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Abstract

The goal in label-imbalanced and group-sensitive classification is to optimize
relevant metrics such as balanced error and equal opportunity. Classical
methods, such as weighted cross-entropy, fail when training deep nets
to the terminal phase of training (TPT), that is training beyond zero
training error. This observation has motivated recent flurry of activity
in developing heuristic alternatives following the intuitive mechanism of
promoting larger margin for minorities. In contrast to previous heuristics, we
follow a principled analysis explaining how different loss adjustments affect
margins. First, we prove that for all linear classifiers trained in TPT, it is
necessary to introduce multiplicative, rather than additive, logit adjustments
so that the interclass margins change appropriately. To show this, we discover
a connection of the multiplicative CE modification to the cost-sensitive
support-vector machines. Perhaps counterintuitively, we also find that, at
the start of training, the same multiplicative weights can actually harm the
minority classes. Thus, while additive adjustments are ineffective in the
TPT, we show that they can speed up convergence by countering the initial
negative effect of the multiplicative weights. Motivated by these findings,
we formulate the vector-scaling (VS) loss, that captures existing techniques
as special cases. Moreover, we introduce a natural extension of the VS-loss
to group-sensitive classification, thus treating the two common types of
imbalances (label/group) in a unifying way. Importantly, our experiments on
state-of-the-art datasets are fully consistent with our theoretical insights and
confirm the superior performance of our algorithms. Finally, for imbalanced
Gaussian-mixtures data, we perform a generalization analysis, revealing
tradeoffs between balanced / standard error and equal opportunity.

Organization of the supplementary material

The supplementary material (SM) is organized as follows.

1. In Section A we provide additional technical information on the label-imbalanced
experiments of Sec. 5.1. We also show experiments of imbalanced MNIST dataset.
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2. In Section B we provide missing details and additional results on the group-
imbalanced experiments of Sec. 5.2.

3. In Section C we present synthetic experiments on both label-imbalanced and group-
sensitive datasets further supporting our theoretical findings in Sections 3 and
4.

4. In Section D we present and prove a more general version of Theorem 1 (specifically,
see Theorem 3) on the connection of overparameterized VS-loss and to CS-SVM.
We also discuss multiclass extensions (see Theorem 4) and implicit bias of gradient
flow (see Theorem 5).

5. In Section E, we present theoretical results on optimal tuning of CS-SVM. First,
we state and prove Lemma 2 which establishes a structural connection between
the solution of CS-SVM to the solution of the standard SVM, allowing to view the
former as a post-hoc adjustment to the latter. Then, we use this property together
with the sharp characterizations of Theorem 2 to derive an explicit formula for the
optimal margin ratio under Gaussian mixture data.

6. In Section F we prove Theorem 2 on generalization of CS-SVM. We also discuss
related works on sharp high-dimensional asymptotics and provide necessary back-
ground on the convex Gaussian min-max theorem. Finally, we include formulas for
the phase-transition threshold of CS-SVM.

7. Finally, in Section G we state and prove Theorem 7 characterizing the DEO of
GS-SVM as mentioned in Section 4.

To ease readability and accessibility, we also opted to keep the main manuscript. The SM
starts at page 17.
1 Introduction
1.1 Motivation and contributions
Equitable learning in the presence of data imbalances is a classical machine learning (ML)
problem, but one with increasing importance as ML decisions are adapted in increasingly
more complex applications directly involving people [6]. Two common types of imbalances
are those appearing in label-imbalanced and group-sensitive classification. In the first type,
examples from a target class are heavily outnumbered by examples from the rest of the classes.
The standard metric of average misclassification error is insensitive to such imbalances and
among several classical alternatives the balanced error is a widely used metric. In the second
type, the broad goal is to ensure fairness with respect to a protected underrepresented group
(e.g. gender, race). While acknowledging that there is no universal fairness metric [37, 20],
several suggestions have been made in the literature including Equal Opportunity favoring
same true positive rates across groups [23].
Methods for imbalanced data are broadly categorized into data- and algorithm- level ones.
In the latter category, belong cost-sensitive methods and, specifically, those that modify the
training loss to account for varying class/group penalties. Corresponding state-of-the-art
(SOTA) research is motivated by observations that classical methods, such as weighted
cross-entropy (wCE) fail when training overparameterized deep nets without regularization
and with train-loss minimization continuing well beyond zero train-error, in the so-called
terminal phase of training (TPT) ([58] and references therein). Intuitively, failure of wCE
when trained in TPT is attributed to the failure to appropriately adjust the relative margins
between different classes/groups in a way that favors minorities. To overcome this challenge,
recent works have proposed a so-called logit-adjusted (LA) loss that modifies the cross-entropy
(CE) loss by including extra additive hyper-parameters acting on the logits [32, 13, 46]. Even
more recently, [78] suggested yet another modification that introduces multiplicative hyper-
parameters on the logits leading to a class-dependent temperature (CDT) loss. Empirically,
both adjustments show performance improvements over wCE. However, it remains unclear:
Do both additive and multiplicative hyper-parameters lead to margin-adjustments favoring
minority classes? If so, what are the individual mechanisms that lead to this behavior? How
effective are different adjustments at each stage of training?
This paper answers the above questions. Specifically, we argue that multiplicative hyper-
parameters are most effective for margin adjustments in TPT, while additive parameters
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can be useful in the initial phase of training. Importantly, this intuition justifies our
algorithmic contribution: we introduce the vector-scaling (VS) loss that combines both types
of adjustments and attains improved performance on SOTA imbalanced datasets. Finally,
using the same set of tools, we extend the VS-loss to instances of group-sensitive classification.
We make multiple contributions as summarized below; see also Figure 1.
● Explaining the distinct roles of additive/multiplicative adjustments. We show
that when optimizing in TPT multiplicative logit adjustments are critical. Specifically, we
prove for linear models that multiplicative adjustments find classifiers that are solutions to
cost-sensitive support-vector-machines (CS-SVM), which by design create larger margins
for minority classes. While effective in TPT, we also find that, at the start of training, the
same adjustments can actually harm minorities. Instead, additive adjustments can speed
up convergence by countering the initial negative effect of the multiplicative ones. The
analytical findings are consistent with our experiments.
● An improved algorithm: VS-loss. Motivated by the unique roles of the two different
types of adjustments, we propose the vector-scaling (VS) loss that combines the best of both
worlds and outperforms existing techniques on benchmark datasets.

Prior Ours
Inductive bias 𝖷 ✓

Group imbalances 𝖷 ✓
Generalization + Tradeoffs 𝖷 ✓

Adjustment type Inductive bias

Additive Multiplicative SVM CS-SVM

LA-loss [MJR+20 +++] ✓ ✓

CDT-loss [YCZC20] ✓ ✓

VS-loss [Ours] ✓ ✓ ✓

Figure 1: Summary of contributions.

● Introducing logit-adjustments for group-
imbalanced data.We introduce a version of VS-loss
tailored to group-imbalanced datasets, thus treat-
ing, for the first time, loss-adjustments for label
and group imbalances in a unifying way. For the
latter, we propose a new algorithm combining our
VS-loss with the previously proposed DRO-method
to achieve state-of-the-art performance in terms of
both Equal Opportunity and worst-subgroup error.
● Generalization analysis / fairness trade-
offs. We present a sharp generalization analysis of
the VS-loss on binary overparameterized Gaussian
mixtures. Our formulae are explicit in terms of data geometry, priors, parameterization
ratio and hyperparameters; thus, leading to tradeoffs between standard error and fairness
measures. We find that VS-loss can improve both balanced and standard error over CE.
Interestingly, the optimal hyperparameters that minimize balanced error also optimize Equal
Opportunity.

1.2 Connections to related literature
CE adjustments. The use of wCE for imbalanced data is rather old [77], but it becomes
ineffective under overparameterization, e.g. [11]. This deficiency has led to the idea of
additive label-based parameters ιy on the logits [32, 13, 71, 46, 75]. Specifically, [46] proved
that setting ιy = log(πy) (πy denotes the prior of class y) leads to a Fisher consistent
loss, termed LA-loss, which outperformed other heuristics (e.g., focal loss [40]) on SOTA
datasets. However, Fisher consistency is only relevant in the large sample size limit. Instead,
we focus on overparameterized models. In a recent work, [78] proposed the CDT-loss,
which instead uses multiplicative label-based parameters ∆y on the logits. The authors
arrive at the CDT-loss as a heuristic means of compensating for the empirically observed
phenomenon of that the last-layer minority features deviate between training and test
instances [33]. Instead, we arrive at the CDT-loss via a different viewpoint: we show that
the multiplicative weights are necessary to move decision boundaries towards majorities
when training overparameterized linear models in TPT. Moreover, we argue that while
additive weights are not so effective in the TPT, they can help in the initial phase of training.
Our analysis sheds light on the individual roles of the two different modifications proposed
in the literature and naturally motivates the VS-loss in (2). Compared to the above works
we also demonstrate the successful use of VS-loss in group-imbalanced setting and show its
competitive performance over alternatives in [62, 26, 55]. Beyond CE adjustments there
is active research on alternative methods to improve fairness metrics, e.g. [31, 80, 41, 56].
These are orthogonal to CE adjustments and can potentially be used in conjunction.
Relation to vector-scaling calibration. Our naming of the VS-loss is inspired by
the vector scaling (VS) calibration [22], a post-hoc procedure that modifies the logits v
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after training via v → ∆ ⊙ v + ι, where ⊙ is the Hadamard product. [79] shows that VS
can improve calibration for imbalanced classes, but, in contrast to VS calibration, the
multiplicative/additive scalings in our VS-loss are part of the loss and directly affect training.
Blessings/curses of overparameterization. Overparameterization acts as a catalyst for
deep neural networks [53]. In terms of optimization, [66, 57, 28, 5] show that gradient-based
algorithms are implicitly biased towards favorable min-norm solutions. Such solutions, are
then analyzed in terms of generalization showing that they can in fact lead to benign
overfitting e.g. [7, 24]. While implicit bias is key to benign overfitting it may come with
certain downsides. As a matter of fact, we show here that certain hyper-parameters (e.g.
additive ones) can be ineffective in the interpolating regime in promoting fairness. Our
argument essentially builds on characterizing the implicit bias of wCE/LA/CDT-losses.
Related to this, [63] demonstrated the ineffectiveness of ωy in learning with groups.
2 Problem setup
Data. Let training set {(xi, gi, yi)}ni=1 consisting of n i.i.d. samples from a distribution D
over X × G × Y; X ⊆ Rd is the input space, Y = [C] ∶= {1, . . . ,C} the set of C labels, and,
G = [K] refers to group membership among K ≥ 1 groups. Group-assignments are known
for training data, but unknown at test time. For concreteness, we focus here on the binary
setting, i.e. C = 2 and Y = {−1,+1}; we present multiclass extensions in the Experiments and
in the Supplementary Material (SM). We assume throughout that y = +1 is minority class.
Fairness metrics. Given a training set we learn fw ∶ X ↦ Y parameterized by w ∈ Rp.
For instance, linear models take the form fw = ⟨w, h(x)⟩ for some feature representation
h ∶ X ↦ R

p. Given a new sample x, we decide class membership ŷ = sign(fw(x)). The
(standard) risk or misclassification error is R ∶= P{ŷ ≠ y} . Let s = (y, g) define a subgroup
for given values of y and g. We also define the class-conditional risks R± = P{ŷ ≠ y ∣y = ±1} ,
and, the sub-group-conditional risks R±,j = P{ŷ ≠ y ∣y = ±1, g = j} , j ∈ [K]. The balanced
error averages the conditional risks of the two classes: Rbal ∶= (R+ +R− ) /2. Assuming
K = 2 groups, Equal Opportunity requires R+,1 =R+,2 [23]. More generally, we consider the
(signed) difference of equal opportunity (DEO) Rdeo ∶=R+,1 −R+,2. In our experiments, we
also measure the worst-case subgroup error max(y∈±1,g∈[K])Ry,g.
Terminal phase of training (TPT). Motivated by modern training practice, we assume
overparameterized fw so that Rtrain = 1

n ∑i∈[n] 1[sign(fw(xi)) ≠ yi] can be driven to zero.
Typically, training such large models continues well-beyond zero training error as the training
loss is being pushed toward zero. As in [58], we call this the terminal phase of training.

2.1 Algorithms
Cross-entropy adjustments.We introduce the vector-scaling (VS) loss, which combines
both additive and multiplicative logit adjustments, previously suggested in the literature in
isolation. The following is the binary VS-loss for labels y ∈ {±1}, weight parameters ω± > 0,
additive logit parameters ι± ∈ R, and multiplicative logit parameters ∆± > 0:

`VS(y, fw(x)) = ωy ⋅ log (1 + eιy ⋅ e−∆yyfw(x)) . (1)

For imbalanced datasets with C > 2 classes, the VS-loss takes the following form:

`VS(y, fw(x)) = −ωy log (e∆yfy(x)+ιy/ ∑
c∈[C]

e∆cfc(x)+ιc). (2)

Here fw ∶ Rd → R
C and fw(x) = [f1(x), . . . , fC(x)] is the vector of logits. The VS-loss

(Eqns. (1),(2)) captures existing techniques as special cases by tuning accordingly the
additive/multiplicative hyperparameters. Specifically, we recover: (i) weighted CE (wCE)
loss by ∆y = 1, ιy = 0, ωy = π−1

y ; (ii) LA-loss by ∆y = 1; (iii) CDT-loss by ιy = 0.

With the goal of (additionally) ensuring fairness with respect to sensitive groups, we extend
the VS-loss by introducing parameters (∆y,g, ιy,g, ωy,g) that depend both on class and group
membership (specified by y and g, respectively). Our proposed group-sensitive VS-loss is
as follows (multiclass version can be defined accordingly):

`Group−VS(y, g, fw(x)) = ωy,g ⋅ log (1 + eιy,g ⋅ e−∆y,gyfw(x)). (3)
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CS-SVM. For linear classifiers fw(x) = ⟨w, h(x)⟩ with h ∶ X → R
p, CS-SVM [44] solves

min
w

∥w∥2 sub. to{⟨w, h(xi)⟩ ≥ δ , yi = +1
⟨w, h(xi)⟩ ≤ −1 , yi = −1 , i ∈ [n], (4)

for hyper-parameter δ ∈ R+ representing the ratio of margins between classes. δ = 1 corre-
sponds to (standard) SVM, while tuning δ > 1 (resp. δ < 1) favors a larger margin δ/∥ŵδ∥2
for the minority vs 1/∥ŵδ∥2 for the majority classes. Thus, δ → +∞ (resp. δ → 0) corresponds
to the decision boundary starting right at the boundary of class y = −1 (resp. y = +1).
Group-sensitive SVM. The group-sensitive version of CS-SVM (GS-SVM), for K = 2
protected groups adjusts the constraints in (4) so that yi⟨w, h(xi)⟩ ≥ δ (or ≥ 1), if gi = 1 (or
gi = 2.) δ > 1, GS-SVM favors larger margin for the sensitive group g = 1. Refined versions
when classes are also imbalanced modify the constraints to yi⟨w,h(xi)⟩ ≥ δyi,gi . Both CS-
SVM and GS-SVM are feasible iff data are linearly separable (see SM). However, we caution
that the GS-SVM hyper-parameters are in general harder to interpret as “margin-ratios".

3 Insights on the VS-loss
Here, we shed light on the distinct roles of the VS-loss hyper-parameters ωy, ιy and ∆y.
3.1 CDT-loss vs LA-loss: Why multiplicative weights?
We first demonstrate the unique role played by the multiplicative weights ∆y through a
motivating experiment on synthetic data in Fig. 2. We generated a binary Gaussian-mixture
dataset of n = 100 examples in R

300 with data means sampled independently from the
Gaussian distribution and normalized such that ∥µ+1∥2 = 2∥µ−1∥2 = 4. We set prior π+ = 0.1
for the minority class +1. For varying model size values p ∈ [5 ∶ 5 ∶ 50 , 75 ∶ 25 ∶ 300] we trained
linear classifier fw(x) = ⟨w, h(x)⟩ using only the first p features, i.e. h(x) = x(1 ∶ p) ∈ Rp.
This allows us to investigate performance versus the parameterization ratio γ = p/n. 1 We
train the model w using the following special cases of the VS-loss (Eqn. (1)): (i) CDT-loss
with ∆+ = δ−1

⋆ ,∆− = 1 (δ⋆ > 0 is set to the value shown in the inset plot; see SM for details).
(ii) LDAM-loss: ι+ = π−1/4, ι− = (1 − π)−1/4 (special case of LA-loss [13]). (iii) LA loss:
ι+ = log ( 1−π

π
), ι− = log ( π

1−π ) (Fisher-consistent values [46]). We ran gradient descent and
averaged over 25 independent experiments. The balanced error was computed on a test
set of size 104 and reported values are shown in red/blue/black markers. We also plot the
training errors, which are zero for γ ≳ 0.45. The shaded region highlights the transition
to the overparameterized / separable regime. In this regime, we continued training in the
TPT. The plots reveal the following clear message: The CDT-loss has better balanced-error
performance compared to the LA-loss when both trained in TPT. Moreover, they offer an
intuitive explanation by uncovering a connection to max-margin classifiers: In the TPT, (a)
LA-loss performs the same as SVM, and, (b) CDT-loss performs the same as CS-SVM.
We formalize those empirical observations in the theorem below, which holds for arbitrary
linearly separable datasets (beyond Gaussian mixtures of the experiment). Specifically, for
a sequence of norm-constrained minimizations of the VS-loss, we show that: As the norm
constraint R increases (thus, the problem approaches the original unconstrained loss), the
direction of the constrained minimizer wR converges to that of the CS-SVM solution ŵ∆−/∆+

.
Theorem 1 (VS-loss=CS-SVM). Fix a binary training set {xi, yi}ni=1 with at least one
example from each of the two classes. Assume feature map h(⋅) such that the data are
linearly separable, that is ∃w ∶ yiwTh(xi) ≥ 1,∀i ∈ [n]. Consider training a linear model
fw(x) = ⟨w, h(x)⟩ by minimizing the VS-loss Ln(w) ∶= ∑i∈[n] `VS(yi, fw(xi)) with `VS
defined in (1) for positive parameters ∆±, ω± ≥ 0 and arbitrary ι±. Define the norm-constrained
optimal classifier wR = arg min∥w∥2≤RLn(w). Let ŵδ be the CS-SVM solution of (4) with
δ = ∆−/∆+. Then, limR→∞ wR/∥wR∥2 = ŵδ/∥ŵδ∥2.

