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Supplement to “A Primal-Dual Framework for Transformers and
Neural Networks”

A ADDITIONAL DETAILS ON THE EXPERIMENTS

This section provides datasets, models, and training details for experiments in Section 3. As mentioned
in Section 3, for Attention-BN models, recentering queries and keys alone is sufficient for accuracy
improvement, and we weight the mean µ in Eqn 22 with a constant �. Hence Eqn 22 is simplified to:

hi =
NX

j=1

softmax
⇣
(qi � �µ)>(kj � �µ)/

p
D

⌘
vj . (26)

In our experiments, we consider the constant � in Attention-BN/BN+SH and the different downsam-
pling scales in Attention-SH/SH+BN as hyper-parameters to finetune. All of our experiments are
conducted on a server with 4 NVIDIA A100 GPUs.

A.1 UEA TIME SERIES CLASSIFICATION

Datasets and metrics The benchmark (Bagnall et al., 2018) consists of 30 datasets. Following (Wu
et al., 2022), we choose 10 datasets, which vary in input sequence lengths, the number of classes,
and dimensionality, to evaluate our models on temporal sequences. We report the test accuracy as
evaluation for the benchmark.

Models and baselines The experiment setups and configurations for the softmax/linear baseline
and our models are the same as in (Wu et al., 2022) 1 (for the PEMS-SF, SelfRegulationSCP2,
UWaveGestureLibrary datasets) and (Zerveas et al., 2021) 2 (for the other tasks). In all models, the
number of heads is 8, whereas the model dimension and number of transformer layers are varied. For
Attention-SH/SH+BN, we downsample keys and values by the factor of 2, after every two successive
heads.

A.2 LONG RANGE ARENA BENCHMARK

Datasets and metrics We adopt the tasks: Listops (Nangia & Bowman, 2018), byte-level IMDb
reviews text classification (Maas et al., 2011), byte-level document retrieval (Radev et al., 2013),
CIFAR-10 image classification (Krizhevsky et al., 2009) and the Pathfinder challenge (Linsley et al.,
2018) in the LRA benchmark for our experiments. They consist of long sequences of length 2K,
4K, 4K, 1K, and 1K respectively. The evaluation protocol and metric are the same as in (Tay et al.,
2021).

Models and baselines All our models and softmax/linear baselines follow the same architecture
and configuration as in (Zhu et al., 2021)3. Each model consists of two layers and 64 embedding
dimensions. While one head at each layer remains intact, the keys and values of the other heads are
halved in our Attention-SH/SH+BN experiments.

A.3 IMAGE CLASSIFICATION ON IMAGENET

Datasets and metrics The ImageNet dataset (Deng et al., 2009; Russakovsky et al., 2015) consists
of 1.28M training images and 50K validation images. The task is to classify 1000 categories. Top-1
and top-5 accuracies are reported.

Models and baselines Our baseline is DeiT-tiny model (Touvron et al., 2021) with 12
transformer layers, 4 attention heads per layer, and the model dimension of 192. For model setting
and setting and configuration, we follow (Touvron et al., 2021)4. The downsampling scales in
Attention-SH/BN+SH models are [1, 1, 2, 4] for 4 heads at each layer, respectively.

1Implementation available at https://github.com/thuml/Flowformer.
2Implementation available at https://github.com/gzerveas/mvts transformer.
3Implementation available at https://github.com/NVIDIA/transformer-ls.
4Implementation available at https://github.com/facebookresearch/deit.
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Table 5: Test Accuracy (%) of the Linear Attention-BN/SH/BN+SH vs. the baseline Linear Atten-
tion (Katharopoulos et al., 2020) on the UEA Time Series Classification Archive benchmark (Bagnall et al.,
2018). Our proposed attentions outperform the baseline.

Dataset/Model Baseline Linear Linear Attention-BN Linear Attention-SH Linear Attention-BN+SH

ETHANOLCONCENTRATION 33.84 ± 0.66 34.98 ± 0.74 34.76 ± 0.69 34.35 ± 0.70
FACEDETECTION 69.17 ± 0.32 69.22 ± 0.17 69.38 ± 0.17 69.12 ± 0.19
HANDWRITING 32.87 ± 0.27 32.86 ± 0.49 32.82 ± 0.12 32.98 ± 0.36
HEARTBEAT 75.61 ± 0.73 75.78 ± 0.71 74.96 ± 0.62 75.94 ± 0.68
JAPANESEVOWELS 99.37 ± 0.16 99.60 ± 0.19 99.28 ± 0.41 99.33 ± 0.19
PEMS-SF 83.43 ± 0.88 85.74 ± 0.67 86.51 ± 0.88 84.97 ± 0.76
SELFREGULATIONSCP1 90.90 ± 0.40 91.81 ± 0.69 90.76 ± 0.59 91.92 ± 0.60
SELFREGULATIONSCP2 55.18 ± 0.89 56.11 ± 0.94 54.44 ± 0.88 55.74 ± 0.92
SPOKENARABICDIGITS 99.07 ± 0.10 99.01 ± 0.07 99.03 ± 0.18 98.91 ± 0.17
UWAVEGESTURELIBRARY 85.63 ± 0.81 86.04 ± 0.86 84.89 ± 1.00 85.78 ± 0.75

