ 63.5 56.1
④ ✓ ✓ ✓ ✓ ✓ 67.9 63.9

⑤ ✓ ✓ ✓ ✓ 60.1 51.5
⑥ ✓ ✓ ✓ ✓ 59.8 49.3

⑦ ✓ ✓ ✓ ✓ ✓ ✓ 70.6 63.3
⑧ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 71.3 65.1

⑨ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 73.2 66.4

III Different Backbones46

We inspect how different network backbones impact the performance of 3D NCD. The comparisons47

are conducted on three popular 3D backbones including PointNet++ [6], DGCNN [8], and PointNeXt48

[7]. Among them, the PointNeXt achieves state-of-the-art performance for 3D classification and49

segmentation. We replace the backbone of compared methods with the above network architectures50

and evaluate their performance on the ModelNet high similarity task. The results are shown in Tab. II.51

the known class accuracy of the same 3D NCD method on different backbones does not vary too52

much (within 1%). On the other hand, the backbone has a significant influence on the novel-class53

performance for all the compared methods. For example, the weaker backbone DGCNN can achieve54

better novel class accuracy than the other two backbones. This is because DGCNN uses graphs to55

represent the local features of the point cloud, thus increasing the feature generalization on novel56

classes. Our method can surpass all the baselines by a very large margin (at least +8.9%) on the57

novel-class accuracy even using a weak backbone (PointNet), while attaining comparable good58

performance on the known-class recognition. This superiority is primarily attributed to the part59

concept-based features that are more generalizable to novel classes than other backbones.60

IV Implementation Details61

In all experiments, we adopt PointNet [5] as the backbone for point-wise feature learning and sample62

1024 points from the original point clouds as inputs. We use scaling, rotation, jittering, and translation63

as data augmentation to generate two augmented point clouds for both labeled and unlabeled inputs64

respectively during training. The network is optimized with the Adam optimizer with an initial65

learning rate of 0.001. In our experiments, we first train the network for 30 epochs with labeled66

dataset Dl to learn the part concept bank, then we train all networks for another 220 epochs with67

both labeled and unlabeled datasets. We specify both the feature vector size D and the dimension68

of the part concepts to 256. The overall method is implemented in PyTorch, and we conduct all69
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Table II: The accuracy results of different backbones on the similarity split 3D NCD task. High, Low
denote the novel classes have High, Low semantic similarity with known classes.

PointNeXt PointNet++ DGCNN

High Low Known High Low Known High Low Known

DTC [2] 43.8 32.6 93.9 50.9 44.4 94.3 51.3 38.0 94.6
AutoNovel [3] 51.6 46.5 96.0 59.0 43.4 96.7 49.0 40.9 96.7
NCL [9] 59.9 46.5 95.9 51.3 37.6 97.0 64.3 44.9 95.1
UNO [1] 61.6 32.9 95.8 53.0 43.2 93.0 62.9 45.6 96.7
IIC [4] 62.3 49.7 95.3 57.6 46.0 94.6 64.0 51.8 96.8
Kmeans+ 61.2 50.9 96.4 55.2 40.7 96.2 64.0 45.5 92.3

Ours (PointNet) 73.2 66.4 95.2 73.2 66.4 95.2 73.2 66.4 95.2
Improvement +10.9 +15.5 -1.2 +14.2 +20.4 -1.8 +8.9 +14.6 -1.6

experiments on a computer with an NVIDIA Tesla V100 GPU. Our method takes 1.26M parameters,70

14.7G memory cost and 0.43s train time per batch measured on ModelNet. Readers are encouraged71

to refer to the released code for detailed implementation.72
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