On the one hand, the theorem makes clear that ω± and ι± become ineffective in the TPT as
they all result in the same SVM solutions. On the other hand, the multiplicative parameters
∆± lead to the same classifier as that of CS-SVM, thus favoring solutions that move the

1Such simple models have been used in e.g. [24, 15, 14, 16, 68] for analytic studies of double descent
[10, 53] in terms ofclassification error. Fig. 2(a) reveals a double descent for the balanced error.
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Figure 2: Insights on various cost-sensitive modifications of the CE-loss. (a) CDT has superior
balanced-error performance over LA in the separable regime. Also, its performance matches that of
CS-SVM, unlike LA matching SVM; Sec. 3.1 for more details. Solid lines follow theory of Sec. 4. (b)
Although critical in TPT, multiplicative weights (aka CDT) can harm minority classes in initial phase
of training by guiding the classifier in the wrong direction. Properly tuned additive weights (aka LA)
can mitigate this effect and speed up convergence. This explains why VS can be superior compared
to CDT (see Observation 1). Dashed lines show where TPT starts for each loss. (c) CDT and VS
converge to CS-SVM, unlike LA and wCE. We prove this in Theorem 1.

classifier towards the majority class provided that ∆− > ∆+⇔ δ > 1. The proof is given in
the SM together with extensions for multiclass datasets. In the SM, we also strengthen
Theorem 1 by characterizing the implicit bias of gradient-flow on VS-loss. Finally, we show
that group-sensitive VS-loss with ∆y,g = ∆g converges to the corresponding GS-SVM.
Remark 1. Thm 1 is reminiscent of Thm. 2.1 in [61] who showed for a regularized ERM with
CE-loss that when the regularization parameter vanishes, the normalized solution converges
to the SVM classifier. Our result connects nicely to [61] extending their theory to VS-loss
/ CS-SVM, as well as, to the group-case. In a similar way, our result on the implicit
bias of gradient-flow on the VS-loss connects to more recent works [66, 28] that pioneered
corresponding results for CE-loss. Although related, our results on the properties of the
VS-loss are not obtained as special cases of these existing works. We remark that, when
combined with a recent result by [27], our Theorem 1 also implies that gradient descent on
the VS-loss with sufficiently small step size converges in direction to the solution of the
CS-SVM. In other words, Theorem 1 characterizes the implicit bias of gradient descent on the
VS-loss. As a final note, in Fig. 2(b,c) we kept constant learning rate 0.1. Significantly faster
convergence is observed with normalized GD schemes [51, 29]; see the SM for a detailed
numerical study. We also note that Thm. 1 gives a modern interpretation to the CS-SVM
via the lens of implicit bias theory.

3.2 VS-loss: Best of two worlds
We have shown that multiplicative weights ∆± are responsible for good balanced accuracy in
the TPT. Here, we show that, at the initial phase of training, the same multiplicative weights
can actually harm the minority classes. The following observation supports this claim.
Observation 1. Assume fw(x) = 0 at initialization. Then, the gradients of CDT-loss with
multiplicative logit factors ∆y are identical to the gradients of wCE-loss with weights ωy = ∆y.
Thus, we conclude the following where say y = +1 is minority. On the one hand, wCE, which
typically sets ω+ > ω− (e.g., ωy = 1/πy), helps minority examples by weighing down the loss
over majority. On the other hand, the CDT-loss requires the reverse direction ∆+ < ∆− as per
Theorem 1, thus initially it guides the classifier in the wrong direction to penalize minorities.

To see why the above is true note that for fw(x) = ⟨w, h(x)⟩ the gradient of VS-loss is
∇w`VS(y, fw(x)) = −ωy∆y σ( −∆yyfw(x) + ιy) ⋅ yh(x) where σ(t) = (1 + exp(−t))−1 is the
sigmoid function. It is then clear that at fw(x) = 0, the logit factor ∆y plays the same role
as the weight ωy. From Theorem 1, we know that pushing the margin towards majorities
(which favors balancing the conditional errors) requires ∆+ < ∆−. Thus, gradient of minorities
becomes smaller, initially pushing the optimization in the wrong direction. Now, we turn our
focus at the impact of ιy’s at the start of training. Noting that σ(⋅) is increasing function, we
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see that setting ι+ > ι− increases the gradient norm for minorities. This leads us to a second
observation: By properly tuning the additive logit adjustments ιy we can counter the initial
negative effect of the multiplicative adjustment, thus speeding up training. The observations
above naturally motivated us to formulate the VS-loss in Eqn. (2) bringing together the best
of two worlds: the ∆y’s that play a critical role in the TPT and the ιy’s that compensate for
the harmful effect of the ∆y’s in the beginning of training.
Figure 2(b,c) illustrate the discussion above. In the binary linear classification setting of
Fig. 2(a), we investigate the effect of the additive adjustments on the training dynamics.
Specifically, we trained using gradient descent: (i) CE ; (ii) wCE with ωy = 1/πy; (iii) LA-loss
with ιy = log(1/πy); (iv) CDT-loss with ∆+ = δ−1

⋆ ,∆− = 1; (v) VS-loss with ∆+ = δ−1
⋆ ,∆− = 1,

ιy = log(1/πy) and ωy = 1; (vi) VS-loss with same ∆’s, ιy = 0 and ωy = 1/πy. Figures 2(b) and
(c) plot balanced test error Rbal and angle-gap to CS-SVM solution as a function of iteration
number for each algorithm. The vertical dashed lines mark the iteration after which training
error stays zero and we enter the TPT. Observe in Fig. 2(c) that CDT/VS-losses, both
converge to the CS-SVM solution as TPT progresses verifying Theorem 1. This also results
in lowest test error in the TPT in Fig. 2(b). However, compared to CDT-loss, the VS-loss
enters faster in the TPT and converges orders of magnitude faster to small values of Rbal.
Note in Fig. 2(c) that this behavior is correlated with the speed at which the two losses
converge to CS-SVM. Following the discussion above, we attribute this favorable behavior
during the initial phase of training to the inclusion of the ιy’s. This is also supported by Fig.
2(c) as we see that LA-loss (but also wCE) achieves significantly better values of Rbal at the
first stage of training compared to CDT-loss. In Sec. 5.1 we provide deep-net experiments
on an imbalanced CIFAR-10 dataset that further support these findings.

4 Generalization analysis and fairness tradeoffs
Our results in the previous section regarding VS-loss/CS-SVM hold for arbitrary linearly-
separable training datasets. Here, under additional distributional assumptions, we establish
a sharp asymptotic theory for VS-loss/CS-SVM and their group-sensitive counterparts.
Data model. We study binary Gaussian-mixture generative models (GMM) for the data
distribution D. For the label y ∈ {±1}, let π ∶= P{y = +1}. Group membership is decided
conditionally on the label such that ∀j ∈ [K] ∶ P{g = j∣y = ±1} = p±,j , with ∑j∈[K] p+,j =
∑j∈[K] p−,j = 1. Finally, the feature conditional given label y and group g is a multivariate
Gaussian of mean µy,g ∈ Rd and covariance Σ, i.e. x∣(y, g) ∼ N (µy,g,Σ). Specifically
for label-imbalances, we let K = 1 and x∣y ∼ N (µy, Id) (see SM for Σ ≠ Id). For group-
imbalances, we focus on two groups with p+,1 = p−,1 = p < 1 − p = p+,2 = p−,2, j = 1,2 and
x ∣ (y, g) ∼ N (yµg, Id). In both cases, M denotes the matrix of means, i.e. M = [µ+ µ−] and
M = [µ1 µ2], respectively. Also, consider the eigen-decomposition: MTM = VS2VT , S ≻
0r×r,V ∈ R2×r, r ∈ {1,2}, with S an r × r diagonal positive-definite matrix and V an
orthonormal matrix obeying VTV = Ir. We study linear classifiers with h(x) = x.
Learning regime. We focus on the separable regime. For the models above, linear sep-
arability undergoes a sharp phase-transition as d,n → ∞ at a proportional rate γ = d

n
.

That is, there exists threshold γ⋆ ∶= γ⋆(V,S, π) ≤ 1/2 for the label-case, such that data are
linearly separable with probability approaching one provided that γ > γ⋆ (accordingly for
the group-case) [12, 49, 15, 30, 36]. See SM for formal statements and explicit definitions.

Analysis of CS/GS-SVM. We use PÐ→ to denote convergence in probability and Q(⋅) the
standard normal tail. We let (x)− ∶= min{x, 0}; 1[E] the indicator function of event E ; Br2 the
unit ball in Rr; and, e1 = [1, 0]T ,e2 = [0, 1]T standard basis vectors in R2. We further need the
following definitions. Let random variables as follows: G ∼ N (0,1), Y symmetric Bernoulli
with P{Y = +1} = π, EY = e11[Y = 1] − e21[Y = −1] and ∆Y = δ ⋅ 1[Y = +1] + 1[Y = −1],
for δ > 0. With these define key function ηδ ∶ R≥0 × Br2 × R → R as ηδ(q,ρ, b) ∶= E[(G +

ETY VSρ + bY −∆Y

q
)2
−] − (1 − ∥ρ∥2

2)γ. Finally, define (qδ,ρδ, bδ) as the unique triplet (see SM
for proof) satisfying ηδ(qδ,ρδ, bδ) = 0 and (ρδ, bδ) ∶= arg min∥ρ∥2≤1,b∈R ηδ(qδ, ρ, b). Note that
these triplets can be easily computed numerically for given values of γ, δ, π, p and means’
Gramian MTM = VS2VT .

7



(a) (b)

Figure 3: Fairness tradeoffs between classification error and error-imbalance/balanced-error/DEO on
GMM data achieved by (a) CS-SVM for class prior π = 0.05 and (b) GS-SVM for group prior p = 0.05,
as a function of the margin-ratio hyperparameter δ ≥ 1 and for various values of overparameterization
γ. Plots in (a) are generated using our sharp predictions in Theorem 2. Plots in (b) use corresponding
result for GS-SVM given in the SM. See text for interpretations.

Theorem 2 (Balanced error of CS-SVM). Let GMM data with label imbalances and learning
regime as described above. Consider the CS-SVM classifier in (4) with h(x) = x, intercept
b (i.e. constraints ⟨x,w⟩ + b ≥ {δ or 1} in (4)) and fixed margin-ratio δ > 0. Define R+ ∶=
Q (eT1 VSρδ + bδ/qδ) and R− ∶= Q (−eT2 VSρδ − bδ/qδ) . Then, as n, d→∞ with d/n = γ > γ⋆,
it holds that R+

PÐ→R+ and R−
PÐ→R−. In particular, Rbal

PÐ→Rbal ∶= (R+ +R−)/2.

The theorem further shows (∥ŵδ∥2,
ŵT
δ µ+

∥ŵδ∥2
,

ŵT
δ µ−

∥ŵδ∥2
, b̂δ)

PÐ→ (qδ,eT1 VSρδ,eT2 VSρδ, bδ). Thus,
bδ is the asymptotic the intercept, q−1

δ is the asymptotic classifier’s margin 1/∥ŵδ∥2 to the
majority, and ρδ determines the asymptotic alignment of the classifier with the class mean.
The proof uses the convex Gaussian min-max theorem (CGMT) framework [67, 73]; see SM
for background, the proof, as well as, (a) simpler expressions when the means are antipodal
(±µ) and (b) extensions to general covariance model (Σ ≠ I). The experiment (solid lines) in
Figure 2(a) validates the theorem’s predictions. Also, in the SM, we characterize the DEO
of GS-SVM for GMM data. Although similar in nature, that characterization differs to Thm.
2 since each class is now itself a Gaussian mixture as described in the model above.
Fairness tradeoffs. The theory above allow us to study tradeoffs between misclassification
/ balanced error / DEO in Fig. 3. Fig. 3(a) focuses on label imbalances. We make the
following observations. (1) The optimal value δ⋆ minimizing Rbal also achieves perfect
balancing between the conditional errors of the two classes, that is R+ =R− = Q( `−+`+2 ). We
prove this interesting property in the SM by deriving an explicit formula for δ⋆ that only
requires computing the triplet (q1,ρ1, b1) for δ = 1 corresponding to the standard SVM. Such
closed-form formula is rather unexpected given the seemingly involved nonlinear dependency
of Rbal on δ in Thm. 2. In the SM, we also use this formula to formulate a theory-inspired
heuristic for hyperparameter tuning, which shows good empirical performance on simple
datasets such as imbalanced MNIST. (2) The value of δ minimizing standard error R (shown
in magenta) is not equal to 1, hence CS-SVM also improves R (not only Rbal). In Fig. 3(b),
we investigate the effect of δ and the improvement of GS-SVM over SVM. The largest DEO
and smallest misclassification error are achieved by the SVM (δ = 1). But, with increasing
δ, misclassification error is traded-off for reduction in absolute value of DEO. Interestingly,
for some δ0 = δ0(γ) (with value increasing with γ) GS-SVM guarantees Equal Opportunity
(EO) Rdeo = 0 (without explicitly imposing such constraints as in [54, 17]).

5 Experiments
We show experimental results further justifying theoretical findings. (Code available in [1]).

5.1 Label-imbalanced data
Our first experiment (Table 1) shows that non-trivial combinations of additive/multiplicative
adjustments can improve balanced accuracy over individual ones. Our second experiment
(Fig. 4) validates the theory of Sec. 3 by examining how these adjustments affect training.
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Datasets. Table 1 evaluates LA/CDT/VS-losses on imbalanced instances of CIFAR-10/100.
Following [13], we consider: (1) STEP imbalance, reducing the sample size of half of the classes
to a fixed number. (2) Long-tailed (LT ) imbalance, which exponentially decreases the number
of training images across different classes. We set an imbalance ratio Nmax/Nmin = 100, where
Nmax = maxyNy,Nmin = minyNy and Ny are sample sizes of class y. For consistency with
[25, 13, 46, 78] we keep a balanced test set and in addition to evaluating our models on it,
we treat it as our validation set and use it to tune our hyperparameters. More sophisticated
tuning strategies (perhaps using bi-level optimization) are deferred to future work. We use
data-augmentation exactly as in [25, 13, 46, 78]. See SM for more implementation details.
Model and Baselines. We compare the following: (1) CE-loss. (2)
Re-Sampling that includes each data point in the batch with probabil-
ity πy

−1. (3) wCE with weights ωy = πy
−1. (4) LDAM-loss [13], spe-

cial case of LA-loss where ιy = 1
2(Nmin/Ny)1/4 is subtracted from the logits.

Table 1: Top-1 accuracy results on balanced validation set (%).

Dataset CIFAR 10 CIFAR 100
Imbalance Profile LT-100 STEP-100 LT-100 STEP-100
CE 71.94 ± 0.38 62.69 ± 0.50 38.82 ± 0.69 39.49 ± 0.16
Re-Sampling 71.2 65.0 34.7 38.4
wCE 72.6 67.3 40.5 40.1
LDAM [13]. 73.35 66.58 39.60 39.58
LDAM-DRW [13] 77.03 76.92 42.04 45.36
LA (τ = τ∗) [46] 80.81 ± 0.30 78.23 ± 0.52 42.87 ± 0.32 45.69 ± 0.27
CDT (γ = γ∗) [78] 79.55 ± 0.35 73.26 ± 0.29 42.57 ± 0.32 44.12 ± 0.17
VS (τ = τ∗, γ = γ∗) 80.82 ± 0.37 79.10 ± 0.66 43.52 ± 0.46 46.53 ± 0.17

(5) LDAM-DRW [13],
combining LDAM with
deferred re-weighting.
(6) LA-loss [46], with
the Fisher-consistent
parametric choice
ιy = τ log(πy). (7)
CDT-loss [78], with
∆y = (Ny/Nmax)γ . (8)
VS-loss, with com-
bined hyperparameters
ιy = τ log(πy) and
∆y = (Ny/Nmax)γ , pa-
rameterized by τ, γ > 0 respectively 2. The works introducing (5)-(7) above, all trained for
a different number of epochs, with dissimilar regularization and learning rate schedules.
For consistency, we follow the training setting in [13]. Thus, for LDAM we adapt results
reported by [13], but for LA and CDT, we reproduce our own in that setting. Finally, for a
fair comparison we ran LA-loss for optimized τ = τ∗ (rather than τ = 1 in [46]).
VS-loss balanced accuracy. Table 1 shows Top-1 accuracy on balanced validation set
(averaged over 5 runs). We use a grid to pick the best τ / γ / (τ, γ)-pair for the LA /
CDT / VS losses on the validation set. Since VS includes LA and CDT as special cases
(corresponding to γ = 0 and τ = 0 respectively), we expect that it is at least as good as
the latter over our hyper-parameter grid search. We find that the optimal (τ∗, γ∗)-pairs
correspond to non-trivial combinations of each individual parameter. Thus, VS-loss has
better balanced accucy as shown in the table. See SM for optimal hyperparameters choices.
How hyperparameters affect training? We perform three experiments. (a) Figure 4(a)
shows that larger values of hyperparameter γ (corresponding to more dispersed ∆y’s between
classes) hurt training performance and delay entering to TPT. Complementary Figures
4(c1,c2) show that eventually, if we train longer, then, train accuracy approaches 100%.
These findings are in line with Observation 1 in Sec. 3.2. (b) Figure 4(b) shows training
accuracy of LA-loss for changing hyperparameter τ controlling additive adjustments. On the
one hand, increasing values of τ delay training accuracy to reach 100%. On the other hand,
when compared to the effect of ∆y’s in Fig. 4(a), we observe that the impact of additive
adjustments on training is significantly milder than that of multiplicative adjustments. Thus,
LA trains easier than CDT. (c) Figure 4(c) shows train and balanced accuracies for (i)
CDT-loss in blue: τ = 0, γ = 0.15, (ii) VS-loss in orange: τ = −0.5, γ = 0.15. In Fig. 4(c1,c3)
we trained for 200 epochs, while in Fig. 4(c2,c4) we trained for 300 epochs. For γ = 0.15,
CDT-loss does not reach good training accuracy within 200 epochs (∼ 93% at epoch 200 in
Fig. 4(c1)), but the addition of ιy’s with τ = −0.5 mitigates this effect achieving improved
∼ 97% accuracy at 200 epochs. This also translates to balanced test accuracy: VS-loss has
better accuracy at the end of training in Fig. 4(c3). Yet, CDT-loss has not yet entered
2Here, the hyperparameter γ is used with some abuse of notation and is important to not be confused
with the parameterization ratio in the linear models in Sec. 3 and 4. We have opted to use the
same notation as in [78] to ease direct comparisons of experimental findings.
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(a) ∆y’s (parameterized by γ) can hurt training. (b) LA trains easier than CDT.

