
Supplementary Material for “On the Effects of Data
Distortion on Model Analysis and Training”

Anonymous Author(s)
Affiliation
Address
email

A Experimental details1

Throughout the paper, we use PreAct-ResNet18 [3] models, trained for 200 epochs with a batch2

size of 128. For the MSDA parameters we use the same values as Harris et al. [2]. All models3

are augmented with random crop and horizontal flip and are averaged across 5 runs. We optimise4

using SGD with 0.9 momentum, learning rate of 0.1 up until epoch 100 and 0.001 for the rest of the5

training. This is due to an incompatibility with newer versions of the PyTorch library of the official6

implementation of Harris et al. [2], which we use as a starting point for model training. However,7

the difference in learning rate schedule between our work and prior art does not affect our findings8

since we are not introducing a new method to be applied at training time. In our case, it is sufficient9

to show that the bias exists in at least one configuration. For the analysis we also used adapted code10

from [1] for patch-shuffling. The models were trained on either one of the following: Titan X Pascal,11

GeForce GTX 1080ti or Tesla V100. For the analyses, a GeForce GTX 1050 was also used. The12

average training time was less than two hours, with the exception of model trained on Tiny-ImageNet,13

which took around 10 hours to run.14

Training models15

The code for model training is largely based on the open-source official implementation of FMix,16

which also includes those of MixUp, CutOut, and CutMix. For the experiment where we use the17

reformulated objective to combine data sets, instead of mixing with a permutation of the batch, as it18

is done in the original implementation of the mixed-augmentations, we now draw a batch form the19

desired data set. To ensure a fair comparison, for the basic we also perform inter-batch mixing.20

Evaluating robustness21

For the CutOcclusion measurement, we modify open-source code to restrict the occluding patch to22

lie withing the the margins of the image to be occluded. This is to ensure that the mixing factor λ23

matches the true proportion of the occlusion. For iOcclusion, the implementation of Grad-CAM is24

again adapted from publicly available code. With both methods, we evaluate 5 instances of the same25

model and average over the results obtained.26

The added computation time of iOcclusion over the regular CutOcclusion for a fixed occlusion27

fraction is that of performing Grad-CAM on train and test data, as well as evaluating on the latter.28

With a batch size of 128, this takes under half an hour.29
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Table B.1: Alternative DI index (%) for PreAct-ResNet18 on
grid-shuffled images for four different types of models. Again,
a bias can be noted for all considered data sets.

basic MixUp FMix CutMix

CIFAR-10 3.52±0.56 3.31±0.82 0.76±0.16 0.43±0.13

CIFAR-100 1.40±0.38 1.09±0.29 0.38±0.21 0.16±0.08

FashionMNIST 1.56±0.39 3.57±1.35 1.65±0.35 0.82±0.13

Tiny ImageNet 3.01±0.48 2.24±0.30 2.34±1.86 11.45±10.54

ImageNet 0.82 1.49 0.58 −

Table B.2: Shape and texture ac-
curacy of BagNet9 models on the
GST data set.

Shape Texture

basic 11.29±0.15 18.90±0.66

MixUp 11.04±0.29 12.56±1.26

FMix 11.06±0.48 17.47±1.74

CutMix 10.76±0.27 20.28±0.88

Table B.3: Di index (%) for alternative grid sizes.
basic MixUp FMix CutMix

CIFAR-10 2× 2 0.61±0.24 0.56±0.33 0.19±0.14 0.12±0.06

8× 8 6.41±0.55 6.95±1.96 2.75±1.46 1.41±1.15

CIFAR-100 2× 2 1.03±0.29 0.46±0.14 0.21±0.14 0.12±0.07

8× 8 9.16±6.15 3.10±4.59 1.62±0.89 0.65±0.50

Tiny ImageNet 8× 8 5.76±6.61 5.73±3.82 2.49±1.38 0.60±0.69

16× 16 44.01±36.47 14.06±14.63 11.94±17.79 1.86±1.98

ImageNet 4× 4 0.82 1.49 0.58 −
64× 64 4.89 41.16 12.77

B Analysis of wrong predictions30

B.1 Alternative index31

Table B.1 the worst-case DI index where we replace icmax
in Equation 1 by the maximum increase32

across the runs. As per the original formulation, we note that the masking methods lead to models33

which are less sensitive to the artefacts resulted after patch-shuffling.34

B.2 Varying the grid size35

Table B.3 gives the results obtained when varying the number of image tiles to be randomly rearranged.36

We observe that data interference appears for different grid sizes.37

B.3 Patch-shuffling38

We look at the classes which have the highest increase in incorrect predictions and note that their39

shapes are characterised by strong horizontal and vertical edges. For example, on CIFAR-100, varying40

the grid size between 2 × 2, 4 × 4 and 8 × 8 gives "Lamp", "Bus" and "Table" as dominant cmax41

classes, while the model trained on Fashion MNIST with the standard procedure tends to predict42

grid-shuffled images as "Bag". Figure B.1 shows that on ImageNet, the basic model tends to wrongly43

identify the patch-shuffled images as belonging to class "Envelope".44

B.4 CutOcclusion45

In this section we experiment with alternative masking methods when computing CutOcclusion.46