AVERAGE ACCURACY 72.51 ± 0.34 73.12 ± 0.20 72.68 ± 0.40 72.90 ± 0.23

Table 6: Top-1 and top-5 accuracy (%) of the Attention-Conv2D Deit vs. the baseline Deit with the softmax
attention on the ImageNet image classification task. The Attention-Conv2D Deit significantly outperforms the
baseline in both top-1 and top-5 accuracy.

Metric/Model Baseline Softmax Deit Attention-Conv2D Deit

Top-1 Acc (%) 72.23 ± 0.23 73.18 ± 0.24
Top-5 Acc (%) 91.13 ± 0.15 91.52 ± 0.13

Table 7: Test Accuracy (%) of the Attention-Conv1D vs. the baseline softmax attention on 5 tasks of the LRA
benchmark (Tay et al., 2021). Our models outperform the softmax baseline.

Dataset/Model Baseline Softmax Attention-Conv1D

LISTOPS 36.76 ± 0.42 37.20 ± 0.05
TEXT 64.90 ± 0.07 64.92 ± 0.44
RETRIEVAL 79.68 ± 0.52 80.75 ± 0.15
IMAGE 39.23 ± 1.35 39.18 ± 0.59
PATHFINDER 72.72 ± 0.75 73.01 ± 0.24
AVERAGE ACCURACY 58.66 ± 0.26 59.01 ± 0.20

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 UEA TIME SERIES CLASSIFICATION USING THE LINEAR ATTENTION-BN/SH/BN+SH

Table 5 summarizes the comparison between the Linear Attention-BN/SH/BN+SH and the baseline
Linear Attention on the UEA Time Series Classification task. The Linear Attention-BN/SH/BN+SH
achieve better accuracy than the Linear Attention baseline while being more efficient.

B.2 CONVOLUTION ATTENTION

Table 6 demonstrates the advantage of Attention-Conv2D (Def. 3, Section G) over softmax Deit on
the ImageNet image classification task. Furthemore, as shown in Table 7, the Attention-Conv1D
(Def. 4, Section G) outperforms the baseline softmax attention on 5 tasks of the LRA benchmark (Tay
et al., 2021).

B.3 ADDITIONAL EXPERIMENTS ON THE UEA TIMESERIES CLASSIFICATION BENCHMARK
AND THE UCR TIME SERIES REGRESSION ARCHIVE

In this section, we further demonstrate the advantage of our Attention-BN/SH/BN+SH on additional
15 tasks in the UEA Time Series Classification benchmark and on 6 tasks in the UCR Time Series
Regression benchmark. The results in Table 8 and 9 show that our Attention-BN and Attention-
SH+BN outperform the baseline softmax transformers significantly on both of these benchmarks,
while the attention-SH has comparable performance with the baseline but being more effiicient.

B.4 UEA TIME SERIES CLASSIFICATION USING THE SPARSE ATTENTION-BN/SH/BN+SH

Table 10 summarizes the comparison between the Sparse Attention-BN/SH/BN+SH and the Sparse
Attention baseline on a subset of the UEA Time Series Classification benchmark. Our models
when combined with Sparse Attention achieve significantly better accuracy than the Sparse Atten-
tion baseline while the Sparse Attention-SH/BN+SH are more efficient (See Fig. 3 and Fig. 4 in
Appendix C).
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Table 8: Root mean square error (RMSE) of the Attention-BN/SH/BN+SH vs. the baseline softmax attention
on 6 UCR Time Series Regression tasks (Tan et al., 2020). Smaller RMSE indicates better performance.

Dataset/Model Baseline Softmax Attention-BN Attention-SH Attention-BN+SH

APPLIANCESENERGY 3.44 ± 0.06 3.38 ± 0.34 3.39 ± 0.02 3.37 ± 0.23
BENZENECONCENTRATION 0.91 ± 0.03 0.89 ± 0.17 1.00 ± 0.09 0.90 ± 0.08
BEIJINGPM10 92.31 ± 1.06 92.00 ± 0.89 92.82 ± 0.92 92.40 ± 0.85
BEIJINGPM25 59.73 ± 1.21 59.55 ± 0.92 59.66 ± 0.88 59.24 ± 1.22
LIVEFUELMOISTURE 43.08 ± 0.17 43.01 ± 0.50 43.65 ± 0.09 43.79 ± 0.49
IEEEPPG 32.12 ± 1.25 30.69 ± 0.64 31.38 ± 1.02 30.73 ± 1.20

AVERAGE RMSE 38.60 ± 0.67 38.25 ± 0.30 38.65 ± 0.27 38.40 ± 0.51

Table 9: Accuracy (%) of the Attention-BN/SH/BN+SH vs. the baseline softmax attention on other 15 UEA
Time Series classification tasks (Bagnall et al., 2018).