(c) ιy’s mitigate the effect of ∆y’s (c1,c2), but ∆′
ys dominate TPT performance (c3,c4).

Figure 4: Experiments on CIFAR10 with Long-tailed LT-100 imbalance demonstrating the effects of
additive/multiplicative parameters at different phases of training. All results are averaged over 5 runs
and shaded regions indicate the 95% confidence intervals. See text for details and interpretations.

the interpolating regime in this case. So, we ask: What changes if we train longer so that
both CDT and VS loss get (closer) to interpolation. In Fig. 4(c2) train accuracy of both
algorithms increases when training continues to 300 epochs. Again, thanks to the ιy’s VS-loss
trains faster. However, note in Figure 4(c4) that the balanced accuracies of the two methods
are now very close to each other. Thus, in the interpolating regime what dominates the
performance are the multiplicative adjustments which are same for both losses. This is in
agreement with the finding of Theorem 1 and the synthetic experiment in Fig. 2(b,c).

5.2 Group-sensitive data
The message of our experiments on group-imbalanced datasets is three-fold. (1) We demon-
strate the practical relevance of logit-adjusted CE modifications to settings with imbalances
at the level of (sub)groups. (2) We show that such methods are competitive to alternative
state-of-the-art; specifically, distributionally robust optimization (DRO) algorithms. (3) We
propose combining logit-adjustments with DRO methods for even superior performance.
Dataset. We study a setting with spurious correlations —strong associations between
label and background in image classification— which can be cast as a subgroup-sensitive
classification problem [62]. We consider the Waterbirds dataset [62]. The goal is to classify
images as either ‘waterbirds’ or ‘landbirds’, while their background —either ‘water’ or ‘land’—
can be spuriously correlated with the type of birds. Formally, each example has label
y ∈ Y = {±1} ≡ {waterbird, landbird} and belongs to a group g ∈ G = {±1} ≡ {water, land}.
Let then s = (y, g) ∈ {±1} × {±1} be the four sub-groups with (+1,−1), (−1,+1) being
minorities (specifically, p̂+1,+1 = 0.22, p̂+1,−1 = 0.012, p̂−1,+1 = 0.038 and p̂−1,−1 = 0.73.). Denote
Ns the number of training examples belonging to sub-group s and Nmax ∶= maxsNs. For
notational consistency with Sec. 2, we note that the imbalance here is in subgroups; thus,
Group-VS-loss in (3) consists of logit adjustments that depend on the subgroup s = (y, g).
Model and Baselines. As in [62], we train a ResNet50 starting with pretrained weights
on Imagenet. Let βs=(y,g) = (N(y,g)/Nmax). We propose training with the group-sensitive
VS-loss in (3) with ∆y,g = ∆s = βγs and ιs = −β−γs with γ = 0.3. We compare against CE
and the DRO method of [62]. We also implement a new training scheme that combines
Group-VS+DRO. We show additional results for Group-LA/CDT (not previously used
in group contexts). For fair comparison, we reran the baseline experiments with CE
and report our reproduced numbers. Since class +1 has no special meaning here, we use
Symm-DEO = (∣R(+1,+1) −R(+1,−1)∣ + ∣R(−1,+1) −R(−1,−1)∣)/2 and also report balanced and
worst sub-group accuracies. We did not fine-tune γ as the heuristic choice already shows the
benefit of Group-VS-loss. We expect further improvements tuning over validation set.
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Results. Table 2 reports test values obtained at last epoch (300 in total).

Table 2: Symmetric DEO, balanced and worst-case
subgroup accuracies on Waterbirds dataset; averages
over 10 runs, along with standard deviations.

Loss Symm. DEO Bal. acc. Worst acc.
CE 25.3±0.66 84.9±0.29 68.1±2.2
Group LA 24.0±2.4 84.2±3.0 70.1±2.6
Group CDT 18.5±0.46 87.2±1.2 75.4±2.2
Group VS 18.1±0.65 88.1±0.38 76.7±2.3
CE + DRO 16.3±0.37 88.7±0.31 75.2±2.1
Group LA + DRO 16.3±0.82 88.7±0.40 74.3±2.5
Group CDT + DRO 11.7±0.15 90.3±0.2 79.9±1.5
Group VS + DRO 11.8±0.70 90.2±0.22 78.9±1.0

Our Group-VS loss significantly im-
proves performance (measured with all
three fairness metrics) over CE, provid-
ing a cure for the poor CE performance
under overparameterization reported in
[63]. Group-CDT/VS have comparable
performances, with or without DRO.
Also, both outperform Group-LA that
only uses additive adjustments. While
these conclusions hold for the specific
heuristic tuning of ιy’s, ∆y’s described
above, they are in alignment with our
Theorem 1. Interestingly, Group-VS
improves by a small margin the worst
accuracy over CE+DRO, despite the latter being specifically designed to minimize that
objective. Our proposed Group-VS + DRO outperforms the CE+DRO algorithm used in
[62] when training continues in TPT. Finally, Symm. DEO appears correlated with balanced
accuracy, in alignment with our discussion in Sec. 4 (see Fig. 3(a)).

6 Concluding remarks
We presented a theoretically-grounded study of recently introduced cost-sensitive CE mod-
ifications for imbalanced data. To optimize key fairness metrics, we formulated a new
such modification subsuming previous techniques as special cases and provided theoretical
justification, as well as, empirical evidence on its superior performance against existing
methods. We suspect the VS-loss and our better understanding on the individual roles of
different hyperparameters can benefit NLP and computer vision applications; we expect
future work to undertake this opportunity with additional experiments. When it comes
to group-sensitive learning, it is of interest to extend our theory to other fairness metrics
of interest. Ideally, our precise asymptotic theory could help contrast different fairness
definitions and assess their pros/cons. Our results are the first to theoretically justify the
benefits/pitfalls of specific logit adjustments used in [32, 13, 46, 78]. The current theory is
limited to settings with fixed features. While this assumption is prevailing in most related
theoretical works [28, 52, 24, 7, 50], it is still far from deep-net practice where (last-layer)
features are learnt jointly with the classifier. We expect recent theoretical developments on
that front [58, 48, 43] to be relevant in our setting when combined with our ideas.
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A Additional Experiments on Label-Imbalanced Datasets

In this section, we provide omitted information (due to space limits) on the results of Section
5.1, as well, as additional experiments.

A.1 Deep-net experiments

Here we provide additional implementation details and a more extensive discussion on the
results presented in Table 1 in Section 5.1 of the main text.
Technical details: Following [13], we train a ResNet-32 [25], using batch size 128 and SGD
with momentum 0.9 and weight decay 2×10−4. For the first 5 epochs we use a linear warm up
schedule until baseline learning rate of 0.1. We train for a total of 200 epochs, while decaying
our learning rate by 0.1 at epochs 160 and 180. For STEP-100 imbalance we trained for 300
rather than 200 epochs and adjusted the learning rate accordingly as we found this type of
imbalance more difficult to learn. We remark that the values for LDAM (adapted from [13])
used learning rate decay 0.01 and last-layer feature/classifier normalization. We have found
convergence difficult otherwise. For other losses, we do not use the above normalization of
weights to isolate the impact of loss modifications.
Implementation details. A seed is used for each of the 5 runs and the weights of the
network are initialized with the same values for all the losses that we train. We only show
95% confidence intervals for CE, LA, CDT and VS losses which we implemented. For the
remaining algorithms (e.g., LDAM), we report averages over 5 realizations as given in [13].
For LA, CDT and VS losses, we have tuned the hyper-parameters (τ, γ) over the validation
set as described in Section 5.1 (see Remark 2 and Table 3). More sophisticated tuning
strategies over the validation set (e.g., based on bilevel optimization or Hyperband [42, 38])
and the corresponding performance assessment on test set are left to future work. Same as
in [25, 13, 46, 78] before training we augment the data by padding the images to size 40× 40,
flipping them horizontally at random and then random cropping them to their original size.
We use PyTorch [59] building on codes provided by [13, 78]. Training is performed on 2
NVIDIA RTX-3080 GPUs.
Remark 2 (On the (τ, γ) parameterization of ιy’s & ∆y’s). As mentioned in Section 5.1, our
deep-net experiments with VS-loss for label-imbalances, use the following parameterization
for the additive and multiplicative logit factors in terms of two hyperparameters τ and γ:

ιy = τ log(Ny/Ntot) and ∆y = (Ny/Nmax)γ , (5)

where Ny is the train-sample size of class y, Nmax = maxyNy and Ntot = ∑yNy. This
parameterizations follow [46] and [78], respectively. A convenient feature is that setting τ = 0
recovers the CDT-loss, and setting γ = 0 recovers the LA-loss.

Results and discussion. Table 1 shows that our VS-loss performs favorably over the
other methods across all experiments. The margins of improvement depend on the dataset /
imbalance-type. Also, observe that in most cases LA-loss performs better than CDT-loss.
This is likely because the CDT loss enters the TPT slower for the shown amount of training.
Interestingly, VS-loss, even though it resembles the CDT-loss in the fact that it also adjusts
the logits multiplicatively, does not seem to suffer from the same problem. In Section 3.1,
we presented experiments showing that: (i) If given enough time to train, CDT-loss can
achieve similar or better results than LA-loss. (ii) The addition of the ιy’s in the VS-loss
can mitigate the effect of ∆y on the speed of convergence. In that sense, VS-loss fulfills the
theoretical intuition in Section 3.1, as the method that combines additive and multiplicative
adjustments for high accuracy and fast convergence.
Tuning results. To promote reproducibility of our results and to give some insight on the
range of τ and γ, in Table 3 we present the values of the hyperparameters that we determined
through tuning and used to generate Table 1. As we discussed in Sec. 3.1, large values of τ
and γ can hinder training. Thus, when training with the VS loss, which adjusts the logits
both in an additive and in a multiplicative way, it seems beneficial to use smaller values of
these parameters, than when training with the LA or the CDT losses. Additionaly, note
that if searching over a grid, it is possible that the best values found for the VS-loss, will be
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Table 3: Hyperparameter tuning results for each dataset, imbalance profile and loss function.

Dataset CIFAR 10 CIFAR 100
Imbalance Profile LT-100 STEP-100 LT-100 STEP-100
LA (τ = τ∗) [46] 2.25 2.25 1.375 0.875
CDT (γ = γ∗) [78] 0.4 0.3 0.1 0.1
VS (τ = τ∗, γ = γ∗) (1.25,0.15) (1.5,0.2) (0.75,0.05) (0.5,0.05)

(a) Linear classifier (b) Random-features classifier

Figure 5: A comparison of CS-SVM balanced error against the overparameterization ratio γ, for the
standard hard margin SVM (δ = 1), for a heuristic δ = ( 1−π

π
)

1
4 and for our approximation of the optimal

δ (δ = δ̃⋆) obtained by the data-dependent heuristic in Section E.1.1. The experiment is performed on
the MNIST dataset in a one-vs-rest classification task where the goal is to separate the minority class
containing images of the digit 7 from the majority class containing images of all other digits. See text
for details.

the same as those of the LA or CDT losses (but never worse than them). Searching over a
fine enough grid though should yield parameter values for which VS-loss outperforms both
of them. Finally, note that the (τ, γ)-parameterization of the ιy,∆y’s is itself restrictive
and other alternatives might yield further improvements when combining both types of
adjustments as observed in the other cases.

A.2 Experiments on the MNIST dataset

Here, we present additional results on imbalanced MNIST data trained with linear and
random-feature models. These results complement the synthetic experiment of Figure 2(a).
Specifically, we designed an experiment where we perform binary one-vs-rest classification
on the MNIST dataset to classify digit 7 from the rest. Specifically, we split the dataset
in two classes, the minority class containing images of the digit 7 and the majority class
containing images of all other digits. To be consistent with our notation we assign the label
+1 to the minority class and the label −1 to the majority class. Here, d = 784 and π = 0.1 is
the prior for the minority class. All test-error evaluations were performed on a test set of
1000 samples. The results of the experiments were averaged over 200 realizations and the
90% confidence intervals for the mean are shown in Figure 5 as shaded regions.
We ran two experiments. In the first one depicted in Figure 5(a), we trained linear classifiers
using the standard SVM (blue), the CS-SVM with a heuristic value δ = ( 1−π

π
) 1

4 (orange),
and the CS-SVM with our heuristic data-dependent estimate of the optimal δ̃⋆ (green). We
compute such an estimate based on a recipe inspired by our exact expression in (33) for
the GMM; see Section E.1.1 for details. We compute the three classifiers on training sets of
varying sizes n = d/γ for a range of values of γ and report their balanced error. We observe
that CS-SVM always outperforms SVM (aka δ = 1) and the heuristic optimal tuning of
CS-SVM consistently outperforms the choice δ = ( 1−π

π
) 1

4 .
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Figure 6: In the overparameterized regime, our VS loss converges to the CS-SVM classifier, while the
LA-loss converges to the inferior —in terms of balanced-error performance— SVM. The experiment
was performed on the MNIST dataset in a one-vs-rest classification task where the goal is to separate
the minority class containing images of the digit 7 from the majority class containing images of all
other digits. See text for details.

Next, in Figure 5(b) for the same dataset we trained a Random-features classifier. Specifically,
for each one of the n = 300 training samples xi ∈ Rd=784 we generate random features
x̃i = ReLU(Axi) for a matrix A ∈ RN×d which we sample once such that it has entries IID
standard normal and is then standardized such that each column becomes unit norm. In this
case we control γ by varying the number N = γn of rows of that matrix A. Observe here that
the balanced error decreases as γ increases (an instance of benign overfitting, e.g. [24, 7, 45]
and that again the estimated optimal δ⋆ results in tuning of CS-SVM that outperforms the
other depicted choices.
In Figure 6 we repeat the experiment of Figure 5(a) only this time additionally to training
CS-SVM for δ = 1 and for δ = δ̃⋆ we also train using the LA-loss and our VS-loss. For the VS
loss we use (1) with the following choice of parameters: ω± = 1, ι± = 0 and ∆y = δ̃−1

⋆ 1[y =
+1] + 1[y = −1] (see Section E.1.1 for δ̃⋆). In a similar manner, LA-loss is defined using the
same formula (1), but with parameters ∆± = 1, ω± = 1 and ι+ = π−1/4, ι− = (1 − π)−1/4 (as
suggested in [13]).
The figure confirms our theoretical expectations: training with gradient descent on the LA
and VS losses asymptotically (in the number of iterations) converge to the SVM and CS-SVM
solutions respectively.
The training is performed over 200 epochs and for computing the gradient we iterate through
the dataset in batches of size 64. The results are averaged over 200 realizations and the 90%
confidence intervals are plotted as shaded regions for the CS-SVM model and as errorbars
for the VS loss.

B Further details and additional experiments on group-imbalances

B.1 Deep-net experiments

In this section, we elaborate on our proposed method of combining our group logit-
adjusted losses with the DRO method. In all experiments, we chose ∆s = (Ns/Nmax)γ ,
ιs = −(Ns/Nmax)−γ with γ = 0.3. For example, Group-LA has ιs = −(Ns/Nmax)−0.3 and
∆s = 0.
Group-VS+DRO algorithm. For completeness, we elaborate on our proposed method of
combining DRO with our Group VS-loss (see bottom half of Table 2). We recall from [62] that
their proposed CE+DRO algorithm seeks a model that minimizes the worst subgroup empiri-
cal risk by instead minimizing the worst subgroup CE-loss: maxs∈S E(x,y)∼P̂s[`CE(y, fw(x))],
where P̂s is the empirical distribution on training samples from subgroup s. Instead, our
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Figure 7: The benefit of GS-SVM (corr. Group-VS loss) compared to SVM (corr. wCE) in
achieving smaller worst case sub-group error without significant loss on the misclassification error
in the Waterbirds dataset. Training a linear model with N -dimensional Random-feature map over
pretrained ResNet-18 features as in [63].

