A Appendix

A.1 Detail of Feature-Transforming Methods

L normalization (Ly-norm) From equation E, normalizing the norm of the feature vectors can
improve the performance of a prototype classifier. We denote a function normalizing the norm as
Y12 given by

o (x)

Yra(d(x)) = To@I’ (10)

LDA From equation [8, decreasing the ratio of the within-class variance to the between-class

variance can improve the performance of a prototype classifier. LDA [30] is widely used to search for

a projection space that maximizes the between-class variance and minimizes the within-class variance.
. Log Tl & . .

It computes the eigenvectors of a matrix X, 3, where X is the covariance matrix of prototypes and

3., is the class-conditioned covariance matrix. Since the number of data is small in few-shot settings,

3,  cannot be estimated stably and we add a regularizer term to Xff and define it as Xf”eg.
27'reg =Xr+ Al (1)

where A € R', I € RP*P is identity matrix.

EST Since computation of LDA is unstable, we also analyze the effect of EST [2]. EST computes
eigenvectors of a matrix - prT: the difference between the covariance matrix of the class mean
vectors and the class mean covariance matrix with weight parameter p. Similar to LDA, EST also
searches for the projection space that maximizes the ¥ and minimizes the 3.

EST+Ls-norm We hypothesize that the combination of the transforming methods can improve
the performance of a prototype classifier independently from each other. Specifically, we focus on
reducing equation|[6|and equation [8|by combining EST and Lo-norm. We first apply EST to reduce
equation [§ and after that we apply Lo-norm to reduce equation[6. At the end of the operation we
want the variance of the norm to be 0, thus we apply EST and after that we apply Ly-norm.

LDA+Ly-norm We focus on reducing equation [8|and equation [7|by combining LDA and L,-norm.
Following the similar procedure of EST+Ls-norm, we first apply LDA and after that we apply
Lo-norm.

A.2 Existing Upper Bound on Expected Risk for Prototype Classifier

To analyze the behavior of a prototype classifier, we start from the current study [2]. The following
theorem is the upper bound of the expected risk of prototypical networks with the next conditions.

* The probability distribution of an extracted feature ¢ () given its class y = ¢ is Gaussian i.e
D, = N(Nw ¥.), where ji. = Egz~p. [¢(x)] and 3, = Ez~p, [(p(x) — pe)(d(x) — .UC)T]-
* All class-conditioned distributions have the same covariance matrix, i.e., V(c, ¢), 3. = 3.

Theorem 2 (Cao et al. [2l]). Let M be an operation of a prototype classifier on binary classifi-
cation defined by equation |Z Then for i = Eewrlpe] and ¥ = Eeor[(te — 1) (te — p) 7], the
misclassification risk of the prototype classifier on binary classification R o satisfies

4Tr(D)?
8(1+ 1/k)2Tr (£2) + 16(1 + 1/k) Tr (£5,) + B dist2, (tte, , frey)’

Rm(o) <1 (12)

where EdiSt%Q(p’Cl ’ /1’02) = IE01,C2 |:((""01 - /1/(:2) T (l’l'cl - u’Cz))2:|'

We show the detail of the derivation in Appendix
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A.3 Reviewing Derivation Details of Theorem (Cao et al. [2])
We briefly review the derivation of Theorem 2] In prototype classifier, from equation [I]and equation [3]
R pq 1s written with sigmoid function o as follows:
2
=Pr(a < 0), (13)

V) —— (a<||¢<a:> 3~ llé(e) — a5l < 1)

where a = ||p(x) — ¢(Se,)|| — ||é(x) — ¢(S.,)||. we bound equation@with expectation and
variance of « by following proposition.

Proposition 1. From the one-sided Chebyshev’s inequality, it immediately follows that:

Ec. Ee, cor B ol?
RM(¢) = Pr(Oé < 0) <1 S~D®2k Lcy,ca x Dcl[ ]

— 14
Vars e, e,z [0] + Es pearEe, cynrEanp,, [a]? (19

equation[I3]can be further write down as follows by Law of Total Expectation

2
Varg,c.a(a) = EgupoztEe, cynrExnp, [0‘2] - (ES~D®2’“EC1702~TE90~DC1 [O‘D

2
= E017C2]Ew7s[a2‘clﬂ ca] — (IESND(X’?’CEm,caw'rEmec1 [a])

= E017C2 [Varm,s(a|cl, 02) + Ew,s[a|017 02]2} - EclchNTEwNDcl ESND@zK [a]Q'

Therefore,

2
ES~D®279 Ecl ,C2 NTE:BNDC [O[]

Ec, c, [VaYENDq sla] + Ezp,, sla?]