We note that the bias exists when occluding with patches taken from images belonging to different47

data sets (Table B.4). Figure B.2 gives a visual account of the results obtained for CIFAR-10 when48

mix-patching. Note that for Fashion MNIST we use MNIST, for Tiny ImageNet we use ImageNet,49

while for CIFAR-10 we mix with CIFAR-100 and vice versa. Since ImageNet images are significantly50

larger than those of the other data sets, mixing would imply padding large areas, which would give51

results very similar to uniform patching. We also experiment with VGG models, where on CIFAR-1052

the basic has a DI index of 0.80±0.40 compared to 0.18±0.11 of MixUp. We then use masks sampled53
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Figure B.1: Difference between the number of times a class was wrongly predicted when presented
with regular ImageNet samples and patch-shuffled data.

Table B.4: DI index (%) for occluding with images from another data set.
basic MixUp FMix CutMix

CIFAR-10 0.18±0.05 0.39±0.15 0.12±0.11 0.08±0.06

CIFAR-100 0.48±0.09 0.61±0.27 0.90±0.15 1.25±0.25

Fashion MNIST 3.40±0.29 3.06±1.07 1.81±0.55 2.61±0.80

Tiny ImageNet 0.25±0.12 0.17±0.04 0.06±0.03 0.12±0.04

from Fourier space (Table B.5) and note that even for these irregularly shaped distortions, we can54

identify a gap in most cases. The only exception is in the case of Fashion MNIST. It must be stressed55

that although all the models we experimented with presented Data Interference for this problem, this56

does not exclude the possibility of constructing a different model that is insensitive to this distortion.57

For example, we identify a gap for this problem when mix-masking (DI index of 4.09±1.74 for the58

basic model as opposed to 1.87±0.27 for a model trained on images that were masked out using59

FMix-like masks). Thus, when occluding with a particular shape we implicitly disfavour models in60

which learnt representations are related to the features introduced by that shape.61

Figure B.4 also gives the results for CutOcclusion and iOcclusion for training with 3 random masks62

sampled from Fourier space.63

Table B.5: DI index (%) for patching using masks sampled from Fourier space.
basic MixUp FMix CutMix

CIFAR-10 2.08±1.13 1.79±1.09 1.32±0.99 4.21±1.23

CIFAR-100 4.06±01.47 3.11±02.29 9.90±14.32 2.89±05.36

Fashion MNIST 49.55±20.45 40.69±21.63 27.87±17.57 61.04±17.92

Tiny ImageNet 4.37±0.85 6.95±1.84 3.60±1.73 5.92±4.38

ImageNet 3.27 2.24 6.08 −
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(a) basic
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(b) MixUp
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(c) CutMix
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(d) FMix

Figure B.2: Difference between wrongly predicted classes when testing on original data versus
CutMix images. The evaluated models from left to right, top to bottom are trained on CIFAR-10 with:
no mixed-data augmentation (basic), MixUp, CutMix, and FMix.

B.4.1 BagNet shape and texture accuracy64

We evaluate on the GST data set BagNet9 models trained on Tiny ImageNet and present the results65

in Table B.2. Despite the basic model displaying a bias towards predicting one of the classes when66

presented with patch-shuffled images (see Figure B.5), once again it does not have a lower texture or67

higher shape bias than the masked-based augmentations.68

C Further results on iOcclusion experiments69

C.1 Alternative CutOcclusion70

Table C.1 gives the DI index when forcing the occluding patch to lie within image boundaries. Note71

that in the case of Tiny ImageNet the bias is more visibly present for larger occluders. As such,72

uniformly sampling the patch size from the interval [0.3, 1] results in a DI index of 13.46±5.74 for73

the basic model, while the level of data interference from MixUp is only 4.75±1.93. However, this74

does not change the conclusions of our experiments since as mentioned in the main paper, robustness75

studies are usually carried out with large occluder sizes.76

C.2 Occluding with images from another data set77

Since CutOcclusion does not account for the bias introduced by the occluding method, it is expected78

that changing the patch to a non-uniform one would greatly affect the results. For CIFAR-10 models,79

Figure C.1 presents the results of occluding with CIFAR-100 images. iOcclusion better rules out the80

specifics of the occluding patch, its uniform version giving similar results to the non-uniform one,81

whereas CutOcclusion pushes everything together.82
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(a) basic
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(b) MixUp
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(c) CutMix

airp
lan

e

autom
obile bird cat deer dog fro

g
hors

e
ship

tru
ck

0.0

0.2

0.4

0.6

in
cr

ea
se

 in
 in

co
rre

ct
 p

re
di

ct
io

ns

(d) FMix

Figure B.3: Difference between wrongly predicted classes when testing on original data versus
CutOut images. The evaluated models from left to right, top to bottom are trained on CIFAR-10 with:
no mixed-data augmentation (basic), MixUp, CutMix, and FMix.
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Figure B.4: CutOcclusion (left) and iOcclusion (right). Note that there is a difference in scale and
the two should not be directly compared. We are rather interested in how the methods situate the
different augmentation with respect to each other. It is important to notice that when measuring the
robustness with CutOcclusion, RM3 appears significantly less robust than FMix due to its sensitivity
to patching with rectangles. On the other hand, iOcclusion highlights the robustness specific to FMix.
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Figure B.5: Difference between wrongly predicted classes when testing on original Tiny ImageNet
data versus CutOut images.