Dataset/Model Baseline Softmax Attention-BN Attention-SH Attention-BN+SH

ARTICULARYWORDRECOGNITION 97.44 ± 0.42 98.22 ± 0.87 97.22 ± 0.95 98.44 ± 0.41
BASICMOTIONS 98.75 ± 1.25 99.38 ± 1.08 99.37 ± 1.06 99.78 ± 0.51
EPILEPSY 93.71 ± 1.23 92.27 ± 0.74 89.13 ± 1.07 92.02 ± 1.02
ERING 95.18 ± 0.52 95.18 ± 0.37 94.72 ± 0.66 95.46 ± 0.40
FINGERMOVEMENTS 59.67 ± 0.47 63.00 ± 0.41 61.33 ± 0.70 63.66 ± 0.64
LIBRAS 85.00 ± 0.45 85.37 ± 0.69 83.88 ± 0.45 85.00 ± 0.78
NATOPS 95.00 ± 0.45 95.37 ± 0.26 96.29 ± 0.69 95.74 ± 0.94
RACKETSPORTS 87.28 ± 0.82 87.93 ± 0.31 88.16 ± 0.54 89.03 ± 0.64
ATRIALFIBRILLATION 33.33 ± 2.71 41.67 ± 2.88 35.00 ± 2.89 41.68 ± 2.80
CRICKET 94.90 ± 0.65 95.37 ± 0.65 93.98 ± 0.65 96.29 ± 0.65
STANDWALKJUMP 50.00 ± 2.33 55.55 ± 2.14 50.01 ± 2.34 55.00 ± 2.08
HANDMOVEMENTDIRECTION 63.96 ± 2.30 64.41 ± 2.76 61.71 ± 2.64 66.66 ± 2.54
LSST 58.54 ± 0.54 57.05 ± 0.26 60.34 ± 0.73 59.91 ± 0.34
DUCKDUCKGEESE 64.50 ± 1.96 65.00 ± 1.73 64.50 ± 1.95 65.50 ± 1.66
MOTORIMAGERY 58.66 ± 1.25 60.67 ± 1.69 59.00 ± 1.41 62.00 ± 0.81
AVERAGE ACCURACY 75.73 ± 0.51 77.10 ± 0.22 75.61 ± 0.18 77.74 ± 0.24

Table 10: Test Accuracy (%) of the Sparse Attention-BN/SH/BN+SH vs. the baseline Sparse Attention (Child
et al., 2019) on a subset of the UEA Time Series Classification Archive benchmark (Bagnall et al., 2018). Our
proposed attentions outperform the baseline.

Dataset/Model Baseline Sparse Sparse Attention-BN Sparse Attention-SH Sparse Attention-BN+SH

ETHANOLCONCENTRATION 33.33 ± 1.23 33.33 ± 0.78 32.50 ± 0.57 33.46 ± 0.71
FACEDETECTION 68.58 ± 0.95 68.65 ± 0.44 68.67 ± 0.78 68.44 ± 0.51
HANDWRITING 31.08 ± 0.38 31.79 ± 0.44 32.75 ± 0.39 33.37 ± 0.61
HEARTBEAT 74.95 ± 0.81 75.98 ± 0.72 74.96 ± 0.80 76.09 ± 0.75
JAPANESEVOWELS 99.45 ± 0.10 99.54 ± 0.12 99.18 ± 0.14 99.36 ± 0.34
PEMS-SF 82.08 ± 0.63 83.81 ± 0.47 82.66 ± 0.63 84.01 ± 0.89
SELFREGULATIONSCP1 91.24 ± 0.85 91.69 ± 0.42 91.47 ± 0.84 91.70 ± 0.16
SELFREGULATIONSCP2 55.18 ± 0.69 58.52 ± 0.71 55.92 ± 0.94 56.67 ± 0.68
SPOKENARABICDIGITS 99.04 ± 0.06 99.10 ± 0.15 99.06 ± 0.13 99.15 ± 0.09
UWAVEGESTURELIBRARY 84.90 ± 0.39 85.73 ± 0.38 85.31 ± 0.88 86.56 ± 0.25
AVERAGE ACCURACY 71.98 ± 0.38 72.81 ± 0.15 72.25 ± 0.24 72.88 ± 0.35

Table 11: Test Accuracy (%) of the Attention-BN/BN+SH with � is learnable or set as a hyperparameter on the
retrieval task (Tay et al., 2021).