Pra<0)<1-— (15)
We write down the expection and variance of « with following Lemmas [3|and [4}

Lemma 3. Under the same notation and assumptions as Theorem 2} then,

ES~D®2kEwNDc1 [Oé] = (pcl - 902)T(”c1 - uCQ)
]Ecl,CQNTE:EN'DCl ]ESN'D®2K [Oé] = 2TY(Z)

Lemma 4. Under the same notation and assumptions as Theorem E] then,
1 1
Ec, ., [Varg s [@]c1,c2]] <8 <1 + K) Tr <ET((1 + ?)ET + 22)) . (16)

The proofs of the above lemmas are in the current study [2].

With Proposition [T and Lemma 3] Lemma4] we obtain Theorem 2]

A.4 Derivation Details of Theorem ]

We will describe the detailed derivation of Theorem [Tlin this section. Our derivation is different from
Cao et al. [2]’s study in the following points.

1. We re-derived Lemma[3 because the term of the difference between the trace of the class
covariance matrices is erased in the lemma. This term cannot omit in our derivation since
we do not assume the class covariance matrix to be the same among classes.

2. We re-derived the bound on the variance of squared Euclidean distance of two vectors, e.g
Lemmafd] The derivation of Cao et al. [2] uses the property of quadratic forms of normally
distributed random variables and the fact that the sum of normally distributed random vari-
ables is also distributed in Gaussian distribution. The calculation of the variance of squared
Ls-norm without depending on the property of some distributions is not straightforward
[38]]. We divide the variance of squared Euclidean distance of two vectors into the variance
of the norm of the feature vectors and the variance of the inner-product of vectors. Then we
apply Cauchy—Schwarz inequality to the inner-product.
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We start the proof from equation [I5] We first prove the following Lemma [5]related to the expectation
statistics of « in equation[T3]

Lemma 5. Under the same notations and assumptions as Theorem|l| then,

= o (TE(S0) = TH(Se)) + (g, — b)) TR, — b,)

E01,62~7Ew~DC1 ES~D®2K [Oé] = 2Tr(2)

ES~D®2’“ EENDH [a]

Proof. First, from the definition of v, we split Eg. pezrEz~p, [a] in to two parts and examine them
seperately.

EsponEann, [o] = B | [o(a) - 5052

|- ot - 5650

(2) (i7)

2
’ ]. (17)

In regular conditions, for random vector X, the expectation of the norm is

E[X " X] = Tr(Var(X)) + E[X]"E[X], (18)

and the variance of the vector is
Var(X) =E[XX ] - E[X]|E[X]" (19)
Se, 2 Vargap,, (6(x)). (20)

Hence,

() = o, Es | |olz) - 052

=1 (Vara-p,, s [9(@) ~ 5(5.]] ) + Eaks [6(z) ~ 5(5.,)] E.Es [o(z) - 9(5.]
2D

where the first term inside the trace can be expanded as:

Var [6(@) - 6(52,1] = | (o(e) - 9052,)) (o6e) ~ 9051) | = (b, — ), — )"

= Var [6(a)] + E[o(@) E[o(@)] " + Var [6(5,]] + E [3(5.,) B [6(5.,)]

T T T
- HcZ ucl - ucl HCQ - (”cl - p(:g)(pcl - ucg)

1
=X, + ?202 (Last terms cancel out). (22)
The second term in equation [21]is simply as follows.
Eap.,Es [9(2) = 6(5c;)] = He, — He,. (23)
From equation [22]and equation 23] we obtain
) 1
(’L) = Tr(ZQ) + ETI‘(ZQ) + (ucl - uc;\,)—r(ucl - ucz)' (24)

Similarly for ii,

(i) = T (Varawn,, s [o@) ~ 0(5.)]) + EoEs [6(x) ~ 5(50)] BeEslo(a) ~ 9(5.,)