Group-VS+DRO method attempts to solve the following distributionally robust optimization
problem:

min
w

max
s∈S

E(x,y)∼P̂s[`Group−VS(y, s, fw(x))],

with `Group−VS(y, s, fw(x)) = ωs ⋅ log (1 + eιs ⋅ e−∆syfw(x)) (see Equation (3)). To solve the
above non-convex non-differentiable minimization, we employ the same online optimization
algorithm given in [62, Algorithm 1], but changing the CE loss to the Group-VS.

B.2 GS-SVM experiments

Section 5.2 demonstrated, for a deep-net model trained on the Waterbird dataset, the efficacy
of the Group-VS loss compared to the CE and DRO algorithms used in [62]. Here, we follow
[63] who, similar to us, focused in overparameterized training in the TPT. Specifically, [63]
showed that wCE trained on a Random-feature model applied on top of a pretrained ResNet
results in large worst-group error when trained in TPT. In their analysis, they observed that
this is because weighted logistic loss in the separable regime behaves like SVM, which is
insensitive to groups. Here, we repeat their experiment only this time we use the Group-VS
loss. In line with our results thus far, Group-VS loss shows improved performance in this
setting as well.
Algorithm. Concretely, since we are training linear models (on random feature maps), we
know from Theorem 1 that Group-VS loss converges to GS-SVM. Thus, for simplicity, we
directly trained the following instance of GS-SVM and compared it against SVM:

min
w

∥w∥2 sub. to yi(h(xi)Tw + b) ≥ δsi , i ∈ [n]. (6)

Above, δsi = δ(yi,gi) = ( 1
p̂(y,g)

)4, h ∶ X → R
N is the random-feature map (see Section A.2), and

xi, i ∈ [n] are d-dimensional pretrained ResNet18 features (same as those used in [63]). Here,
n = 4795, N took a range of values from 500 to 10000 and d = 512. For those values of N the
data are separable, thus SVM/GS-SVM are feasible.
Experiment #1: GS-SVM vs SVM (or, Group-VS vs wCE). Figure 7 shows
worst-group and missclassification errors of GS-SVM and SVM as a function of the feature
dimension N . The curves show averages over 10 realizations of the random projection matrix
along with standard deviations depicted using shaded error-bars. We confirm that:

• GS-SVM consistently outperforms standard SVM in the overparameterized regime
in terms of worst-group error

• This gain comes without significant losses on the misclassification error.

Experiment #2: GS-SVM vs Sub-sampling. As a means of improving over wCE, [63]
proposed instead the use of CE with subsampling, for better worst case sub-group error. In
Figure 8 we compare the performance of three algorithms: (i) SVM, (ii) GS-SVM, and (iii)
SVM with subsampling (corresponding to CE with subsampling). For the latter, we chose
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Figure 8: Misclassification and conditional sub-group errors of SVM (blue), GS-SVM with heuristic
tuning δ(y,g) = p−4

(y,g) (red), and, SVM with subsampling (green) for the Waterbirds dataset. GS-SVM
has lower worst-case error (Sub-group-2) compared to the SVM without significant increase on the
misclassification error. SVM with subsampling has the best worst-group error performance, but also
worst misclassification error in subfigure (a).

56 examples from every sub-group (this is the size of the smallest sub-group) and ran SVM
on the resulting (smaller), now balanced, dataset. Figure 8 reports missclassification error,
as well as, conditional sub-group errors. Recall that in the original dataset, sub-groups- 0
and 3 were the majority with 3498 and 1057 examples respectively, while sub-groups 1 and 2
were the minorities with 184 and 56 examples, respectively. We find the following:

• Consistent with [63] SVM with subsampling achieves low worst case sub-group error,
lower than both SVM and GS-SVM (at least, when tuned with δ(y,a) = ( 1

p(y,a)
)4).

• Specifically, note the very low errors achieved by SVM with subsampling for minority
sub-groups 2 and 3.

• However, the gain comes at a significant cost paid for the majority sub-groups- 1
and 3 resulting in an increase of the misclassification error by more than 3− times
compared to standard SVM and GS-SVM.

We expect that, with more careful tuning of the hyper-parameters δ(y,g), GS-SVM can
eventually achieve even lower sub-group errors for the minority sub-groups without hurting
the majority sub-group errors significantly. We leave this to future work.

C Additional numerical results

C.1 Multiplicative vs Additive adjustments for label-imbalanced GMM

In Figure 9 we show a more complete version of Figure 2(a), where we additionally report
standard and per-class accuracies. We minimized the CDT/LA losses in the separable regime
with normalized gradient descent (GD), which uses increasing learning rate appropriately
normalized by the loss-gradient norm for faster convergence; refer to Figure 14 and Section
D.4 for the advantages over constant learning rate. Here, normalized GD was ran until the
norm of the gradient of the loss becomes less than 10−8. We observed empirically that the
GD on the LA-loss reaches the stopping criteria faster compared to the CDT-loss. This is
in full agreement with the CIFAR-10 experiments in Section 3.1 and theoretical findings in
Section 3.1.
In all cases, we reported both the results of Monte Carlo simulations, as well as, the theoretical
formulas predicted by Theorem 2. As promised, the theorem sharply predicts the conditional
error probabilities of minority/majority class despite the moderate dimension of d = 300.
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Figure 9: Performance of CDT vs LA loss for label-imbalanced GMM with missing features. (Top
Left) is same as Figure 2(a). The other three plots show: (Top Right) misclassification error R;
(Bottom Left) majority class error R−; (Bottom Right) minority class error R+. Throughout, solid
lines correspond to theoretical formulas obtained thanks to Theorem 2.

As noted in Section 3.1, CDT-loss results in better balanced error (see ‘Top Left’) in the
separable regime (where Rtrain = 0) compared to LA-loss. This naturally comes at a cost, as
the role of the two losses is reversed in terms of the misclassification error (see ‘Top Right’).
The two bottom figures better explain these, by showing that VS sacrifices the error of
majority class for a significant drop in the error of the minority class. All types of errors
decrease with increasing overparameterization ratio γ due to the mismatch feature model.
Finally, while balanced-error performance of CDT-loss is clearly better compared to the
LA-loss in the separable regime, the additive offsets ιy’s improve performance in the non-
separable regime. Specifically, the figure confirms experimentally the superiority of the
tuning of the LA-loss in [46] compared to that in [13] (but only in the underparameterized
regime). Also, it confirms our message: VS-loss that combines the best of two worlds by
using both additive and multiplicative adjustments.

C.2 Multiplicative vs Additive adjustments with `2-regularized GD

In this section we shed more light on the experiments presented in Figure 2(b,c), by
studying the effect of `2-regularization. Specifically, we repeat here the experiment of Fig.
2(b) with p = d = 50, n = 30. We train with CE, CDT, and LA-losses in TPT with a
weight-decay implementation of `2-regularization, that is GD with update step: wt+1 =
(1 − β)wt − η∇wL(wt), where β is the weight-decay factor and we used β ∈ {0,10−3,10−2}.
For our discussion, recall our findings in Section 3.1: (i) CDT-loss trained without regular-
ization in TPT converges to CS-SVM, thus achieving better balanced error than LA-loss
converging to SVM; (ii) however, at the beginning of training, multiplicative adjustment of
CDT-loss can hurt the balanced error; (iii) Additive adjustments on the other hand helped
in the beginning of GD iterations but were not useful deep in TPT.
We now turn our focus to the behavior of training in presence of `2-regularization. The weight-
decay factor was kept small enough to still achieve zero training error. A few interesting
observations are summarized below:

• The classifier norm plateaus when trained with regularization (while it increases
logarithmically without regularization; see Theorem 5). The larger the weight decay
factor, the earlier the norm saturates; see Fig. 10(b) and (d).

• Suppose a classifier is trained with a small, but non-zero, weight decay factor in
TPT, and the resulting classifier has a norm saturating at some value ζ > 0. The final
balanced error performance of such a classifier closely matches the balanced error
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Figure 10: Training dynamics of a linear classifier trained with gradient descent on LA and CDT
losses, with and without weight decay (parameter β).

produced by a classifier trained without regularization but with training stopped
early at that iteration for which the classifier-norm is equal to ζ; compare for example,
the value of yellow curve (CDT, β = 10−3) at t = 106 with the value of the red curve
(CDT, β = 0) at around t = 300 in Fig. 10(c) and (d). 3

• If early-stopped (appropriately) before entering TPT, LA-loss can give better bal-
anced performance than CDT-loss. In view of the above mentioned mapping between
weight-decay and training epoch, the use of weight decay results in same behavior.
Overall, this supports that VS-loss, combining both additive and multiplicative
adjustments is a better choice for a wide range of `2− regularization parameters.

C.3 Additional information on Figures 2(b),(c) and 3(a),(b)

Figures 2(b,c). We generate data from a binary GMM with d = 50, n = 30 and π = 0.1.
We generate mean vectors as random iid Gaussian vector and scale their norms to 5 and
1, respectively. For training, we use gradient descent with constant learning rate 0.1 and
fixed number of 106 iterations. The balanced test error in Figure 2(b) is computed by Monte
Carlo on a balanced test set of 105 samples. Figure 2(c) measures the angle gap of GD
outputs wt to the solution ŵδ of CS-SVM in (4) with δ = δ⋆ and h(xi) = xi.
Figures 3(a,b). In (a), we generated GMM data with ∥µ+∥ = 3,µ− = −µ+ and π = 0.05.
In (b), we considered the GMM of Section 4 with ∥µy,g∥ = 3, y ∈ {±1}, g ∈ {1,2} and
µ+,1 ⊥ µ+,2 ∈ Rd, sensitive group prior p = 0.05 and equal class priors π = 1/2.

C.4 VS-loss vs LA-loss for a group-sensitive GMM

In Figure 11 we test the performance of our theory-inspired VS-loss against the logit-adjusted
(LA)-loss in a group-sensitive classification setting with data from a Gaussian mixture model
with a minority and and a majority group. Specifically, we generated synthetic data from the
model with class prior π = 1 − π = 1/2, minority group membership prior p = 0.05 (for group
g = 1) and µ1 = 3e1,µ2 = 3e2 ∈ R500. We trained homogeneous linear classifiers based on a
varying number of training sample n = d/γ. For each value of n (eqv. γ) we ran normalized
gradient descent (see Sec. D.4) on

• CDT-loss `(y,wTx, g) ∶= log(1 + e−∆gy(wTx)) with ∆g = δ01[g = 1] + 1[g = 2].
• the LA-loss modified for group-sensitive classification `(y,wTx, g) ∶= log(1 +
eιgey(wTx)) with ιg = p−1/41[g = 1] + (1 − p)−1/41[g = 2]. This value for ι is inspired
by [13], but that paper only considered applying the LA-loss in label-imbalanced
settings.

For γ > 0.5 where data are necessarily separable, we also ran the standard SVM and the
GS-SVM with δ = δ0.
Here, we chose the parameter δ0 such that the GS-SVM achieves zero DEO. To do this, we
used the theoretical predictions of Theorem 7 for the DEO of GS-SVM for any value of δ

3See also [60, 2] for the connection between gradient-descent and regularization solution paths.
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Figure 11: This figure highlights the benefits of our theory-inspired VS-loss and GS-SVM over regular
SVM and logit-adjusted loss in a group-sensitive classification setting. We trained a linear model
with varying number n of examples in Rd=100, of a binary Gaussian-mixture dataset with two groups.
x-axis is the parameterization ratio d/n. Data were generated from a GMM with prior p = 0.05 for the
minority group. For γ > 0.5, we train additionally using SVM (cyan plus marker) and group-sensitive
SVM (magenta cross). The plot (c) displays the parameter δ = δ0 that we used to tune the VS-loss and
GS-SVM. These values were obtained through a grid search from the theoretical prediction such that
the theoretical Rdeo (cf. Theorem 7) produced by the corresponding GS-SVM is 0. The solid lines
depict theoretical predictions obtained by Theorem 7. The empirical probabilities were computed by
averaging over 25 independent realizations of the training and test data.

and performed a grid-search giving us the desired δ0; see Figure 11 for the values of δ0 for
different values of γ.
Figure 11(a) verifies that the GS-SVM achieves DEO (very close to) zero on the generated
data despite the finite dimensions in the simulations. On the other hand, SVM has worse
DEO performance. In fact, the DEO of SVM increases with γ, while that of GS-SVM stays
zero by appropriately tuning δ0.
The figure further confirms the message of Theorem 3: In the separable regime, GD on
logit-adjusted loss converges to the standard SVM performance, whereas GD on our VS-loss
converges to the corresponding GS-SVM solution, thus allowing to tune a suitable δ that
can trade-off misclassification error to smaller DEO magnitudes. The stopping criterion of
GD was a tolerance value on the norm of the gradient. The match between empirical values
and the theoretical predictions improves with increase in the dimension, more Monte-Carlo
averaging and a stricter stopping criterion for GD.

C.5 Validity of theoretical performance analysis

Figures 12 and 13 demonstrate that our Theorems 2 and 7 provide remarkably precise
prediction of the GMM performance even when dimensions are in the order of hundreds.
Moreover, both figures show the clear advantage of CS/GS-SVM over regular SVM and naive
resampling strategies in terms of balanced error and equal opportunity, respectively.
The reported values for the misclassification error and the balanced error / DEO were
computed over 105 test samples drawn from the same distribution as the training examples.
Additionally, Figure 12 validates the explicit formula that we derive in Equation (33) for δ⋆
minimizing the balanced error. Specifically, observe that CS-SVM with δ = δ⋆ (‘×’ markers)
not only minimizes balanced error (as predicted in Section E.3), but also leads to better
misclassification error compared to SVM for all depicted values of γ. The figure also shows the
performance of our data-dependent heuristic of computing δ⋆ introduced in Section E.1.1. The
heuristic appears to be accurate for small values of γ and is still better in terms of balanced
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Figure 12: Balanced (Left) and misclassification (Right) errors as a function of the parameterization
ratio γ = d/n for the following algorithms: SVM with and without majority class resampling, CS-SVM
with different choices of δ = ( 1−π

π
)
α
, π = 0.05 and δ = δ⋆ (cf. Eqn. (33)) plotted for different values

of γ = d/n. Solid lines show the theoretical values thanks to Theorem 2 and the discrete markers
represent empirical errors over 100 realizations of the dataset. Data were generated from a GMM with
µ+ = 4e1,µ− = −µ+ ∈ R

500, and π = 0.05. SVM with resampling outperforms SVM without resampling
in terms of balanced error, but the optimally tuned CS-SVM is superior to both in terms of both
balanced and misclassification errors for all values of γ.

Figure 13: DEO and misclassification error of SVM and GS-SVM with different choices of δ = (
1−p
p

)
α

for minority group prior p = 0.05 plotted against γ = d/n. Solid lines show the theoretical values and the
discrete markers represent empirical errors over 100 realizations of the dataset. Data generated from a
GMM with µ+,1 = 3e1,µ+,2 = 3e2 ∈ R

500. While SVM has the least misclassification error, it suffers
from a high DEO. By trading off misclassification error, it is possible to tune GS-SVM (specifically,
α = 0.75) so that it achieves DEO close to 0 for all the values of γ considered here.

error compared to the other two heuristic choices of δ = ( 1−π
π

)α, α = 1/4,1. Finally, we also
evaluated the SVM+subsampling algorithm; see Section C.5.1 below for the algorithm’s
description and performance analysis. Observe that SVM+resampling outperforms SVM
without resampling in terms of balanced error, but the optimally tuned CS-SVM is superior
to both.

C.5.1 Max-margin SVM with random majority class undersampling

For completeness, we briefly discuss here SVM combined with undersampling, a popular
technique that first randomly undersamples majority examples and only then trains max-
margin SVM. The asymptotic performance of this scheme under GMM can be analyzed
using Theorem 2 as explained below.
Suppose the majority class is randomly undersampled to ensure equal size of the two classes.
This increases the effective overparameterization ratio by a factor of 1

2π (in the asymptotic
limits). In particular, the conditional risks converge as follows:

R+,undersampling(γ, π)
PÐ→R+,undersampling(γ, π) =R+(

γ

2π
,0.5)

R−,undersampling(γ, π)
PÐ→R−,undersampling(γ, π) =R+,undersampling(γ, π). (7)

Above, R+,undersampling and R−,undersampling are the class-conditional risks of max-margin
SVM after random undersampling of the majority class to ensure equal number of training
examples from the two classes. The risk R+( γ

2π ,0.5) is the asymptotic conditional risk of
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a balanced dataset with overparameterization ratio γ
2π . This is computed as instructed in

Theorem 2 for the assignments γ ← γ
2π and π ← 1/2 in the formulas therein.

Our numerical simulations in Figure 12 verify the above formulas.

D Margin properties and implicit bias of VS-loss

D.1 A more general version and proof of Theorem 1

We will state and prove a more general theorem to which Theorem 1 is a corollary. The
new theorem also shows that the group-sensitive adjusted VS-loss in (3) converges to the
GS-SVM.
Remark 3. Theorem 1 and the content of this section are true for arbitrary linear models
fw(x) = ⟨h(x),w⟩ and feature maps h ∶ X → R

p. To lighten notation in the proofs, we assume
for simplicity that h is the identity map, that is h(x) = x. For the general case, just substitute
the raw features xi ∈ X below with their feature representation h(xi) ∈ Rp.