Model Retrieval

Attention-BN (learn �) 80.77 ± 0.23
Attention-BN+SH (learn �) 81.31 ± 0.25
Attention-BN (� as a hyperparameter) 81.05 ± 0.08
Attention-BN+SH (� as a hyperparameter) 81.20 ± 0.11

B.5 ATTENTION-BN/BN+SH WITH LEARNABLE �

We experiment with our Attention-BN/BN+SH with learnable � on the retrieval task. Table 11 shows
that learning � does not improve much over setting � to be a hyperparameter.

C ADDITIONAL RESULTS ON EFFICIENCY ANALYSIS

This section provides more efficiency analysis on our models.
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Figure 2: (Left) FLOPS ratios and (Right) memory usage ratios between the Attention-SH and the softmax
attention baseline trained on the LRA retrieval task for different model dimensions and sequence lengths.

Figure 3: (Left) FLOPS ratios and (Right) memory usage ratios between the Sparse Attention-BN+SH and
the Sparse Attention baseline trained on the LRA retrieval task for different model dimensions and sequence
lengths. When using our models, the reduction in computation and memory improves with sequence length.
When scaling up the model with greater model dimension, our methods remain significantly more efficient than
the baseline.

Figure 4: (Left) FLOPS ratios and (Right) memory usage ratios between the Sparse Attention-SH and the
Sparse Attention baseline trained on the LRA retrieval task for different model dimensions and sequence lengths.
When using our models, the reduction in computation and memory improves with sequence length. When
scaling up the model with greater model dimension, our methods remain significantly more efficient than the
baseline.

Attention-SH. Fig.2 shows the efficiency benefits of our Attention-SH when trained on the retrieval
task. Same as in the case of Attention-SH+BN, the efficiency benefits of our Attention-SH over the
baseline Softmax attention grows when N and D increase.

Sparse Attention-SH/BN+SH. Fig.3 and Fig.4 show that the efficiency advantages of our Sparse
Attention-BN+SH and Sparse Attention-SH, respectively, increase as the model dimension D and
sequence length N grow. All models are trained on the LRA retrieval task. In addition to the efficiency
advantage, the Sparse Attention-BN+SH also significantly outperforms the Sparse Attention baseline
in terms of accuracy in this task (79.86% vs. 78.20%) while the Sparse Attention-SH achieves a
comparable result to the baseline. More accuracy advantages of the Sparse Attention-BN/SH/BN+SH
over the Sparse Attention baseline are given in Table 10.

D DERIVING SOFTMAX ATTENTION.
Choosing the appropriate h(x) and �(x) allows us to derive the popular softmax attention given in
Eqn. 1 and 2. In particular, if we choose h(x) :=

PN
j �(x)T�(kj), Eqn. 10 becomes

f(x) =
NX

j=1

�(x)>�(kj)PN
j0 �(x)

T�(kj0)
vj + b =

PN
j=1 �(x)

>�(kj)vj
PN

j0 �(x)
T�(kj0)

+ b. (27)
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then Eqn. 27 becomes
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Let x = qi, b = 0 and relax the boundness constraint of vj in Remark 1. Eqn. 30 becomes Eqn. 2 of
the softmax attention (Vaswani et al., 2017).

E BATCH NORMALIZED ATTENTION: DERIVATION OF EQN. 24
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F ATTENTION WITH THE RESIDUAL CONNECTION AND MATRIX
PROJECTIONS

In this supplement, we first discuss attention with the residual connection and matrix projections in
Appendix F.

Suppose we are given a training data {(x1,y1), . . . , (xN ,yN )} ⇢ X ⇥ Y , where X = RDx and
Y = RDv . Here, x1, . . . ,xN are the training inputsd, and y1, . . . ,yN are the training targets. In
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order to derive the attention with the residual connection and query, key, and value matrix projections,
we define the function f as follows

y = f(x) := W
�(Wprojx)

h(x)
+ x+ b, (32)

where x 2 X = RDx , Wproj = [wproj
1 , . . . ,wproj

D ]> 2 RD⇥Dx , �(·) = [�1(·), . . . ,�D�
(·)] : RD !