1
=Tr(2.,) + ETI'(EC1)' (25)
From (i) and (ii), and equation[17]
1 T
ES~D®2’*‘]Ew~Dc1 [o] = K (Tr (Be;) = Tr (Bey)) + (ucl o p02) (uq - uoz) : (26)
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Since Ee, ¢, 2,s[] = E61,62~T[ES~D®2’“EE~DC1 [o]],

1 T
Ee co,a,8 [O‘] =E¢) comr |:K(Tr(252) —Tr(Xc,)) + (ucl - ucz) (UCl - ”cz)

=Ec; conr [(”01 - ”@)T (”01 - uCz):|

=Eey comr [He, Mo, + Boy Be, — Mo, Mo, — B e, |
=T (D) +p T () +p p—2up
= 9Tr (%). 27)

Next we prove the following Lemmal 6] related to the conditioned variance of c.

Lemma 6. Under the same notation and assumptions as Theorem

4 4
E61’62varac~Dcl,S~D®2N [a] < ?Ecwrvar [H(b(m)”z} + Evar6~T [TY(EC)] + Vit (X7, 2, 1),
(28)

where
Vit (37, 2, 1) = % (Tr(S,)) (Te(D) + 1T p) +4 (Te(S) + p ")

+4E;, cynr [Tr (ey) (HCQ - UCI)T (UCZ - Hcl)} . (29)

Proof. We start with the inequality between the variance of 2 random variables. We define Cov (A, B)
as covariance of 2 random variables A, B.

Var[A + B] = Var[A] + Var[B] + 2Cov(A4, B)

< Var[A] + Var[B] + 2/ Var[A]Var[B]

< Var[A] + Var[B] + 2 w

= 2Var[A] + 2Var[B]. (30)

ﬂ
"~ 20(@)" (505 - 9052, |
- e ]
+ 4Var {(b(:r:)T ((;S(Tw) - qﬁ(Scl))} (" equation )

|+ 2var [ ] + avar [oe) " @085 - 36527
(31

For Vargp. sla],

c1

2 -
~||o(@) =905

—

[6(@) - 9(5..)

Varg~p, sla] = Var

c1

|2 _—
= Var ‘(b(Scl) ’ - Hd)(scz)

—

< 2Var _H¢<Scl>

— 2Var Hm

2
use the independence

(e

From 3rd line to 4th line we decompose the variance of H([)(Scl)

of ¢(Se,) and ¢(S.,) with their class given.
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Next we focus on Var [gf)(m)T(qS(SCQ) —¢ Scl))} .

Var [6(2)(@05..) - 3050)] = B | (o) (352 - o65.))|

From the 2nd line to the 3rd line we use Cauchy—Schwarz inequality.
2
_ ¢(Scl)H } , with equation

B |50~ 00 | = g (1 (S0 + T (S + (e = ) (s = ). G

For E [Haﬁ(S@)

- 2
Thus E., c,~r {EmNDCI,S [||¢(a:)||2] Exnp., s [HQS(SC2) - ¢(Scl)H ” is calculated as follows.

Besamr Eanpe, s (107 Bam, s | [00527 - 200 |

By (005 T 11,) g (T8 TH0) Gy = 1) o, — 2, )|

=Ee, comr [[1{ (Tr (Be,)” + Tr(Se, ) Tr (ECQ))]

9
+ Ee, ot {K (Tr () 1l be, + 1 e, (Mo — 1e) | (e, — ucl)]

+Ecl’32~7 |:Tr (Ecl) (ucz - ucl)—r (”’cz - pcl)]

= % (Ecl,@w [Tr(e,)?] + Eeyepnr [Tr(ch)]2>
+ % (Tr (2,) (Tr () + 1 'w) +E (1, me, (e, — 1e,) " (e, — 1e,)]

oy carr | T8 (Be,) (e = 1e,) | (e — 1) |

%Var [T ()
+ Tr( 7+ %( T(50) (Tr () + 1T 8) + By ex [, (e, = 1) (e, — 1)
{Tr (Ber) (ey = ) (12, fucl)]
- %Var e [TH(S0)]
+ %TT(ZT) (Te(S7) + Te(B) + 1 w) +Eey e, [ul ey (e, — e,) " (1, — ucl)}
+ Eoanr [T (Z) (e, = te,) " (e, = 1) (34)
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Now we take into account the term —(pt] (b, — m,,))* in equation
E017C2 [p;rl ”cl(p@ - p01)T(”C2 - pcl) - (chl(HCQ - ucl))ﬂ
=By, [0, e, My Moy — (10 1,)°]
< Eepep (1, Moy 1, 1, ]
= (Tx(D) + ")’ (35)
Thus E,, ., [Var[¢(m)T(¢(sc2) - ¢(Scl))]} is calculated as follows.
crex [Varlo(@ >T<¢‘<s@> ~ 3(5e)]
:?W%Hﬁ@)+ ﬂ A (Te(S:) + Te(D) + p' ) + (Te(E) + p ' p)?