Consider the VS-loss empirical risk minimization (cf. (1) with f(x) = wTx):

L(w) ∶= ∑
i∈[n]

`(yi,wTxi, gi) ∶= ωi log (1 + eιi ⋅ e−∆iyi(wTxi)) . (8)

for strictly positive (but otherwise arbitrary) parameters ∆i, ωi > 0 and arbitrary ιi. For
example, setting ωi = ωyi,gi ,∆i = ∆yi,gi and ιi = ιyi,gi recovers the general form of our binary
VS-loss in (3).
Also, consider the following general cost-sensitive SVM (to which both the CS-SVM and the
GS-SVM are special instances)

ŵ ∶= arg min
w

∥w∥2 subject to yi(wTxi) ≥ 1/∆i,∀i ∈ [n]. (9)

First, we state the following simple facts about the cost-sensitive max-margin classifier in (9).
The proof of this claim is rather standard and is included in Section D.1.3 for completeness.
Lemma 1. Assume that the training dataset is linearly separable, i.e. ∃w such that
yi(wTxi) ≥ 1 for all i ∈ [n]. Then, (9) is feasible. Moreover, letting ŵ be the solution of (9),
it holds that

ŵ
∥ŵ∥2

= arg max
∥w∥2=1

min
i∈[n]

∆iyixTi w. (10)

Next, we state the main result of this section connecting the VS-loss in (8) to the max-margin
classifier in (9). After its statement, we show how it leads to Theorem 1; its proof is given
later in Section D.1.2.
Theorem 3 (Margin properties of VS-loss: General result). Define the norm-constrained
optimal classifier

wR ∶= arg min
∥w∥2≤R

L(w), (11)

with the loss L as defined in (8) for positive (but otherwise arbitrary) parameters ∆i, ωi > 0
and arbitrary ιi. Assume that the training dataset is linearly separable and let ŵ be the
solution of (9). Then, it holds that

lim
R→∞

wR

∥wR∥2
= ŵ

∥ŵ∥2
. (12)

D.1.1 Proof of Theorem 1

Theorem 1 is a corollary of Theorem 3 by setting ωi = ωyi , ιi = ιyi and ∆i = ∆yi . Indeed for
this choice the loss in Equation (8) reduces to that in Equation (1). Also, (9) reduces to (4).
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The latter follows from the equivalence of the following two optimization problems:

{ arg min
w

∥w∥2 subject to wTxi {
≥ 1/∆+ yi = +1
≤ −1/∆− yi = −1 }

= { arg min
v

∥v∥2 subject to vTxi {
≥ ∆−/∆+ yi = +1
≤ −1 yi = −1 },

which can be verified simply by a change of variables v/∆− ↔w and ∆− > 0.

The case of group-sensitive VS-loss. As another immediate corollary of Theorem 3 we
get an analogue of Theorem 1 for a group-imbalance data setting with K = 2 and balanced
classes. Then, we may use the VS-loss in (8) with margin parameters ∆i = ∆g, g = 1, 2. From
Theorem 3, we know that in the separable regime and in the limit of increasing weights, the
classifier wR (normalized) will converge to the solution of the GS-SVM with δ = ∆2/∆1.

D.1.2 Proof of Theorem 3

First, we will argue that for any R > 0 the solution to the constrained VS-loss minimization
is on the boundary, i.e.

∥wR∥2 = R. (13)
We will prove this by contradiction. Assume to the contrary that wR is a point in the strict
interior of the feasible set. It must then be by convexity that ∇L(wR) = 0. Let w̃ be any
solution feasible in (9) (which exists as shown above) such that yi(xTi w̃) ≥ 1/∆i. On one
hand, we have w̃T∇L(wR) = 0. On the other hand, by positivity of ωi,∆i,∀i ∈ [n]:

w̃T∇L(wR) = ∑
i∈[n]

−ωi∆ie
−∆iyixTi wR+ιi

1 + eιie−∆iyixTi wR

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<0

yiw̃Txi
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

>0

< 0, (14)

which leads to a contradiction.
Now, suppose that (12) is not true. This means that there is some ε0 > 0 such that there is
always an arbitrarily large R > 0 such that wT

Rŵ
∥wR∥2∥ŵ∥2

≤ 1− ε0. Equivalently, (in view of (13)):

wT
Rŵ

R∥ŵ∥2
≤ 1 − ε0. (15)

Towards proving a contradiction, we will show that, in this scenario using ŵR = R ŵ
∥ŵ∥`2

yields a strictly smaller VS-loss (for sufficiently large R > 0), i.e.
L(ŵR) < L(wR), for sufficiently large R. (16)

We start by upper bounding L(ŵR). To do this, we first note from definition of ŵR the
following margin property:

yiŵT
Rxi =

R

∥ŵ∥2
yiŵTxi ≥

R

∥ŵ∥2
(1/∆i) =∶

R̄

∆i
, (17)

where the inequality follows from feasibility of ŵ in (9) and we set R̄ ∶= R/∥ŵ∥2. Then, using
(17) it follows immediately that

L(ŵR) =
n

∑
i=1
ωi log (1 + eιie−∆iyiŵT

Rxi)

≤
n

∑
i=1
ωi log (1 + eιie−

R̄
∆i

∆i)

=
n

∑
i=1
ωi log (1 + eιie−R̄)

≤ ωmaxne
ιmax−R̄. (18)
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In the first inequality above we used (17) and non-negativity of ωi,∆i ≥ 0. In the last line,
we have called ωmax ∶= maxi∈[n] ωi > 0 and ιmax ∶= maxi∈[n] ιi > 0 .
Next, we lower bound L(wR). To do this, consider the vector

w̄ = ∥ŵ∥`2
R

wR = wR/R̄.

By feasibility of wR (i.e. ∥wR∥2 ≤ R), note that ∥w̄∥2 ≤ ∥ŵ∥2. Also, from (15), we know that
w̄ ≠ ŵ. Indeed, if it were w̄ = ŵ ⇐⇒ ŵ/∥ŵ∥2 = wR/R, then

ŵTwR

R∥ŵ∥2
= 1,

which would contradict (15). Thus, it must be that w̄ ≠ ŵ. From these and strong convexity
of the objective function in (9), it follows that w̄ must be infeasible for (4). Thus, there
exists at least one example xj , j ∈ [n] and ε > 0 such that

yjw̄Txj ≤ (1 − ε)(1/∆j).
But then

yjwT
Rxj ≤ R̄(1 − ε)(1/∆j), (19)

which we can use to lower bound L(wR) as follows:

L(wR) ≥ ωj log (1 + eιj−∆jyjwT
Rxj)

≥ ωj log (1 + eιyj−R̄∆j
(1−ε)
∆j )

≥ ωmin log (1 + eιmin−R̄(1−ε)) . (20)

The second inequality follows fron (19) and non-negativity of ∆±, ω±.

To finish the proof we compare (20) against (18). If ε ≥ 1, clearly L(ŵR) < L(wR) for
sufficiently large R. Otherwise e−R̄(1−ε) → 0 with R →∞. Hence,

L(wR) ≥ ωmin log (1 + eιmin−R̄(1−ε)) ≥ 0.5ωmine
ιmin−R̄(1−ε).

Thus, again

L(ŵR) < L(wR) ⇐Ô ωmaxne
ιmax−R̄ < 0.5ωmine

ιmin−R̄(1−ε) ⇐⇒ eR̄ε > 2nωmax

ωmin
eιmax−ιmin ,

because the right side is true by picking R arbitrarily large.

D.1.3 Proof of Lemma 1

The proof of Lemma 1 is standard, but included here for completeness. The lemma has two
statements and we prove them in the order in which they appear.

Linear separability Ô⇒ feasibility of (9). Assume w such that yi(wTxi) ≥ 1 for all
i ∈ [n], which exists by assumption. Define M ∶= maxi∈[n] 1

∆i
> 0 and consider w̃ = Mw.

Then, we claim that w̃ is feasible for (9). To check this, note that

yi = +1 Ô⇒ xTi w̃ =M(xTi w) ≥M ≥ 1/∆i since xTi w ≥ 1,
yi = −1 Ô⇒ xTi w̃ =M(xTi w) ≤ −M ≤ −1/∆i since xTi w ≤ −1.

Thus, yi(xTi w̃) ≥ 1/∆i for all i ∈ [n], as desired.

Proof of (10). For the sake of contradiction let w̃ ≠ ŵ
∥ŵ∥2

be the solution to the max-min
optimization in the RHS of (10). Specifically, this means that ∥w̃∥2 = 1 and

m̃ ∶= min
i∈[n]

∆iyixTi w̃ > min
i∈[n]

∆iyixTi
ŵ

∥ŵ∥2
=∶m.
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We will prove that the vector w′ ∶= w̃/m̃ is feasible in (9) and has smaller `2-norm than ŵ
contradicting the optimality of the latter. First, we check feasibility. Note that, by definition
of m̃, for any i ∈ [n]:

∆iyixTi w′ = ∆iyixTi w̃
m̃

≥ 1,

Second, we show that ∥w′∥2 < ∥ŵ∥2:

∥w′∥2 =
∥w̃∥2

m̃
= 1
m̃

< 1
m

= ∥ŵ∥2

mini∈[n] ∆iyixTi ŵ
≤ ∥ŵ∥2,

where the last inequality follows by feasibility of ŵ in (9). This completes the proof of the
lemma.

D.2 Multiclass extension

In this section, we present a natural extension of Theorem 3 to the multiclass VS-loss in (2).
Here, let we let the label set Y = {1, 2, . . . ,C} for a C-class classification setting and consider
the cross-entropy VS-loss:

L(W) ∶= ∑
i∈[n]

`(yi,wT
1 xi, . . . ,wT

Kxi) = ∑
i∈[n]

ωyi log (1 + ∑
y′∈[C]
y′≠yi

eιy′−ιyi e−(∆yi
wT
yi

xi−∆y′w
T
y′

xi)),

(21)

where W = [w1, . . . ,wC] ∈ RC×d and wy is the classifier corresponding to class y ∈ [C]. We
will also consider the following multiclass version of the CS-SVM in (9):

Ŵ = arg min
W

∥W∥F subject to xTi (∆yiwyi −∆y′wy′) ≥ 1, ∀y′ ≠ yi ∈ [C] and ∀i ∈ [n].
(22)

Similar to Lemma 1, it can be easily checked that (22) is feasible provided that the training
data are separable, in the sense that

∃W = [w1, . . . ,wK] suc that xTi (wyi −wy′) ≥ 1,∀y′ ∈ [C], y′ ≠ yi and ∀i ∈ [n]. (23)

Moreover, it holds that

Ŵ/∥Ŵ∥F = arg max
∥W∥F =1

min
i∈[n]

min
y′≠yi

xTi (∆yiwyi −∆y′wy′).

The theorem below is an extension of Theorem 3 to multiclass classification.
Theorem 4 (Margin properties of VS-loss: Multiclass). Consider a C-class classification
problem and define the norm-constrained optimal classifier

WR = arg min
∥W∥F ≤R

L(W), (24)

with the loss L as defined in (21) for positive (but otherwise arbitrary) parameters ∆y, ωy >
0, y ∈ [C] and arbitrary ιy, y ∈ [C]. Assume that the training dataset is linearly separable as
in (23) and let Ŵ be the solution of (22). Then, it holds that

lim
R→∞

WR

∥WR∥F
= Ŵ

∥Ŵ∥2
. (25)

Proof. The proof follows the same steps as in the proof of Theorem 3. Thus, we skip some
details and outline only the basic calculations needed.
It is convenient to introduce the following notation, for ` ∈ [C]:

p(`∣x, y,W) ∶= eιye∆yxTw`

∑y′∈[C] e
ιy′ e∆y′xTwy′

.
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In this notation, L(W) = −∑i∈[n] log (p(yi∣xi, yi,W)) and for all ` ∈ [C] it holds that
∇w`
L(W) = ∑

i∈[n]
ωyi∆yi (p(`∣xi, yi,W) − 1[yi = `])xi.

Thus, for any W̃ that is feasible in (22)

∑
`∈[C]

w̃T
` ∇w`

L(W) = ∑
i∈[n]

∑
`∈[C]

ωyi∆yi (p(`∣xi, yi,W) − 1[yi = `])xTi w̃`

= ∑
i∈[n]

∑
`≠yi

ωyi∆yip(`∣xi, yi,W)xTi w̃` − ωyi∆yi (1 − p(yi∣xi, yi,W))xTi w̃yi

= ∑
i∈[n]

−ωyi( ∑
`≠yi

p(`∣xi, yi,W))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<0

∆yixTi (w̃` − w̃yi)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

< 0,

where in the third line we used that ∑`∈[C] p(`∣x, y,W) = 1. With the above it can be
shown following the exact same argument as in the proof of (13) for the binary case that
∥WR∥F = R, the minimizer of (24) satisfies the constraint with equality.
The proof continues with a contradiction argument similar to the binary case. Assume the
desired (25) does not hold. We will then show that for ŴR = R

∥Ŵ∥F
Ŵ and sufficiently large

R > 0: L(ŴR) < L(WR).

Using feasibility of Ŵ in (22) and defining ωmax ∶= maxy∈[C] ωy and ιmax = maxy≠y′∈[C] ιy′−ιy,
it can be shown similar to (18) that

L(ŴR) = ∑
i∈[n]

ωyi log (1 + ∑
y′∈[C]
y′≠yi

eιy′−ιyi e−(R/∥W∥F )(∆yi
ŵT
yi

xi−∆y′ ŵ
T
y′

xi)),

≤ nωmax log (1 + (K − 1)eιmaxe−R/∥Ŵ∥F ) ≤ n(K − 1)eιmaxe−R/∥Ŵ∥F . (26)

Next, by contradiction assumption and strong convexity of (22), for W̄ = ∥Ŵ∥2
R

WR, there
exist ε > 0 and at least one j ∈ [n] and y′ ≠ yj such that xTj (∆yj w̄j −∆y′w̄y′) ≤ (1− ε). With
this, we can show similar to (20) that

L(WR) ≥ log (1 + eιy′−ιyj eR/∥Ŵ∥F (1−ε)). (27)

The proof is complete by showing that for sufficiently large R the RHS of (27) is larger than
the LHS of (26) leading to a contradiction. We omit the details for brevity.

D.3 Implicit bias of Gradient flow with respect to VS-loss

Theorem 3 does not consider the effect of the optimization algorithm. Instead here, we study
gradient flow (the limit of gradient descent for infinitesimal step-size) and characterize its
implicit bias when applied to the VS-loss. Similar, to Theorem 3, we find that the iterations of
gradient flow converge to the solution of a corresponding CS-SVM. For simplicity, we consider
a VS-type adjusted exponential loss `(t) = e−t, rather than logistic loss `(t) = log(1 + e−t).
Recent work makes it clear that both loss functions have similar implicit biases and similar
lines of arguments are used to analyze the convergence properties [29, 28]. Thus, one would
expect that insights also apply to logistic loss.
Theorem 5 (Implicit bias of the gradient flow). Consider the gradient flow iteration
ẇt = −∇L(wt), on the exponential VS-loss L(w) = ∑i∈[n] ωi exp(−∆iyixTi w + ιi). Recall that
ŵ is the solution to the CS-SVM in (9). For almost every dataset which is linearly separable
and any starting point w0 the gradient flow iterates will behave as w(t) = ŵ log(t) + ρt with
a bounded residual ρt so that limt→∞

wt

∥wt∥2
= ŵ

∥ŵ∥2
.

Note that [66] previously studied the implicit bias of the gradient flow on standard CE or
exponential loss. The theorem above studies the gradient flow applied to the VS-loss and its
proof is similar to [66].
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Proof. Let S ⊂ [n] be the set of indices such that ∀i ∈ S ∶ ∆iyixTi ŵ = 1, i.e. the set of support
vectors of the CS-SVM. By KKT conditions (eg. see Equation (38)), there exist εi > 0 such
that ŵ = ∑i∈S εiyixi. Moreover, by [66, Lemma 12], for almost all datasets it is true that
∣S ∣ ≤ d and i ∈ S Ô⇒ εi > 0. Thus, for almost all datasets we can define vector w̃ satisfying
the following equation ωi∆i exp(−∆iyixTi w̃ + ιi) = εi,∀i ∈ [S]. Note then that

ŵ = ∑
i∈[S]

ωi∆ie
−∆iyixTi w̃+ιiyixi (28)

Let us define rt = ρt − w̃ = wt − log(t)ŵ− w̃. It suffices to show that ∥r(t)∥2 is bounded, since
that would automatically give ρt is bounded. By the gradient flow equation, we have that

ṙt = −∇L(wt) −
ŵ
t
= ∑
i∈[n]

ωi∆iyie
−∆iyixTi wt+ιixi −

ŵ
t
.

Therefore,
1
2

d
dt

∥rt∥2
2 = ṙTt rt = ∑

i∈[n]
ωi∆iyie

−∆iyixTi wt+ιixTi rt −
1
t
ŵT rt

=∑
i∈S

ωi∆iyie
−∆iyixTi wt+ιixTi rt −

1
t
ŵT rt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=A

+∑
i/∈S

ωi∆iyie
−∆iyixTi wt+ιixTi rt

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=B

(29)

We now study the two terms A and B separately. In doing so, recall that wt = rt+log(t)ŵ+w̃.