RD� , W = [w1, . . . ,wDv
]> 2 RDv⇥D� , b 2 RDv , and h(x) is a vector-scalar function. We fit

the function f to the training data {(x1,y1), . . . , (xN ,yN )} with an L2 regularization on W and
W

proj by solving the following convex optimization problem:
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The Lagrangian of the optimization problem 33 is given by
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Similar to the derivation in Section 2.1, the partial derivatives of L1 with respect to the primal variable
wd, d = 1, . . . , Dv , have to vanish for optimality, which leads to
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Note that here we only find the form of the optimal solution for W = [w1, . . . ,wDv

]>. The optimal
value of Wproj can then be found by optimization algorithm such as the (stochastic) gradient descent
when training the transformer.
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Residual connection
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Here, the support vector expansion of f already includes a residual connection. The softmax attention
can then be derived by selecting h(x) :=

PN
j �(Wprojx)T�(Wprojxj) and choosing � as in

Eqn. 28 in Section 2.1. Note that in Eqn. 36, {xj}Nj=1 and x are the training samples and test sample,
respectively. In order to derive the key, query, and value matrix projections in attention, we can then
relax Eqn. 36 by letting W

projxj = WKxj , Wprojx = WQx, vj = WV xj and choosing the test
sample x among the training samples {xj}Nj=1.
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Remark 6 Here, for self-attention, we choose the test sample x among the training samples {xj}Nj=1
to compute the attention score of a token to other tokens in the same sequence. For cross-attention
where a token in a sequence attends to tokens in another sequence, this constraint can be removed.

G 2D-CONVOLUTION ATTENTION

In this section, we discuss attention with 2D-convolution. Suppose we are given a training
data {(xtrain

1 ,ytrain
1 ), . . . , (xtrain

NH⇥NW
,ytrain

NH⇥NW
)} ⇢ X ⇥ Y , where X = RDx and Y = RDv .

Here, xtrain
1 , . . . ,xtrain

NH⇥NW
are the training inputs, and ytrain

1 , . . . ,ytrain
NH⇥NW

are the training tar-
gets. Let Xtrain 2 RNH⇥NW⇥Dx be the 3D-tensor of training inputs, where X

train(h,w, d) =
xtrain
NW⇥(h�1)+w(d). Given a new set of inputs {x1, . . . ,xNH⇥NW

} ⇢ X and the corresponding
3D-tensor X 2 RNH⇥NW⇥Dx of these inputs, where X(h,w, d) = xNW⇥(h�1)+w(d). We consider
the function f applying on the 3D-tensor X and taking the following form

f(xi) = W
�(Flatten(Conv2D(X, s))(i))

h(xi)
, i = 1, . . . , NH ⇥NW (37)

where Conv2D is the depth-wise 2D-convolution (Howard et al., 2017), with the kernel size s⇥ s

and identical kernel channels, applied on the input tensor X. Here, the last dimension of X,
i.e., Dx, is the depth. Also, �(x) = [�1(x), . . . ,�D�

(x)] 2 RD� , W = [w1, . . . ,wDv
]> 2

RDv⇥D� , b 2 RDv , and h is a vector-scalar function. We fit the function f to the training data
{(xtrain

1 ,ytrain
1 ), . . . , (xtrain

NH⇥NW
,ytrain

NH⇥NW
)} with an L2 regularization on W, i.e., a ridge regres-

sion, by solving the following convex optimization problem:

minimize
W

⇠j ,⇠̃j ,j=1,...,NH⇥NW

1

2
kWk2F + C

NH⇥NWX

j=1

DvX

d=1

⇣
⇠j(d) + ⇠̃j(d)

⌘
=

1

2

DvX

d=1

kwdk2 + C

NH⇥NWX

j=1

DvX

d=1

⇣
⇠j(d) + ⇠̃j(d)

⌘

subject to

8
>>>><

>>>>:

ytrain
j (d)�w>

d
�(Flatten(Conv2D(Xtrain

, s))(j))
h(xtrain

j )
� b(d)  ✏+ ⇠j(d)

w>
d

�(Flatten(Conv2D(Xtrain
, s))(j))

h(xtrain
j )

+ b(d)� ytrain
j (d)  ✏+ ⇠̃j(d)

⇠j(d), ⇠̃j(d) � 0, j = 1, . . . , NH ⇥NW , d = 1, . . . , Dv.

(38)

The Lagrangian of the optimization problem 38 is given by

L :=
1

2

DvX

d=1

kwdk2 + C

NH⇥NWX

j=1

DvX

d=1

⇣
⇠j(d) + ⇠̃j(d)

⌘
�

NH⇥NWX

j=1

DvX

d=1

⇣
⌘j(d)⇠j(d) + ⌘̃j(d)⇠̃j(d)

⌘

�
NH⇥NWX

j=1

DvX

d=1

↵j(d)

 
✏+ ⇠j(d)� ytrain

j (d) +w>
d

�(Flatten(Conv2D(Xtrain
, s))(j))

h(xtrain
j )

+ b(d)

!

