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1 Detailed Construction Pipeline1

In this section, we introduce the construction pipeline for generating MVU-Eval QA pairs based on2

each data source.3

1.1 Kinetics-400 & nuScenes & ScanNet & Vchitect-2.04

For videos sampled from Kinetics-400 [6], nuScenes [2], ScanNet [3], and Vchitect-2.0 [4], we5

construct a semi-automatic pipeline. Specifically, after constructing video samples, we prompt6

the Qwen2.5-VL-72B-Instruct [1] to generate multiple-choice questions and answers, with videos7

and their labels (if possible) as inputs. These questions include: (1) Object Recognition, (2)8

Spatial Understanding, (3) Counting, (4) Knowledge-intensive Reasoning, and (5) Temporal9

Reasoning. These generated questions, answers, and candidate choices are manually checked by10

humans. Pipelines for constructing video pairs are slightly different across datasets.11

Kinetics-400. By default, 2-6 videos are randomly sampled, regardless of their labels. To generate12

challenge questions, we additionally sample video pairs that belong to the exact same category.13

nuScenes. Each video pair includes 6 videos from the different camera perspectives, i.e., left-front,14

front, right-front, left-back, back, and right-back.15

ScanNet. We randomly sample 2-6 videos for each question. We take detection labels as inputs with16

a probability of 50% as we find that generated questions are usually about counting when taking17

detection labels as inputs. Therefore, more diverse questions are generated without detection labels.18

Vchitect-2.0. We first randomly sample an anchor video, and make the LMM to generate fine-grained19

questions according this video. Subsequently, we sample 3-5 videos similar to the anchor, where we20

take the Jaccard similarity [5] between text captions as the similarity metric.21

1.2 FineDiving22

For the data source of FineDiving [11], we develop a systematic approach to generate question-answer23

pairs for Knowledge-intensive Reasoning and In-context Learning tasks. Our process leverages the24

rich metadata provided for each diving video clip, which includes the difficulty coefficient of the dive,25

the type of action performed, and the score received. For Knowledge-intensive Reasoning tasks,26

we randomly sample six videos from the dataset. Using the metadata of these videos, we formulate27

questions with definitive correct answers, such as “In these 6 videos, which videos have the same28

difficulty coefficient for the athletes?” The correct answer was derive directly from the metadata. We29

then generate distractor options that are similar in format but incorrect in content to increase the task’s30

difficulty. For In-context Learning tasks, we focus on two key metadata elements, including action31

difficulty and score. We randomly sample 4 videos for each question. Following a template, we32
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provide information about the difficulty/score of the first three videos in the question text. The correct33

answer option was the difficulty/score of the fourth video. To create distractors, we randomly sample34

difficulty/score information from 3 other videos in the database. This approach allow us to create a35

challenging benchmark that tests both the model’s ability to reason using domain-specific knowledge36

and its capacity to learn and apply patterns from context. By utilizing the inherent relationships37

within the diving metadata, we ensure that the questions were both relevant to the sport and require38

deep understanding of the video content and associate information.39

1.3 YouCook240

For the YouCook2 [12] dataset, which consists of long videos demonstrating complete recipe prepa-41

rations, we develop tasks to test Knowledge-intensive Reasoning and Temporal Reasoning. We42

leverage the dataset’s metadata, where each video represents a recipe and is composed of key steps.43

First, we segment the videos into shorter clips, each representing an essential cooking step, based44

on the original dataset labels. For the Knowledge-intensive Reasoning task, we present all clips45

of a recipe to the model in their original sequence. The question asks “Based on the <video_num>46

videos, infer the dish being made and describe the cooking process.” The correct answer is derived47

from the dataset’s step-by-step descriptions. To create distractors, we use Qwen2.5-72B-Instruct [8]48

to generate incorrect but plausible options. For the Temporal Reasoning task, we shuffle the clips49

of each recipe. The correct answer is the accurate sequence of steps, and distractors are created by50

randomly reordering the steps. This approach creates a benchmark that tests the model’s ability to51

understand video segments and reason through complex processes, ensuring questions are based on52

real-world cooking scenarios for practical evaluation.53

1.4 DREAM-1K54

Comparison. In this task, we aim to assess the ability of models to discern differences between pairs55