Hence, using the fact that ∆iyixTi ŵ = {= 1 i ∈ S
≥m > 1 i /∈ S , it holds that

exp (−∆iyixTi wt + ιi){
= 1
t
⋅ exp (−∆iyixTi rt) ⋅ exp (−∆iyixTi w̃ + ιi) i ∈ S

≤ 1
tm

⋅ exp (−∆iyixTi rt) ⋅ exp (−∆iyixTi w̃ + ιi) i /∈ S

Using this and (28), the term A becomes

A = 1
t
∑
i∈[S]

ωie
−∆iyixTi w̃+ιi ⋅ e−∆iyixTi rt∆iyixTi rt −

1
t
∑
i∈[S]

ωi∆ie
−∆iyixTi w̃+ιiyixTi rt

= 1
t
∑
i∈[S]

ωie
−∆iyixTi w̃+ιi ⋅ (e−∆iyixTi rt∆iyixTi rt −∆iyixTi rt) ≤ 0,

since ∀x,x ≥ xe−x.
Similarly, for term B:

B ≤ 1
tm
∑
i/∈S

ωie
−∆iyixTi w̃+ιi ⋅ e−∆iyixTi rt ⋅∆iyixTi rt ≤

1
tm
∑
i/∈S

ωie
−∆iyixTi w̃+ιi , (30)

since ∀x,xe−x ≤ 1.
To finish the proof it only takes now using the above bounds on A,B and integrating both
sides of Equation (29). This gives that for all t0, t > t0, there exists finite constant C such
that ∥rt∥2 ≤ ∥rt0∥2 +C where it was critical that m > 1 in (30) for the corresponding integral
to be finite. This proves that ∥rt∥2 is bounded as desired.

We note that the above proof is a straightforward extension of [66] for analysis of CDT, with
a simple rescaling of the features of the training set according to the labels, however the
analysis for VS-loss with additive logit-adjustments (although similar) cannot be obtained
as a special case of [66].

D.4 Numerical illustrations of Theorems 1 and 5

Figure 14 numerically demonstrate the validity of Theorems 1 and 5. Here, we solved the
VS-loss in Equation (1) using gradient descent (GD) for GMM data with class imbalance
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(a) CDT-loss vs CS-SVM (b) LA-loss vs SVM

Figure 14: Convergence properties of GD (blue) and normalized GD (red) iterates wt, t ≥ 1 on VS-loss
with fw(x) = wTx for two set of parameter choices: (a) ωy = 1, ιy = 0,∆y = δ1[y = 1] + 1[y = −1] (aka
CDT-loss) with δ = 20; (b) ωy = 1, ιy = π−1/41[y = 1] + (1 − π)−1/41[y = −1],∆y = 1 (aka LA-loss). We
plotted the angle gap 1− ŵTwt

∥wt∥2∥ŵ∥2
and norm gap ∥

wt
∥wt∥2

− ŵ
∥ŵ∥2

∥2 of wt to ŵ, for two values of ŵ for the
two subfigures as follows: (a) ŵ is the CS-SVM solution in (4) with parameter δ; (b) ŵ is the standard
SVM solution. Data were generated from a Gaussian mixture model with µ1 = 2e1,µ2 = −3e1 ∈ R

220,
n = 100 and π = 0.1. For (standard) GD we used a constant rate ηt = 0.1. For normalized GD, we used
ηt =

1√
t∥∇L(wt)∥2

as suggested in [51].

π = 0.1. We ran two experiments for two choices of parameters in (1) corresponding to
CDT-loss (with non-trivial multiplicative weights) and the LA-loss (with non-trivial additive
weights); see the figure’s caption for details. For each iterate outcome wt of GD, we report
the (i) angle and (ii) vector-norm gap to CS-SVM and SVM for the VS-loss and LA-loss,
respectively, as well as, the (iii) value of the loss L(wt) and the (iv) norm of the weights
∥wt∥2 at current iteration. Observe that the loss L(wt) is driven to zero and the norm of
the weights ∥wt∥2 increases to infinity with increasing t.
The experiment confirms that the VS-loss converges (aka angle/norm gap vanishes) to the
CS-SVM solution, while the LA-loss converges to the SVM.
In Figure 14, we also study (curves in red) the convergence properties of normalized GD.
Following [51], we implemented a version of normalized GD that uses a variable learning rate
ηt at iteration t normalized by the gradient of the loss as follows: ηt = 1

∥∇L(w̃)∥2
√
t+1 . [51]

(see also [29]) demonstrated that this normalization speeds up the convergence of standard
logistic loss to SVM. Figure 14 suggests that the same is true for convergence of the VS-loss
to the CS-SVM.

E Optimal tuning of CS-SVM

E.1 An explicit formula for optimal tuning

The parameter δ in the CS-SVM constraints in (4) aims to shift the decision space towards
the majority class so that it better balances the conditional errors of the two classes. But,
how to best choose δ to achieve that? That is, how to find arg minδR+(δ) +R−(δ) where
R±(δ) ∶=R±((ŵδ, b̂δ))? Thanks to Theorem 2, we can substitute this hard, data-dependent
parameter optimization problem with an analytic form that only depends on the problem
parameters π, γ and M. Specifically, we seek to solve the following optimization problem

arg min
δ>0

Q(eT1 VSρδ + bδ/qδ) +Q(−eT2 VSρδ − bδ/qδ)

sub. to (qδ,ρδ, bδ) defined as (42). (31)

Compared to the original data-dependent problem, the optimization above has the advantage
that it is explicit in terms of the problem parameters. However, as written, the optimization
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is still cumbersome as even a grid search over possible values of δ requires solving the
non-linear equation (42) for each candidate value of δ. Instead, we can exploit a structural
property of CS-SVM (see Lemma 2 in Section E.2) to rewrite (31) in a more convenient
form. Specifically, we will show in Section E.3 that (31) is equivalent to the following explicit
minimization:

arg min
δ>0

Q(`+ + (δ − 1
δ + 1

)q−1
1 ) +Q(`− − (δ − 1

δ + 1
)q−1

1 ), (32)

where we defined `+ ∶= eT1 VSρ1 + b1/q1, `− ∶= −eT2 VSρ1 − b1/q1, and, (q1,ρ1, b1) are as
defined in Theorem 2 for δ = 1. In other words, (q1,ρ1, b1) are the parameters related to the
standard hard-margin SVM, for which the balanced error is then given by (Q(`+) +Q(`−)) /2.
To summarize, we have shown that one can optimally tune δ to minimize the asymptotic
balanced error by minimizing the objective in (32) that only depends on the parameters
(q1,ρ1, b1) characterizing the asymptotic performance of SVM. In fact, we obtain explicit
formulas for the optimal value δ⋆ in (32) as follows

δ⋆ ∶= (`− − `+ + 2q−1
1 )/(`+ − `− + 2q−1

1 )+, (33)

where it is understood that when the denominator is zero (i.e. `+−`−+2q−1
1 ≤ 0) then δ⋆ →∞.

When `+ − `− + 2q−1
1 > 0, setting δ = δ⋆ in (4) not only achieves minimum balanced error

among all other choices of δ, but also it achieves perfect balancing between the conditional
errors of the two classes, i.e. R+ =R− = Q( `−+`+2 ).
Formally, we have the following result.
Theorem 6 (Optimal tuning of CS-SVM). Fix γ > γ⋆. Let Rbal(δ) denote the asymptotic
balanced error of the CS-SVM with margin-ratio parameter δ > 0 as specified in Theorem 2.
Further let (q1,ρ1, b1) the solution to (42) for δ = 1. Finally, define

`+ ∶= eT1 VSρ1 + b1/q1, `− ∶= −eT2 VSρ1 − b1/q1,

Then, for all δ > 0 it holds that
Rbal(δ) ≥Rbal(δ⋆)

where δ⋆ is defined as

δ⋆ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

`−−`++2q−1
1

`+−`−+2q−1
1

if `+ + `− ≥ 0 and `+ − `− + 2q−1
1 > 0,

→∞ if `+ + `− ≥ 0 and `+ − `− + 2q−1
1 ≤ 0,

→ 0 if `+ + `− < 0.
(34)

Specifically, if `++`− ≥ 0 and `+−`−+2q−1
1 > 0 hold, then the following two hold: (i) Rbal(δ⋆) =

Q ((`− + `+) /2), and, (ii) the asymptotic conditional errors are equal, i.e. R+(δ⋆) =R−(δ⋆).

See Figures 15c and 16 for numerical illustrations of the formula in Theorem 6, specifically
how δ⋆ depends on π and γ.

E.1.1 Data-dependent heuristic to estimate δ⋆
It is natural to ask if formula (34) can be used for tuning in practice. To answer this,
observe that evaluating the formula requires knowledge of the true means, which are typically
unknown. In this section, we propose a data-dependent heuristic to estimate δ⋆. More
generally, tuning δ (or ∆y in VS-loss) requires a train-validation split by creating a balanced
validation set from the original training data which would help assess balanced risk. Since
there is only a single hyperparameter we expect this approach to work well with fairly small
validation data (without hurting the minority class sample size).

Recall from Equation (33) that δ⋆ ∶= (`− − `+ + 2q−1
1 )/(`+ − `− + 2q−1

1 )+, where `+ ∶= eT1 VSρ1+
b1/q1 and `− ∶= −eT2 VSρ1 − b1/q1. Also, according to Theorem 2 and for δ = 1 it holds that

(∥ŵ1∥2, ŵT
1 µ+/∥ŵ1∥2, ŵT

1 µ−/∥ŵ1∥2, b̂1)
PÐ→ (q1,eT1 VSρ1,eT2 VSρ1, b1). (35)

The first key observation here is that ŵ1, b̂1 are the solutions to SVM, thus they are data-
dependent quantities to which we have access to. Hence, we can simply run SVM and
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(c) π = 0.0001

Figure 15: Graphical illustration of the result of Theorem 6: Balanced errors of CS-SVM against the
margin-ratio parameter δ for a GMM of antipodal means with ∥µ+∥ = ∥µ−∥ = 4 and different minority
class probabilities π. The balanced error is computed using the formulae of Theorem 2. For each case,
we studied three different values of γ. The value δ⋆ at which the curves attain (or approach) their
minimum are predicted by Theorem 6. Specifically, note the following for the three different priors. (a)
For all values of γ, the minimum is attained (cf. first branch of (34)). (b) For γ = 2,5 the minimum
is approached in the limit δ → ∞ (cf. second branch of (34)), but it is attained for γ = 0.5 (c) The
minimum is always approached as δ⋆ →∞.
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Figure 16: An example showing the dependence of δ⋆ on the data geometry. The above figure is
similar to Fig 15 but with a smaller ∥µ+∥ = ∥µ−∥ = 1, and for π = 0.1. While in Fig 15, the value of δ⋆,
whenever finite, can be seen to increase with increase in γ, for the current setting, it is observed to
decrease. Note also that δ⋆ →∞ for γ = 0.5, but finite for γ = 2,5.

estimate q1 and b1 using Equation (35). Unfortunately, to further estimate ρ1 we need
knowledge of the data means. When this is not available, we propose approximating the
data means by a simple average of the features, essentially pretending that the data follow a
GMM.
Concretely, our recipe for approximating the optimal δ is as follows. First, using the training
set we calculate the empirical means for the two classes, µ̃+ and µ̃−. (Ideally, this can
be done on a balanced validation set.) Then, we train standard SVM on the same set of
data and keep track of the coefficients ŵ1 and the intercept b̂1. Then, we can reasonably
approximate the optimal δ as:

δ̃⋆ ∶=
˜̀− − ˜̀+ + 2∥ŵ1∥−1

2
( ˜̀+ − ˜̀− + 2∥ŵ1∥−1

2 )+
, with ˜̀+ ∶=

ŵT
1 µ̃+ + b̂1
∥ŵ1∥2

, ˜̀− ∶= −
ŵT

1 µ̃− + b̂1
∥ŵ1∥2

. (36)

We expect this data-dependent theory-driven heuristic to perform reasonably well on data
that resemble the GMM. For example, this is confirmed by our experiments in Figures 5 and
12. More generally, we propose tuning δ with a train-validation split by creating a balanced
validation set from the original training data which would help assess balanced risk. Since
there is only a single hyperparameter we expect this approach to work well with a fairly
small validation data (without hurting the minority class sample size).

E.2 CS-SVM as post-hoc weight normalization

We need the lemma below to prove Theorem 6. But the results is interesting on its own right
as it allows us to view CS-SVM as an appropriate “post-hoc weight normalization"-approach.
Lemma 2. Let (ŵ1, b̂1) be the hard-margin SVM solution. Fix any δ > 0 in (4) and define:
ŵδ ∶= ( δ+1

2 ) ŵ1 and b̂δ ∶= ( δ+1
2 ) b̂1 + ( δ−1

2 ). Then, (ŵδ, b̂δ) is optimal in (4).

Thus, classification using (4) is equivalent to the following. First learn (ŵ1, b̂1) via standard
hard-margin SVM, and then simply predict: ŷ = sign((ŵT

1 x+ b̂1)+ δ−1
δ+1). The term

δ−1
δ+1 can be
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seen as an additive form of post-hoc weight normalization to account for class imbalances. In
the literature this post-hoc adjustment of the threshold b of standard SVM is often referred
to as boundary-movement SVM (BM-SVM) [65, 76]. Here, we have shown the equivalence
of CS-SVM to BM-SVM for a specific choice of the boundary shift. The proof of Lemma 2
presented in Appendix E.2 shows the desired using the KKT conditions of (4).

Proof. From optimality of (ŵ1, b̂1), convexity of (4) and the KKT-conditions, there exist
dual variables βi, i ∈ [n] such that:

ŵ1 = ∑
i∈[n]

yiβixi, ∑
i∈[n]

yiβi = 0, (37)

∀i ∈ [n] ∶ βi(xTi ŵ1 + b̂1) = βiyi, βi ≥ 0.

Let (ŵδ, b̂δ) defined as in the statement of the lemma and further define εi ∶= ( δ+1
2 )βi, i ∈ [n].

Then, it only takes a few algebra steps using (37) to check that the following conditions hold:

ŵδ = ∑
i∈[n]

yiεixi, ∑
i∈[n]

yiεi = 0, (38)

∀i ∈ [n] ∶ εi(xTi ŵδ + b̂δ) = εi ⋅ {
δ , if yi = +1
−1 , if yi = −1 , εi ≥ 0.

It can also be verified that (38) are the KKT conditions of the CS-SVM with parameter δ.
This proves that (ŵδ, b̂δ) is optimal in (4) as desired.

E.3 Proof of Theorem 6

As discussed in the section above the proof proceeds in two steps:
(i) First, starting from (31), we prove (32).
(ii) Second, we analytically solve (32) to derive the explicit expression for δ⋆ in (34).
Proof of (32). Fix any δ > 0. From Lemma 2,

ŵδ = (δ + 1
2

)ŵ1 and b̂δ = (δ + 1
2

)b̂1 + (δ − 1
2

). (39)

Recall from Theorem 2 that ∥ŵδ∥2
PÐ→ qδ, ∥ŵ1∥2

PÐ→ q1, b̂δ
PÐ→ bδ, b̂1

PÐ→ b1, and, for i = 1, 2:
ŵT
δ µi

∥ŵδ∥2

PÐ→ eTi VSρδ and ŵT
1 µi

∥ŵ1∥2

PÐ→ eTi VSρ1. Here, qδ, ρδ, bδ and q1, ρ1, b1 are as defined in
Theorem 2. Thus, from (39) we find that

ρδ = ρ1, qδ = (δ + 1
2

)q1 and bδ = (δ + 1
2

)b1 + (δ − 1
2

). (40)

Hence, it holds:

Q (eT1 VSρδ + bδ/qδ) = Q(eT1 VSρδ + b1/q1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=`+

+δ − 1
δ + 1

q−1
1 ).

A similar expression can be written for the conditional error of class −1. Putting these
together shows (32), as desired.
Proof of (34). Recall from (32) that we now need to solve the following constrained
minimization where for convenience we call a = `+, b = `− and c = q−1

1 :

min
δ>0

Q(a + δ − 1
δ + 1

c) +Q(b − δ − 1
δ + 1

c) .

We define a new variable x = δ−1
δ+1c. The constraint δ > 0 then writes x ≤ c. This is because

the function δ ∈ (0,∞)↦ δ−1
δ+1 is onto the interval (−1,1).
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Thus, we equivalently need to solve
min
−c<x<c

f(x) ∶= Q(a + x) +Q(b − x).

Define function f(x) = Q(a + x) +Q(b − x) for some a, b ∈ R. Direct differentiation gives
df
dx = 1√

2π (e−(b−x)2/2 − e−(a+x)2/2) . Furthermore, note that limx→±∞ f(x) = 1. With thes and
some algebra it can be checked that f(⋅) behaves as follows depending on the sign of a + b.
Denote x⋆ = (b − a)/2.

• If a + b ≥ 0, then 1 > f(x) ≥ f(x⋆) and x⋆ is the unique minimum.
• If a + b < 0, then 1 < f(x) ≤ f(x⋆) and x⋆ is the unique maximum.

Thus, we conclude with the following:

arg inf
−c<x<c

f(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x⋆ if a + b ≥ 0 and b − a < 2c,
c if a + b ≥ 0 and b − a ≥ 2c,
−c if a + b < 0.

Equivalently,

arg inf
δ>−1

Q(`+ +
δ − 1
δ + 1

q−1
1 ) +Q(`− −

δ − 1
δ + 1

q−1
1 ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

`−−`++2q−1
1

`+−`−+2q−1
1

if `+ + `− ≥ 0 and `+ − `− + 2q−1
1 > 0,

∞ if `+ + `− ≥ 0 and `+ − `− + 2q−1
1 ≤ 0,

0 if `+ + `− < 0.

This shows (34). The remaining statement of the theorem is easy to prove requiring simple
algebra manipulations.