�
NH⇥NWX

j=1

DvX

d=1

↵̃j(d)

 
✏+ ⇠̃j(d) + ytrain

j (d)�w>
d

�(Flatten(Conv2D(Xtrain
, s))(j))

h(xtrain
j )

� b(d)

!
,

(39)
Similar to the derivation in Section 2.1 in the main text, the partial derivatives of L with respect to
the primal variable wd, d = 1, . . . , Dv , have to vanish for optimality, which leads to

@wd
L = wd �

NH⇥NWX

j=1

(↵j(d)� ↵̃j(d))
�(Flatten(Conv2D(Xtrain

, s))(j))

h(xtrain
j )

= 0 (40)

) wd =
NH⇥NWX

j=1

(↵j(d)� ↵̃j(d))
�(Flatten(Conv2D(Xtrain

, s))(j))

h(xtrain
j )

. (41)
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Let vj = [↵j(1)�↵̃j(1)
h(xtrain

j
)

, . . . ,
↵j(Dv)�↵̃j(Dv)

h(xtrain

j
)

]>, j = 1, . . . , NH ⇥NW , and substitute Eqn. 41 into
Eqn. 38, we obtain the following support vector expansion of the linear basis function f :

f(xi) =

2

4
NH⇥NWX

j=1

↵j(1)� ↵̃j(1)

h(xtrain
j )

Aij

h(xi)
, . . . ,

NH⇥NWX

j=1

↵j(Dv)� ↵̃j(Dv)

h(xtrain
j )

Aij

h(xi)

3

5
>

+ b,

=
NH⇥NWX

j=1

Aij

h(xi)
vj + b, (42)

where Aij := �(Flatten(Conv2D(X, s))(i))>�(Flatten(Conv2D(Xtrain
, s))(j)).

Same as in Section 2.1, we set bs = 0. To derive the softmax normalization in attention, we choose
h(xi) :=

PN
j=1 Aij and select � as in Eqn. 28. Let the training inputs {xtrain

1 , . . . ,xtrain
NH⇥NW

} ⇢ X
be the attention keys {k1, . . . ,kNH⇥NW

} ⇢ K, where K = RD, in self-attention. Also, let the new
inputs {x1, . . . ,xNH⇥NW

} ⇢ X be the attention queries {q1, . . . , qNH⇥NW
} ⇢ K in self-attention.

We define the 2D-Convolution Attention (Attention-Conv2D) as follows:

Definition 3 (2D-Convolution Attention) Given a set of the key and value vectors {kj ,vj}NH⇥NW

j=1 ,
and a set of the query vectors {qi}NH⇥NW

i=1 . Denote the key tensor and the query tensor by K 2
RNH⇥NW⇥D and Q 2 RNH⇥NW⇥D, respectively, where K(h,w, d) = kNW⇥(h�1)+w(d) and
Q(h,w, d) = qNW⇥(h�1)+w(d). The 2D-Convolution Attention (Attention-Conv2D) computes the
corresponding output vector hi of the query qi by the following attention formula:

hi =
NX

j=1

softmax
⇣

Flatten(Conv2D(Q, s))(i)>Flatten(Conv2D(K, s))(j)/
p
D

⌘
vj , (43)

where the Conv2D(·, s) is the depth-wise 2D-convolution (Howard et al., 2017) with the kernel size
s⇥ s and identical kernel channels.

Remark 7 (Convolutional Projection for Attention in the Convolutional vision Transformer)
The convolutional projections used in the Convolutional vision Transformer (CvT) (Wu et al., 2021)
can be derived from Eqn. 42 by letting the training input tensor Xtrain to be the 2D input matrix of
size N ⇥Dx of the self-attention layer (see Section 1.1 in the main text) reshaped into a 3D tensor of
size NH ⇥NW ⇥Dx where N = NH ⇥NW . Here, to avoid confusion, we denote the input of the
self-attention layer by X

input and its reshaped version by Reshape2D(Xinput). We then replace the
depth-wise 2D-convolution by the depth-wise separable 2D-convolution in (Wu et al., 2021) and
remove the constraint that the kernels have identical channels. In order to derive the convolutional
projections for the keys, queries, and values in CvT, for i, j = 1, . . . , N , we let
kj = Flatten(Conv2D(Xtrain

, s))(j)) = �(Flatten(Conv2D(Reshape2D(Xinput), s,WK))(j),

qi = Flatten(Conv2D(X, s))(i)) = �(Flatten(Conv2D(Reshape2D(Xinput), s,WQ))(i),

vj = Flatten(Conv2D(Xtrain
, s))(j)) = �(Flatten(Conv2D(Reshape2D(Xinput), s,WV ))(j).

(44)
Here, we specify the kernel/filter WK , WQ, and WV to emphasize that the convolutional projec-
tions in CvT uses different kernels to compute keys, queries, and values in self-attention. Eqn. 44
matches the convolutional projects in CvT. By choosing h and � similar to above, we can derive the
convolutional attention in CvT.