of similar videos and to generate the minimal operations required to transform a source video into a56

target video. The video editing task is categorized into three sub-tasks based on the type of editing57

operation: (1) Replacement, (2) Removal, and (3) Addition. We manually curate a dataset of 13058

samples derived from real-world use cases of the multimodal video editing feature on Kling.AI1,59

comprising 50 samples for Replacement, 30 for Removal, and 50 for Addition. To ensure privacy60

and copyright protection, samples containing real human faces or copyright-sensitive content are61

excluded. Each selected sample consists of a source video, a ground-truth user prompt specifying the62

video editing instructions, and the corresponding edited target video. To create candidate options63

for each sample, we first employ Mavors [7], an advanced 7B-size video LLM, to generate captions64

for both the source and target videos, and subsequently, we prompt Qwen2.5-32B-Instruct [8] to65

generate nine negative options based on the video captions by altering attributes such as object, action,66

quantity, position, or the scope of changes (e.g., global v.s. local) in the ground-truth user prompt.67

These generated negative options are then manually reviewed and filtered to ensure they are incorrect.68

The resulting dataset contains an average of 9.82 options per sample.69

Temporal Reasoning. To evaluate models’ capabilities in understanding temporal dependencies,70

narrative integrity, and event grounding within videos, we propose three distinct tasks: (1) Temporal71

Ordering, which requires models to arrange shuffled video clips into their correct chronological72

sequence; (2) Temporal Grounding, which assesses models’ ability to map specific event descriptions73

to the corresponding video segments; and (3) Temporal Caption Filling, which challenges models to74

infer missing events to complete a video’s event sequence. We construct the datasets for these tasks75

using DREAM-1K [9], selected for its rich multi-event video content.76

The data pipeline for all three tasks begins with a shared four-stage process—(1) video segmentation,77

(2) clip captioning, (3) event merging and scoring, and (4) data filtering—followed by task-specific78

steps to construct the final datasets for temporal ordering, temporal grounding, and temporal caption79

filling. In the first stage, we employ PySceneDetect2 to segment videos into clips using a threshold80

of 27.0. Subsequently, these clips are captioned using Mavors [7], with a focus on generating81

overall descriptions of each clip’s content. As scene-based segmentation may not align perfectly82

with event boundaries, we utilize Qwen2.5-32B-Instruct[8] in the third stage to merge consecutive83

1https://app.klingai.com/cn/
2https://github.com/Breakthrough/PySceneDetect
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clip descriptions into events based on their semantic similarity, employing elaborate In-Context84

Learning and Chain-of-Thought [10] prompting techniques. The ground-truth event descriptions from85

DREAM-1K provide contextual guidance for the event merging and scoring process. Concurrently,86

the model evaluates the temporal structure of the merged events by assigning three metrics, each87

scored from 0 to 10: (1) Sequential Coherence, which measures the logical coherence of the event88

sequence and the necessity of maintaining a specific order; (2) Logical Predictability, which evaluates89

whether earlier events enable accurate prediction of subsequent events; and (3) Event Completeness,90

which assesses the impact of event missing on the narrative integrity of the sequence. Finally, we filter91

the dataset by excluding samples with a sequential coherence score below 6, a logical predictability92

score below 5, an event completeness score below 7, a number of events below 2 (below 3 for the93

Temporal Caption Filling task), and where non-consecutive clips are merged into an event.94

Using the filtered event data, we construct datasets for the three tasks through task-specific procedures.95

For Temporal Ordering, we randomly shuffle the order of event video clips and generate incorrect96

orderings as negative options. For Temporal Grounding, we select an event description and generate97

multiple-choice options with the correct clip index and randomly sampled incorrect clip indices. For98

Temporal Caption Filling, we prompt Qwen2.5-32B-Instruct [8] to mask an event description and99

generate multiple-choice options with the correct description and plausible but incorrect alternatives.100

All event descriptions except for the masked ones will be replaced with the corresponding video101

clips. Finally, all data are manually reviewed to ensure (1) no multiple answers exist; (2) consistency102

between event descriptions and their corresponding video clips; and (3) accuracy of the options. We103

obtain 95, 200, and 33 samples for Temporal Ordering, Temporal Grounding, and Temporal Caption104

Filling tasks, respectively.105
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