F Asymptotic analysis of CS-SVM

F.1 Preliminaries

The main goal of this appendix is proving Theorem 2. For fixed δ > 0, let (ŵ, b̂) be the
solution to the CS-SVM in (4). (See also (48) below.) In the following sections, we will prove
the following convergence properties for the solution of the CS-SVM:

(∥ŵ∥2,
ŵTµ+

∥ŵ∥2
,
ŵTµ−

∥ŵ∥2
, b̂) PÐ→ (qδ,eT1 VSρδ,eT2 VSρδ, bδ). (41)

where the triplet (qδ,ρδ, bδ) is as defined in the theorem’s statement, that is, the unique
triplet satisfying

ηδ(qδ,ρδ, bδ) = 0 and (ρδ, bδ) ∶= arg min
∥ρ∥2≤1,b∈R

ηδ(qδ,ρ, b). (42)

In this section, we show how to use (41) to derive the asymptotic limit of the conditional
class probabilities.
Consider the class conditional R+ = P{(xT ŵ + b) < 0 ∣ y = +1}. Recall that conditioned on
y = +1, we have x = µ+ + z for z ∼ N (0, I). Thus, the class conditional can be expressed
explicitly in terms of the three summary quantities on the left hand side of (41) as follows:

R+ = P{(xT ŵ + b̂) < 0 ∣ y = +1} = P{zT ŵ +µT+ ŵ + b̂ < 0 ∣ y = +1}
= P{zT ŵ > µT+ ŵ + b̂}

= PG∼N (0,1) {G∥ŵ∥2 > µT+ ŵ + b̂} = PG∼N (0,1) {G > µT+ ŵ
∥ŵ∥2

+ b̂

∥ŵ∥2
}

= Q(µT+ ŵ
∥ŵ∥2

+ b̂

∥ŵ∥2
) .
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Then, the theorem’s statement follows directly by applying (41) in the expression above.
In order to prove the key convergence result in (41) we rely on the convex Gaussian min-max
theorem (CGMT) framework. We give some necessary background before we proceed with
the proof.

F.2 Background and related literature

Related works: Our asymptotic analysis of the CS-SVM fits in the growing recent literature
on sharp statistical performance asymptotics of convex-based estimators, e.g. [9, 18, 72, 74]
and references therin. The origins of these works trace back to the study of sharp phase
transitions in compressed sensing, e.g. see [72] for historical remarks and performance
analysis of the LASSO estimator for sparse signal recovery. That line of work led to the
development of two analysis frameworks: (a) the approximate message-passing (AMP)
framework [8, 19], and, (b) the convex Gaussian min-max theorem (CGMT) framework
[67, 73]. More recently, these powerful tools have proved very useful for the analysis of linear
classifiers [64, 49, 15, 34, 47, 39, 70, 12, 4, 69]. Theorems 2 and 7 rely on the CGMT and
contribute to this line of work. Specifically, our results are most closely related to [15] who
first studied max-margin type classifiers together with [49].

CGMT framework: Specifically, we rely on the CGMT framework. Here, we only sum-
marize the framework’s essential ideas and refer the reader to [73, 72] for more details and
precise statements. Consider the following two Gaussian processes:

Xw,u ∶= uTAw + ψ(w,u), (43a)
Yw,u ∶= ∥w∥2hTnu + ∥u∥2hTd w + ψ(w,u), (43b)

where: A ∈ Rn×d, hn ∈ Rn, hd ∈ Rd, they all have entries iid Gaussian; the sets Sw ⊂ Rd and
Su ⊂ Rn are compact; and, ψ ∶ Rd × Rn → R. For these two processes, define the following
(random) min-max optimization programs, which are refered to as the primary optimization
(PO) and the auxiliary optimization (AO) problems:

Φ(A) = min
w∈Sw

max
u∈Su

Xw,u, (44a)

φ(hn,hd) = min
w∈Sw

max
u∈Su

Yw,u. (44b)

According to the first statement of the CGMT Theorem 3 in [73] (this is only a slight
reformulation of Gordon’s original comparison inequality [21]), for any c ∈ R, it holds:

P{Φ(A) < c} ≤ 2P{φ(hn,hd) < c} . (45)

In other words, a high-probability lower bound on the AO is a high-probability lower bound
on the PO. The premise is that it is often much simpler to lower bound the AO rather than
the PO. However, the real power of the CGMT comes in its second statement, which asserts
that if the PO is convex then the AO in can be used to tightly infer properties of the original
PO, including the optimal cost and the optimal solution. More precisely, if the sets Sw and
Su are convex and bounded, and ψ is continuous convex-concave on Sw × Su, then, for any
ν ∈ R and t > 0, it holds [73]:

P{∣Φ(A) − ν∣ > t} ≤ 2P{∣φ(hn,hd) − ν∣ > t} . (46)

In words, concentration of the optimal cost of the AO problem around q∗ implies con-
centration of the optimal cost of the corresponding PO problem around the same value
q∗. Asymptotically, if we can show that φ(hn,hd)

PÐ→ q∗, then we can conclude that
Φ(A) PÐ→ q∗.
In the next section, we will show that we can indeed express the CS-SVM in (4) as a PO
in the form of (44a). Thus, the argument above will directly allow us to determine the
asymptotic limit of the optimal cost of the CS-SVM. In our case, the optimal cost equals
∥ŵ∥2; thus, this shows the first part of (41). For the other parts, we will employ the following
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“deviation argument" of the CGMT framework [73]. For arbitrary ε > 0, consider the desired
set

S ∶= {(v, c) ∣ max {∣∥v∥2 − qδ ∣ , ∣
vTµ+

∥v∥2
− eT1 VSρδ∣, , ∣

vTµ−

∥v∥2
− eT2 VSρδ∣ , ∣c − bδ ∣} ≤ ε} . (47)

Our goal towards (41) is to show that with overwhelming probability (w, b) ∈ S. For this,
consider the following constrained CS-SVM that further constraints the feasible set to the
complement Sc of S:

ΦSc(A) ∶= min
(w,b)∈Sc

∥w∥2 sub. to{wTxi + b ≥ δ , yi = +1
wTxi + b ≤ −1 , yi = −1 , i ∈ [n], (48)

As per Theorem 6.1(iii) in [72] it will suffice to find costants φ̄, φ̄S and η > 0 such that the
following three conditions hold:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i) φ̄S ≥ φ̄ + 3η
(ii) φ(hn,hd) ≤ φ̄ + η with overwhelming probability
(iii) φSc(hn,hd) ≥ φ̄S − η with overwhelming probability,

(49)

where φSc(hn,hd) is the optimal cost of the constrained AO corresponding to the constrained
PO in (48).
To prove these conditions for the AO of the CS-SVM, in the next section we follow the
principled machinery of [72] that allows simplifying the AO from a (random) optimization
over vector variables to an easier optimization over only few scalar variables, termed the
“scalarized AO".

F.3 Proof of Theorem 2

Let (ŵ, b̂) be solution pair to the CS-SVM in (4) for some fixed margin-ratio parameter
δ > 0, which we rewrite here expressing the constraints in matrix form:

min
w,b

∥w∥2 sub. to {wTxi + b ≥ δ, yi = +1
−(wTxi + b) ≥ 1, yi = −1 , i ∈ [n] = min

w,b
∥w∥2 sub. to Dy(Xw + b1n) ≥ δy,

(50)

where we have used the notation

XT = [x1 ⋯ xn] , y = [y1 ⋯ yn]T ,
Dy = diag(y) and δy = [δ1[y1 = +1] + 1[y1 = −1] ⋯ δ1[yn = +1] + 1[yn = −1]]T .

We further need to define the following one-hot-encoding of the labels:

yi = e11[yi = 1] + e21[yi = −1], and YT
n×2 = [y1 ⋯ yn] .

where recall that e1,e2 are standard basis vectors in R2.
With these, notice for later use that under our model, xi = µyi + zi = Myi + zi, zi ∼ N (0, 1).
Thus, in matrix form with Z having entries N (0,1):

X = YMT +Z. (51)

Following the CGMT strategy [73], we express (50) in a min-max form to bring it in the
form of the PO as follows:

min
w,b

max
u≤0

1
2
∥w∥2

2 + uTDyXw + b(uTDy1n) − uT δy

=min
w,b

max
u≤0

1
2
∥w∥2

2 + uTDyZw + uTDyYMTw + b(uTDy1n) − uT δy. (52)
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where in the last line we used (51) and DyDy = In. We immediately recognize that the last
optimization is in the form of a PO (cf. (44a)) and the corresponding AO (cf. (44b)) is as
follows:

min
w,b

max
u≤0

1
2
∥w∥2

2 + ∥w∥2uTDyhn + ∥Dyu∥2hTd w + uTDyYMTw + b(uTDy1n) − uT δy.

(53)
where hn ∼ N (0, In) and hd ∼ N (0, Id).
In order to apply the CGMT in [73], we need boundedness of the constraint sets. Thus,
we restrict the minimization in (53) and (52) to a bounded set ∥w∥2

2 + b2 ≤ R for (say)
R ∶= 2 (q2

δ + b2δ). This will allow us to show that the solutions ŵR, b̂R of this constrained
PO satisfy ŵR

PÐ→ qδ and b̂R
PÐ→ bδ. Thus, with overwhelming probability, ∥ŵR∥2

2 + b̂2R < R.
From this and convexity of the PO, we can argue that the minimizers ŵ, b̂ of the original
unconstrained problem satisfy the same convergence properties. Please see also Remark 4 in
App. A of [15].
For the maximization, we follow the recipe in App. A of [15] who analyzed the standard SVM.
Specifically, combining Remark 3 of [15] together with (we show this next) the property
that the AO is reduced to a convex program, it suffices to consider the unconstrained
maximization.
Thus, in what follows we consider the one-sided constrained AO in (53). Towards simplifying
this auxiliary optimization, note that Dyhn ∼ hn by rotational invariance of the Gaussian
measure. Also, ∥Dyu∥2 = ∥u∥2. Thus, we can express the AO in the following more convenient
form:

min
∥w∥2

2+b2≤R
max
u≤0

1
2
∥w∥2

2 + ∥w∥2uThn + ∥u∥2hTd w + uTDyYMTw + b(uTDy1n) − uT δy. (54)

We are now ready to proceed with simplification of the AO. First we optimize over the
direction of u and rewrite the AO as

min
∥w∥2

2+b2≤R
max
β≥0

1
2
∥w∥2

2 + β (∥( ∥w∥2hn +DyYMTw + bDy1n − δy )−∥2
− hTd w)

= min
∥w∥2

2+b2≤R

1
2
∥w∥2

2 sub. to ∥( ∥w∥2hn +DyYMTw + bDy1n − δy )−∥2
≤ hTd w.

Above, (⋅)− acts elementwise to the entries of its argument.
Now, we wish to further simplify the above by minimizing over the direction of w in the
space orthogonal to M. To see how this is possible consider the SVD MT = VSUT and
project w on the columns of U = [u1 u2] ∈ Rd×2 as follows:

w = u1(uT1 w) + u2(uT2 w) +w⊥,
where w⊥ = U⊥w, U⊥ is the orthogonal complement of U. For simplicity we will assume
here that M is full column rank, i.e. S ≻ 02×2. The argument for the case where M is rank 1
is very similar.
Let us denote uTi w ∶= µi, i = 1,2 and ∥w⊥∥2 ∶= α. In this notation, the AO becomes

min
µ2

1+µ2
2+∥w⊥∥2

2+b2≤R

1
2
(µ2

1 + µ2
2 + α2)

sub. to ∥(
√
µ2

1 + µ2
2 + α2hn +DyYVS [µ1

µ2
] + bDy1n − δy )−∥2

≤ µ1(hTd u1) + µ2(hTd u2) + hTd U⊥w⊥.
At this point, we can optimize over the direction of w⊥ which leads to

min
µ2

1+µ2
2+α2+b2≤R

1
2
(µ2

1 + µ2
2 + α2)

sub. to ∥(
√
µ2

1 + µ2
2 + α2hn +DyYVS [µ1

µ2
] + bDy1n − δy )−∥2

≤ µ1(hTd u1) + µ2(hTd u2) + α∥hTd U⊥∥2.
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As a last step in the simplification of the AO, it is convenient to introduce an additional
variable q =

√
µ2

1 + µ2
2 + α2. It then follows that the minimization above is equivalent to the

following

min
q≥

√
µ2

1+µ2
2+α2

q2+b2≤R

1
2
q2 (55)

sub. to ∥( qhn +DyYVS [µ1
µ2

] + bDy1n − δy )−∥2
≤ µ1(hTd u1) + µ2(hTd u2) + α∥hTd U⊥∥2.

In this formulation it is not hard to check that the optimization is jointly convex in its
variables (µ1, µ2, α, b, q). To see this note that: (i) the constraint q ≥

√
µ2

1 + µ2
2 + α2 ⇐⇒

q ≥ ∥ [µ1 µ2 α] ∥2 is a second-order cone constraint, and, (ii) the function

Ln(q, µ1, µ2, α, b) ∶=
1√
n
∥( qhn +DyYVS [µ1

µ2
] + bDy1n − δy )−∥2

− µ1
hTd u1√

n
− µ2

hTd u2√
n

− α∥hTd U⊥∥2√
n

(56)

is also convex since ∥(⋅)−∥2 ∶ Rn → R is itslef convex and is composed here with an affine
function.
Now, by law of large numbers, notice that for fixed (q, µ1, µ2, α, b), Ln converges in probability
to

Ln(q, µ1, µ2, α, b)
PÐ→ L(q, µ1, µ2, α, b) ∶=

√
E(qG +ETY VS [µ1

µ2
] + bY −∆Y )2

− − α
√
γ, (57)

where the random variables G,EY , Y,∆Y are as in the statement of the theorem. But
convergence of convex functions is uniform over compact sets as per Cor. II.I in [3]. Therefore,
the convergence in (57) is in fact uniform in the compact feasible set of (55).
Consider then the deterministic high-probability equivalent of (55) which is the following
convex program:

min
q≥

√
µ2

1+µ2
2+α2

q2+b2≤R
L(q,µ1,µ2,α,b)≤0

1
2
q2.

Since q is positive and the constraint q ≥
√
µ2

1 + µ2
2 + α2 must be active at the optimum, it is

convenient to rewrite this in terms of new variables ρ = [ρ1
ρ2

] ∶= [µ1/q
µ2/q] as follows:

min
q2+b2≤R,q>0,∥ρ∥2≤1

1
2
q2 (58)

sub. to E[(G +ETY VSρ + bY −∆Y

q
)2
−] ≤ (1 − ∥ρ∥2

2)γ.

Now, recall the definition of the function ηδ in the statement of the theorem and observe
that the constraint above is nothing but

ηδ(q,ρ, b) ≤ 0.
Thus, (58) becomes

min{q2 ∣ 0 ≤ q ≤
√
R and min

b2≤R−q2,∥ρ∥2≤1
ηδ(q,ρ, b) ≤ 0} . (59)

We will prove that
the function f(q) ∶= min

b,∥ρ∥2≤1
ηδ(q,ρ, b) is strictly decreasing. (60)
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Before that, let us see how this completes the proof of the theorem. Let qδ be as in the
statement of the theorem, that is such that f(qδ) = 0. Then, we have the following relations

f(q) ≤ 0 ⇒ f(q) ≤ f(qδ) ⇒ q ≥ qδ.
Thus, the minimizers in (59) are (qδ,ρδ, bδ), where we also recall that we have set R > q2

δ + b2δ .
With all these, we have shown that the AO converges in probability to q2

δ (cf. condition
(ii) in (49)). From the CGMT, the same is true for the PO. Now, we want to use the same
machinery to prove that the minimizers (ŵ, b̂) of the PO satisfy (41). To do this, as explained
in the previous section, we use the standard strategy of the CGMT framework , i.e., to show
that the PO with the additional constraint (w, b) ∈ Sc for the set S in (47) has a cost that is
strictly larger than q2

δ (i.e. the cost of the unconstrained PO). As per the CGMT this can
be done again by showing that the statement is true for the correspondingly constrained AO
(i.e. show condition (iii) in (49)). With the exact same simplifications as above, the latter
program simplifies to (55) with the additional constraints:

∣q − qδ ∣ > ε , ∣µi/q − ρδ,i∣ > ε, i = 1,2 , ∣b − bδ ∣ > ε.
Also, using the uniform convergence in (57), it suffices to study the deterministic equivalent
(59) with the additional constraints above. Now, we can show the desired (cf. condition (i)
in (49)) again by exploiting (60). This part of the argument is similar to Section C.3.5 in
[15] and we omit the details.
Proof of (60): To complete the proof, it remains to show (60). Specifically, we show that
df
dq < 0 by combining the following three observations.

First,
∂ηδ
∂q

= 2
q2E[(G +ETY VSρ + bY −∆Y

q
)− ⋅∆Y ] − 2b

q2E[(G +ETY VSρ + bY −∆Y

q
)− ⋅ Y ]

< −2b
q2E[(G +ETY VSρ + bY −∆Y

q
)− ⋅ Y ] (61)

where for the inequality we observed that (⋅)− is always non-positive, its argument has non-
zero probability measure on the negative real axis, and ∆Y are positive random variables.
Second, letting ρ⋆ ∶= ρ⋆(q) and b⋆ ∶= b⋆(q) the minimizers of ηδ(q,ρ, b), it follows from
first-order optimality conditions that

∂ηδ
∂b

= 0 ⇐⇒ E[(G +ETY VSρ∗ + b
∗ Y −∆Y

q
)− ⋅ Y ] = 0. (62)

Third, by the envelope theorem
df
dq

= ∂ηδ
∂q

∣
ρ⋆,b⋆

. (63)

The desired inequality df
dq < 0 follows directly by successively applying (63), (61) and (62).