H 1D-CONVOLUTION ATTENTION

Following the derivation for the Attention-Conv2D in Appendix G above, we can derive the 1D-
Convolution Attention (Attention-Conv1D) in a similar way by letting X

train 2 RN⇥Dx and
X 2 RN⇥Dx be 2D-matrices of training inputs and new inputs, respectively, and by replacing
Conv2D by Conv1D, which is the depth-wise 1D-convolution, with the kernel size s⇥1 and identical
kernel channels, applied on the input tensor X. Here, the last dimension of X, i.e., Dx, is the depth.
We define the 1D-Convolution Attention (Attention-Conv1D) as follows:

Definition 4 (1D-Convolution Attention) Given a set of the key and value vectors {kj ,vj}Nj=1,
and a set of the query vectors {qi}Ni=1. Denote the key matrix and the query matrix by K :=
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[k1, . . . ,kN ]> 2 RN⇥D and Q := [q1, . . . , qN ]> 2 RN⇥D, respectively. The 1D-Convolution
Attention (Attention-Conv1D) computes the corresponding output vector hi of the query qi by the
following attention formula:

hi =
NX

j=1

softmax
⇣

Conv1D(Q, s)(i)>Conv1D(K, s)(j)/
p
D

⌘
vj , (45)

where the Conv1D(·, s) is the depth-wise 1D-convolution with the kernel size s⇥ 1 and identical
kernel channels.

I ATTENTION WITH BATCH NORMALIZATION AND SCALED HEADS

The Attention-BN+SH combines both the Attention-BN and Attention-SH. The
Attention-BN+SH fits the function f

s, s = 1, . . . , H , in Eqn. 17 with training sets
{(k1

1,y
1
1), . . . , (k

1
N1

,y1
N1

)}, . . . , {(kH
1 ,yH

1 ), . . . , (kH
NH

,yH
NH

)} ⇢ K ⇥ Y of different sizes
N1, . . . , NH , where K = RD and Y = RDv . The function f

s is defined as:

f
s(x) := W

s �((x� µs)� ss�1

)

hs((x� µs)� ss�1)
+ bs, (46)

where

µs =
1

Ns

NsX

j=1

ks
j , ss

�1

=

2

4 1q
�
s2
1 + ✏

, . . . ,
1q

�
s2
D + ✏

3

5
>

, �
s2

d =
1

Ns

NsX

j=1

(ks
j(d)� µs(d))2.

(47)
Following the same derivation as in Section 2.1, we derive the following support vector expansion of
f
s

f
s(x) =

NsX

j=1

�((x� µs)� ss�1

)>�((ks
j � µs)� ss�1

)

hs((x� µs)� ss�1)
vs
j + bs. (48)

Here, vs
j =


↵s

j
(1)�↵̃s

j
(1)

hs((ks

j
�µs)�ss�1 )

, . . . ,
↵s

j
(Dv)�↵̃s

j
(Dv)

hs((ks

j
�µs)�ss�1 )

�>
, where ↵s

j and ↵̃s
j are the dual variables,

j = 1, . . . , N . Same as in Section 2.1, in Eqn. 48, we choose � as in Eqn. 28, h
s(x) :=PNs

j �(x)T�(ks
j), and bs = 0 to obtain the Batch Normalized Attention with Scaled Heads

(Attention-BN+SH), which is defined as follows:

Definition 5 (Batch Normalized Attention with Scaled Heads) Given H sets of the key and value
vectors {k1

j ,v
1
j }

N1
j=1, . . . , {kH

j ,vH
j }NH

j=1, for each set of H query vectors q1
i , . . . , q

H
i , i = 1, . . . , N ,

the Batch Normalized Attention with Scaled Heads (Attention-BN+SH) computes the corresponding
output vector hi of the queries q1

i , . . . , q
H
i by the following attention formula:

hi =
HX

s=1

W
s
O

0

@
NsX

j=1

softmax
⇣
((qs

i � µs)� ss
�1

)>((ks
j � µs)� ss

�1

)/
p
D

⌘
vs
j

1

A , (49)

where

µs =
1

Ns

NsX

j=1

ks
j , ss

�1

=

2

4 1q
�
s2
1 + ✏

, . . . ,
1q

�
s2
D + ✏

3

5
>

, �
s2

d =
1

Ns

NsX

j=1

(ks
j(d)� µs(d))2.

(50)

Following the same Remark 5 in Section 2.3.2, given input sequence X := [x1, · · · ,xN ]> 2 RN⇥Dx

of N feature vectors in self-attention, in order to generate the sets of {ks
j ,v

s
j}

Ns

j=1 at the scale sth, we
can downsample the input X before projecting into the key matrix K and the value matrix V. In this
paper, we use the average-pooling to downsample X.