Table C.1: DI index (%) for sampling occluder size from a uniform distribution when the patch is
restricted to lying within image boundaries.

basic MixUp FMix CutMix

CIFAR-10 5.88±1.82 0.76±0.69 1.30±1.27 3.68±3.66

CIFAR-100 29.71±10.19 6.80±7.55 6.08±6.28 13.19±25.85

Fashion MNIST 0.67±0.38 3.51±1.38 1.87±3.33 1.78±2.93

Tiny ImageNet 15.25±4.84 6.38±4.03 5.87±6.07 13.97±24.02

ImageNet 9.93 28.72 11.52 −

C.3 Randomising labels83

To assess the sensitivity of CutOcclusion and iOcclusion to the overall performance of the model, we84

also experiment with randomising all the labels of the CIFAR-10 data set. When evaluated on the85

unaugmented training data, all the basic models achieve 100% accuracy, while the FMix models reach86

99.99±0.01. Since all labels are corrupted, the accuracy on the test set before and after occlusion is87

no greater than random. However, the robustness of the augmentation-trained model can be seen on88

the training data, as captured by our metric (See Figure C.2). On the other hand, CutOcclusion makes89

no distinction between learning with regular and augmented data (Table C.2). Despite being such a90

peculiar case, it shows the comprehensiveness gained by accounting for the degradation on test data91

in relation to that on train.92

C.4 Approximating iOcclusion93

As alternative methods for computing iOcclusion we experiment both with masks sampled from94

Fourier space and randomly positioned square patches. Although using this type of random masking95

methods for computingDi
train andDi

test in Equation (1) gives less precise results, it has the advantage96

of incurring less computation and can be used for rapid model analysis. For assessing a model across97

5 runs for 6 different levels of occlusion, this method leads to a carbon footprint of 0.05 kgCO2eq98

as opposed to 1.04 using Grad-CAM. In Figure C.3 we present the results obtained with these99

alternatives. We expect both methods to provide overoptimistic results for small patches, while100

Fourier sampling is expected to give more truthful scores as the size of the patch increases. On101

the other hand, the contiguity of CutOut-based occlusion comes at the cost of not determining the102

robustness to multiple simultaneous occluders. This seems to play a role especially in the case of103

CutMix augmentation. Indeed, when superimposing a rectangular patch, it is difficult to differentiate104

6
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(a) Uniform CutOcclusion
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(b) Non-uniform CutOcclusion
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(c) Uniform iOcclusion
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(d) Non-uniform iOcclusion

Figure C.1: Comparison of metric sensitivity to textured occlusion. Uniform occlusion refers to
superimposing uniform patches over CIFAR-10 images, while nonuniform refers to superimposing
part of CIFAR-100 samples. Nonuniform CutOcclusion provides significantly different results to its
regular counterpart.

Table C.2: Robustness to occluding with patches cover-
ing 50% of each image. The models are trained with and
without masking augmentation on data with randomised
labels. CutOcclusion makes no difference between reg-
ular and augmented training.

basic
random

FMix
random

FMix
clean

CutOcclusion 10.24±0.27 9.78±0.18 63.63±4.54

iOcclusion 14.63±1.12 47.94±19.84 82.36±10.06
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Figure C.2: iOcclusion results for train-
ing with clean and corrupted labels for
basic and FMix augmentation.

CutMix from FMix-trained models. To confirm that this is caused by the granularity of the occluders105

and not the shape, we also experiment with occluding using multiple rectangular patches. We split106

the images in a 4 × 4 grid and occlude i% of the tiles, obtaining results that are more similar to107

those obtained when occluding with Fourier-sample patches. Thus, while significantly noisier, using108

randomly positioned occluders can provide an alternative for computing iOcclusion given that one109

takes into account the number of occluders.110

D Removing the dominant class111

We remove the 10th class from the CIFAR-10 data set and retrain on the remaining classes. In the112

main paper we give the results for occluding with non-uniform patches. When using black patches to113
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(a) Fourier-sampled patches
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(b) Rectangular patches

Figure C.3: Approximating iOcclusion with random masking can provide a first intuition, but is
significantly noisier than using a saliency method.

(a) Fourier-sampled patches (b) Rectangular patches

Figure D.1: Difference in incorrect predictions for the basic (left) and CutOut(right) models.

obstruct images, we again identify a gap, but this time with respect to a CutOut-trained model (see114

Figure D.1). The basic model has a DI index of 1.23±0.72, while CutOut 0.13±0.10. Thus, in both115

cases a model that is less affected by the artefacts than the basic model can be found. Thus, when116

measuring CutOcclusion, the basic model will be disadvantaged.117
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