Uniqueness of triplet (qδ,ρδ, bδ). First, we prove that the minimizers ρδ, bδ are unique.
This follows because ηδ(q,ρ, b) is jointly strictly convex in (ρ, b) for fixed q. To see this
note that the function x ↦ (x)2

− is strictly convex for x < 0 and that the random variable
G +ETY VSρ + (bY −∆Y )/q has strictly positive measure on the real line (thus, also in the
negative axis). Next, consider qδ, which was defined such that f(qδ) = 0 for the function
f(⋅) in (60). From (60) we know that f(⋅) is strictly decreasing. Thus, it suffices to prove
that the function has a zero crossing in (0,∞), which we do by proving limq→0 f(q) =∞ and
limq→∞ f(q) < 0. Specifically, we have

lim
q→0

f(q) ≥ lim
q→0

min
b∈R,∥ρ∥2≤1

E[(G +ETY VSρ + bY −∆Y

q
)2
−] − γ

≥ lim
q→0

min
b∈R,∥ρ∥2≤1

E[(G +ETY VSρ + bY −∆Y

q
)2
− 1[G +ETY VSρ + (b/q)Y ≤ 0]] − γ

≥ lim
q→0

min
b∈R,∥ρ∥2≤1

1/q2 − γ =∞,
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where in the last inequality we used the facts that x ↦ (x)2
− is decreasing and the event

{G+ETY VSρ+ (b/q)Y ≤ 0 ≤ 0} has non-zero measure for all ∥ρ∥2 ≤ 1, b ∈ R, as well as, ∆Y ≥ 1
(because δ > 1). Moreover,

lim
q→∞

f(q) = lim
1/q→0+

f(q) = lim
1/q→0+

min
b∈R,∥ρ∥2≤1

E[(G +ETY VSρ + bY −∆Y

q
)2
−] − (1 − ∥ρ∥2

2)γ

= lim
1/q→0+

min
b̃∈R,∥ρ∥2≤1

E[(G +ETY VSρ + b̃Y − ∆Y

q
)2
−] − (1 − ∥ρ∥2

2)γ

≤ min
b̃∈R,∥ρ∥2≤1

E[(G +ETY VSρ + b̃Y )2
−] − (1 − ∥ρ∥2

2)γ

≤ min
b̃∈R,∥ρ∥2≤1

(1 − ∥ρ∥2
2) ⋅ (E[((G +ETY VSρ + b̃Y )/

√
1 − ∥ρ∥2

2)
2

−
] − γ)

≤ min
b̃∈R,∥ρ∥2≤1

E[((G +ETY VSρ + b̃Y )/
√

1 − ∥ρ∥2
2)

2

−
] − γ

≤ min
b̆∈R,t∈Rr

E[(
√

1 + ∥t∥2
2G +ETY VSt + b̆Y )2

−] − γ = γ⋆ − γ < 0,

where to get the penultimate inequality we used the change of variables t = ρ/
√

1 − ∥ρ∥2
2 and

b̆ = b̃/
√

1 − ∥ρ∥2
2. Also, in the last line above, we used the definition of the phase-transition

threshold γ⋆ in Equation (64) and the theorem’s assumption that γ > γ⋆ (aka separable
regime).
We note that similar uniqueness argument was presented in [15] for the special case of
antipodal means, no intercept and δ = 1.

F.4 Antipodal means and non-isotropic data

Antipodal means. In the special case of antipodal means of equal energy µ+ = −µ− = µ
with s ∶= ∥µ∥2, the formulas of Theorem 2 simplify as we have r = 1 with S = s

√
2 and V =

[1/
√

2 , −1
√

2]T . Now, the function ηδ can be written as E[(G+ ρ̃s+ b̃
q̃
Y − 1

q̃
∆Y )2

−]−(1 − ρ̃2)γ.
The asymptotic performance of SVM for this special geometry of the means has been recently
studied in [15, 47]. We extend this to the CS-SVM classifier, to general means for the two
classes and to Σ ≠ I.
Non-isotropic data. We show how Theorem 2 for the isotropic case can still be applied in
the general case Σ ≠ I. Assume Σ ≻ 0. Write xi = yiµyi +Σ1/2hi for hi ∼ N (0, Id). Consider
whitened features zi ∶= Σ−1/2xi = yiΣ−1/2µyi + hi and let

(ŵ, b̂) = arg min
w,b

1
n
∑
i∈[n]

`(yi(xTi w + b)),

(v̂, ĉ) = arg min
v,c

1
n
∑
i∈[n]

`(yi(zTi v + c)).

Clearly, ŵ = Σ−1/2v̂ and b̂ = ĉ. Thus,

R+ ((ŵ, b̂)) = P{(xT ŵ + b̂) < 0 ∣ y = +1} = P{µT+ ŵ + ŵTΣ1/2h + b̂ < 0} = Q( µT+ ŵ + b̂
∥Σ1/2ŵ∥2

)

= Q(µT+Σ−1/2v̂ + ĉ
∥v̂∥2

) = P{(zT v̂ + ĉ) < 0 ∣ y = +1}

=R+ ((v̂, ĉ))
Similar derivation holds for R−. Thus, we can just apply Theorem 2 for S,V given by the
eigendecomposition of the new Grammian MTΣ−1M.

F.5 Phase transition of CS-SVM

Here, we present a formula for the threshold γ⋆ such that the CS-SVM of (4) is feasible
(resp., infeasible) with overwhelming probability provided that γ > γ⋆ (resp., γ < γ⋆). The
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Figure 17: Visualizing the Gaussian mixture model of Section 4 with K = 2 imbalanced groups in the
two-dimensional space (d = 2). Different colors (resp., markers) correspond to different class (resp.,
group) membership. Examples in the minority group correspond to cross markers (×). The means of
the majority / minority groups are depicted in white / green markers. The purple line illustrates the
group-sensitive SVM (GS-SVM) classifier that forces larger margin to the minority group examples in
relation to standard SVM in green.

first observation is that the phase-transition threshold γ⋆ of feasibility of the CS-SVM
is the same as the threshold of feasibility of the standard SVM for the same model; see
Section D.1.3. Then, the desired result follows [35] who very recently established separability
phase-transitions for the more general multiclass Gaussian mixture model
Proposition 1 ([35]). Consider the same data model and notation as in Theorem 2 and
define the event

Esep,n ∶= {∃(w, b) ∈ Rd × R s.t. yi(wTxi + b) ≥ 1, ∀i ∈ [n]} .

Define threshold γ⋆ ∶= γ⋆(V,S, π) as follows:

γ⋆ ∶= min
t∈Rr,b∈R

E [(
√

1 + ∥t∥2
2G +ETY VSt − bY )

2

−
] . (64)

Then, the following hold:
γ > γ⋆ ⇒ lim

n→∞
P(Esep,n) = 1 and γ < γ⋆ ⇒ lim

n→∞
P(Esep,n) = 0.

In words, the data are linearly separable (with overwhelming probability) if and only if γ > γ⋆.
Furthermore, if this condition holds, then CS-SVM is feasible (with overwhelming probability)
for any value of δ > 0.

G Asymptotic analysis of GS-SVM

In Theorem 2 we derived the asymptotic generalization performance of CS-SVM under the
Gaussian mixture data model. Here, we state the counterpart result for GS-SVM with an
appropriate Gaussian mixture data model with group imbalances, which we repeat here for
convenience.
Data model. We study a binary Gaussian-mixture generative model (GMM) for the
data distribution D. For the label y ∈ {±1} let π ∶= P{y = +1}. Group membership is
decided conditionally on the label such that ∀j ∈ [K] ∶ P{g = j∣y = ±1} = p±,j , with
∑j∈[K] p+,j = ∑j∈[K] p−,j = 1. Finally, the feature conditional given label y and group g

is a multivariate Gaussian of mean µy,g ∈ Rd and covariance Σy,g, that is, x∣(y, g) ∼
N (µy,g,Σy,g). We focus on two groups K = 2 with p+,1 = p−,1 = p < 1− p = p+,2 = p−,2, j = 1, 2
and x ∣ (y, g) ∼ N (yµg, σgId), for σ2

1 , σ
2
2 the noise variances of the minority and the majority

groups, respectively. As before, let M denote the matrix of means (that is M = [µ+ µ−]
and M = [µ1 µ2], respectively) and consider the eigen-decomposition of its Gramian:
MTM = VS2VT , S ≻ 0r×r,V ∈ R2×r, r ∈ {1,2}, with S an r × r diagonal positive-definite
matrix and V an orthonormal matrix obeying VTV = Ir. We study linear classifiers with
h(x) = x.
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Learning regime. Again, as in Theorem 2, we focus on a regime where training data are
linearly separable. Specifically, there exists threshold γ̃⋆ ∶= γ̃⋆(V,S, π, p) ≤ 1/2, such that
GMM data with groups are linearly separable with probability approaching one provided
that γ > γ̃⋆ (see Section G.2). We assume γ > γ̃⋆, so that GS-SVM is feasible with probability
approaching 1.
Although similar in nature, the result below differs to Theorem 2 since now each class itself
is a Gaussian mixture.
Theorem 7 (Sharp asymptotics of GS-SVM). Consider the GMM with feature distribution
and priors as specified in the ‘Data model’ above. Fix δ > 0 (corresponding to group
VS-loss with ∆y,g = ∆g, g = 1,2 such that δ = ∆2/∆1). Define G,Y,S, ∆̃S ,ΣS ∈ R, and
ẼS ∈ R2×1 as follows: G ∼ N (0,1); Y is a symmetric Bernoulli with P{Y = +1} = π; S
takes values 1 or 2 with probabilities p and 1 − p, respectively; ẼS = e11[S = 1] + e21[S = 2];
∆̃S = δ ⋅ 1[S = 1] + 1 ⋅ 1[S = 2] and ΣS = σ11[S = 1] + σ21[S = 2]. With these define function
η̃δ ∶ R≥0 × Sr × R→ R as

η̃δ(q,ρ, b) ∶= E(G +Σ−1
S Ẽ

T
SVSρ + bΣ

−1
S Y −Σ−1

S ∆̃S

q
)2
− − (1 − ∥ρ∥2

2)γ.

Let (q̃δ, ρ̃δ, b̃δ) be the unique triplet satisfying (42) but with ηδ replaced with the function η̃δ
above. Then, in the limit of n, d → ∞ with d/n = γ > γ̃⋆ it holds for i = 1,2 that R±,i

PÐ→
Q(eTi VSρ̃δ ± b̃δ/q̃δ). In particular, Rdeo

PÐ→ Q(eT1 VSρ̃δ + b̃δ/q̃δ) −Q(eT2 VSρ̃δ + b̃δ/q̃δ).

G.1 Proof of Theorem 7

The proof of Theorem 7 also relies on the CGMT framework and is very similar to the proof
of Theorem 2. To avoid repetitions, we only present the part that is different. As we will
show the PO is slightly different as now we are dealing with a classification between mixtures
of mixtures of Gaussians. We will derive the new AO and will simplify it to a point from
where the same steps as in Section F.3 can be followed mutatis mutandis.

Let (ŵ, b̂) be solution pair to the GS-SVM for some fixed parameter δ > 0, which we rewrite
here expressing the constraints in matrix form:

min
w,b

∥w∥2 sub. to {yi(w
Txi + b) ≥ δ, gi = 1

yi(wTxi + b) ≥ 1, gi = 2 , i ∈ [n] = min
w,b

∥w∥2 sub. to Dy(Xw + b1n) ≥ δg,

(65)
where we have used the notation

XT = [x1 ⋯ xn] , y = [y1 ⋯ yn]T ,
Dy = diag(y) and δg = [δ1[g1 = 1] + 1[g1 = 2] ⋯ δ1[gn = 1] + 1[gn = 2]]T .

We further need to define the following one-hot-encoding for group membership:
gi = e11[gi = 1] + e21[gi = 2], and GT

n×2 = [g1 ⋯ gn] .
where recall that e1,e2 are standard basis vectors in R2. Finally, let

Dσ = diag( [σg1 ⋯ σgn] ).
With these, notice for later use that under our model, xi = yiµgi +σgizi = yiMgi +σgizi, zi ∼
N (0,1). Thus, in matrix form with Z having entries N (0,1):

X = DyGMT +DσZ. (66)

As usual, we express the GS-SVM program in a min-max form to bring it in the form of the
PO as follows:

min
w,b

max
u≤0

1
2
∥w∥2

2 + uTDyXw + b(uTDy1n) − uT δg

=min
w,b

max
u≤0

1
2
∥w∥2

2 + uTDyDσZw + uTGMTw + b(uTDy1n) − uT δg. (67)
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where in the last line we used (66) and DyDy = In. We immediately recognize that the last
optimization is in the form of a PO and the corresponding AO is as follows:

min
w,b

max
u≤0

1
2
∥w∥2

2 + ∥w∥2uTDyDσhn + ∥DyDσu∥2hTd w + uTGMTw + b(uTDy1n) − uT δg.

(68)
where hn ∼ N (0, In) and hd ∼ N (0, Id).
As in Section F.3 we consider the one-sided constrained AO in (68). Towards simplifying
this auxiliary optimization, note that Dyhn ∼ hn by rotational invariance of the Gaussian
measure. Also, ∥DyDσu∥2 = ∥Dσu∥2. Thus, we can express the AO in the following more
convenient form:

min
∥w∥2

2+b2≤R
max
u≤0

1
2
∥w∥2

2 + ∥w∥2uTDσhn + ∥Dσu∥2hTd w + uTGMTw + b(uTDy1n) − uT δg

= min
∥w∥2

2+b2≤R
max
v≤0

1
2
∥w∥2

2 + ∥w∥2vThn + ∥v∥2hTd w + vTD−1
σ GMTw + b(vTD−1

σ Dy1n) − vTD−1
σ δg,

where in the second line we performed the change of variables v↔Dσu and used positivity
of the diagonal entries of Dσ to find that u ≤ 0 ⇐⇒ v ≤ 0.
Notice that the optimization in the last line above is very similar to the AO (54) in Section
F.3. Following analogous steps, omitted here for brevity, we obtain the following scalarized
AO:

min
q≥

√
µ2

1+µ2
2+α2

q2+b2≤R

1
2
q2 (69)

sub. to 1√
n
∥( qhn +D−1

σ GVS [µ1
µ2

] + bD−1
σ Dy1n −D−1

σ δg )−∥2

− µ1
hTd u1√

n
− µ2

hTd u2√
n

− α∥hTd U⊥∥2√
n

≤ 0.

where as in Section F.3 we have decomposed the matrix of means M = USVT and µ1, µ2, α
above represent uT1 w, uT1 w and ∥w⊥∥2. Now, by law of large numbers, notice that for fixed
(q, µ1, µ2, α, b), the functional in the constraint above converges in probability to

L̄(q, µ1, µ2, α, b) ∶=
√
E(qG +Σ−1

S Ẽ
T
SVS [µ1

µ2
] + bΣ−1

S Y −Σ−1
S ∆̃S)

2
− − α

√
γ, (70)

where the random variables G, ẼS , Y, ∆̃S and ΣS are as in the statement of the theorem.
Thus, the deterministic equivalent (high-dimensional limit) of the AO expressed in variables
ρ = [ρ1

ρ2
] ∶= [µ1/q

µ2/q] becomes (cf. Eqn. (58)):

min
q2+b2≤R,q>0,∥ρ∥2≤1

1
2
q2 (71)

sub. to E(G +Σ−1
S Ẽ

T
SVSρ + bΣ−1

S Y −Σ−1
S ∆̃S

q
)2
− ≤ (1 − ∥ρ∥2

2)γ.

Now, recall the definition of the function η̃δ in the statement of the theorem and observe
that the constraint above is nothing but

η̃δ(q,ρ, b) ≤ 0.
Thus, (71) becomes

min{q2 ∣ 0 ≤ q ≤
√
R and min

b2≤R−q2,∥ρ∥2≤1
η̃δ(q,ρ, b) ≤ 0} . (72)

The remaining steps of the proof are very similar to those in Section F.3 and are omitted.
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G.2 Phase transition of GS-SVM

The phase-transition threshold γ̃⋆ of feasibility of the GS-SVM is the same as the threshold
of feasibility of the standard SVM for the same model (see Section D.1.2). But, the feasibility
threshold of SVM under the group GMM with K = 2 groups is different from that of Section
F.5 for K = 1, since now each class is itself a mixture of Gaussians. We derive the desired
result from [35], who recently studied the separability question for the more general case of
a multiclass mixture of mixtures of Gaussians.
Proposition 2. Consider the same data model and notation as in Theorem 7 and consider
the event

Esep,n ∶= {∃(w, b) ∈ Rd × R s.t. yi(wTxi + b) ≥ 1, ∀i ∈ [n]} .
Define threshold γ⋆ ∶= γ⋆(V,S, π) as follows:

γ̃⋆ ∶= min
t∈Rr,b∈R

E [(
√

1 + ∥t∥2
2G + ẼTSVSt − bY )

2

−
] . (73)

Then, the following hold:

γ > γ̃⋆ ⇒ lim
n→∞

P(Esep,n) = 1 and γ < γ̃⋆ ⇒ lim
n→∞

P(Esep,n) = 0.

In words, the data are linearly separable with overwhelming probability if and only if γ > γ̃⋆.
Furthermore, if this condition holds, then GS-SVM is feasible with overwhelming probability
for any value of δ > 0.
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