As in the same case of Attention-BN, for Attention-BN+SH, recentering queries and keys
alone are sufficient for accuracy improvement, and we weight the mean µ in Eqn 49 with a constant
�. Hence Eqn. 49 is simplified to:

hi =
HX

s=1

W
s
O

0

@
NsX

j=1

softmax
⇣
(qs

i � �µs)>(ks
j � �µs)/

p
D

⌘
vs
j

1

A . (51)
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Table 12: The values of � for Linear Attention-BN/BN+SH and Sparse Attention-BN/BN+SH trained on the
selected 10 UEA tasks.

Dataset/Model Linear Attention-BN Linear Attention-BN+SH Sparse Attention-BN Sparse Attention-BN+SH

ETHANOLCONCENTRATION 0.15 0.95 0.8 0.2
FACEDETECTION 0.6 0.6 0.6 0.6
HANDWRITING 0.25 0.3 0.3 0.3
HEARTBEAT 0.6 0.15 0.4 0.5
JAPANESEVOWELS 0.6 0.6 0.6 0.6
PEMS-SF 0.35 0.65 0.5 0.6
SELFREGULATIONSCP1 0.35 0.25 0.1 0.9
SELFREGULATIONSCP2 0.75 0.15 0.5 0.3
SPOKENARABICDIGITS 0.6 0.6 0.6 0.6
UWAVEGESTURELIBRARY 0.65 0.55 0.9 0.3

Table 13: The values of � for Attention-BN/BN+SH trained on 25 UEA Time Series classification tasks (Bagnall
et al., 2018) and 6 UEA Time Series Regression tasks.

Dataset/Model Attention-BN Attention-BN+SH

ETHANOLCONCENTRATION 0.25 0.15
FACEDETECTION 0.6 0.6
HANDWRITING 0.65 0.25
HEARTBEAT 0.55 0.85
JAPANESEVOWELS 0.6 0.6
PEMS-SF 0.25 0.35
SELFREGULATIONSCP1 0.5 0.85
SELFREGULATIONSCP2 1.2 0.9
SPOKENARABICDIGITS 0.65 0.6
UWAVEGESTURELIBRARY 0.1 0.2
ARTICULARYWORDRECOGNITION 0.2 0.6
BASICMOTIONS 0.1 0.1
EPILEPSY 0.3 0.2
ERING 0.1 0.9
FINGERMOVEMENTS 1.0 0.3
LIBRAS 0.3 0.7
NATOPS 1.0 0.4
RACKETSPORTS 1.0 0.4
ATRIALFIBRILLATION 0.9 0.6
CRICKET 0.2 1.0
STANDWALKJUMP 1.0 0.6
HANDMOVEMENTDIRECTION 0.5 0.5
LSST 0.3 0.2
DUCKDUCKGEESE 0.6 0.3
MOTORIMAGERY 0.2 0.3

APPLIANCESENERGY 0.4 0.2
BENZENECONCENTRATION 0.2 0.1
BEIJINGPM10 0.1 0.5
BEIJINGPM25 0.1 0.2
LIVEFUELMOISTURE 0.1 0.3
IEEEPPG 0.4 0.2

Table 14: The values of � of Attention-BN/BN+SH trained on the 5 tasks of the LRA benchmark (Tay et al.,
2021).

Dataset/Model Attention-BN Attention-BN+SH

LISTOPS 0.5 0.2
TEXT 0.5 0.8
RETRIEVAL 1.0 1.0
IMAGE 0.2 0.2
PATHFINDER 0.2 0.4

J HYPERPARAMETERS

In this section, we provide the hyper-parameters for our best models.

J.1 UEA TIME SERIES CLASSIFICATION AND REGRESSION

For these two benchmarks, use the set of downsampling factors s = [1, 1, 2, 2, 4, 4, 8, 8] for Attention-
SH/BN+SH and Linear/Sparse Attention-SH/BN+SH models trained on the UEA benchmark. Ta-
ble 13 and Table 12 provide the values of � used for our best Attention-BN/BN+SH and Linear
Attention-BN/BN+SH, Sparse Attention-BN/BN+SH models trained on subsets of the two bench-
marks.
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J.2 LONG RANGE ARENA BENCHMARK

For all 5 tasks of the LRA benchmark, we set the downsampling factors s of Attention-SH/BN+SH,
Linear/Sparse Attention-SH/BN+SH is [1, 2] and kernel size of Attention-Conv1D models is 5. In
addition, Table 14 provides the values � of Attention-BN/BN+SH models trained on the benchmark.

J.3 IMAGENET CLASSIFICATION

This task’s � of Attention-BN/BN+SH is 1. Attention-SH/BN+SH has the downsampling factor of
[1, 1, 2, 4], and the kernel size of Attention-Conv2D is (2, 2).
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