+EC1,62~T |:fI\r (2 (pcg u(,l)T (ucz - ucl):| . (36)

2
Regarding HQS(SC) ’ ,
D-dimensional Jensen’s inequlality [39]]:

since the function computing square norm is convex, next equation holds with

o

1

x€Se

Z o(z)| 37)

zeSe

Combining equation [31] equation [36] and equation [37] we obtain

]Ecl ,C2 \/varmec1 ,S~D®2N [O‘]

4 g 4
< —EewrVargun, [[6(2)]] + 2 Varewr [Tr(S)

+ 210, (Te(S0) + Tr(®) + 1T w) + 4 (Te() + 1)

K
T
+ 4E61762N7‘ |:Tr (201) (u02 - ucl) (I“LCQ - Hcl):| * (38)
O
To complete the proof of Theorem we calculate Ec, ¢, Kz p, s po2r [a]?.
E017C2EEN'D01 ,SND®2K [a]Q
1 . 2
= Ecl,cz ?(Tl(zcz) - Tr(zcl)) + (H’cl - HCQ) (Hcl - !ch)
1 2 . )
—Eerex | (72 (1) = Tr(Ta)) ) |+ Eeren [ (e, = 1) (e, = 12,)) ]
+ 2B, , K (Tr(Ze ) (Me, = 1) (Mg, — u@))}
1 2
= Vare, cy~r |:K (Tr(X, ] ( 1y~ |:K(Tr(202) - Tr(zq))})
2
+E01702 |:((uc1 ucg ucl pCQ ) :|
2 2
= ﬁvar0~T [Tr(Ze)] + Ecy e, [((”cl - ch)T(”cl ~ He,)) } ‘ (39)
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From 2nd line to 3rd line, we use the symmetry of the last term with respect to ¢; and ¢, and erase
the term.

Combining equation [I5] Lemma[5] Lemmal[6} and equation[39] we obtain the bound.

A.5 Theorem [l with N-way Classification

The upper bound on the risk of N-way prototype classifier is as follows.

Theorem 7. Let operation of binary class prototype classifier M as defined in equation[I. Then

for ¢(S.) = %Ewesc¢(w)» e = Egup, [6(2)], e = Ezup, [(9(x) — p1c)(p(x) — NC)T]’ H=
Eenr [tehS = Eomr[(te — 1)(te — 1)) Sr = Eor[Se), if &) has its fourth moment, miss
classification risk of binary class prototype classifier R aq satisfy

R(M(¢7 T, {Sl}z]il)7 y)

N

A(Tr(D))?
SN ) @@ Vo) + Ve 5 0 T B i)
where
EV[hi2(6(2))] = Eyer [Vara,p, [l6()]%]]

Vi (8,) = (j‘( - ;2) Vare.r [Tr (Z.)],

Ve (S0, 2210 = - (T(5,)) (Tr(2) + 0T w) +4 (Te(2) + ")’
B [Tr(S) (1, — 1) (1, — 1) @1)

E dist{s 1y, pe) =Ey e [((uy — ) (py — uc)ﬂ :

2
Proof. Let z,y be the input and its class of a query data. We define a. by o, = Hqﬁ(w) — &(Se)

2
Hqﬁ(m) - ¢(Sy)H . Then a prototype classifier miss-classify a class of input z, ¢, if 3¢ € [1, N], ¢ #
y,ae < 0. Hence: Ry(¢) = Pr(U%l a. < 0)
Ay

By Frechet’s inequality, next equation holds:

M=

Rm (o) < Pr(a; < 0).

o0

i
< =

Noting that Theorem|[I can be applied to each term in the summation and then we obtain Theorem
O

A.6 Detailed performance results

We show in Table[5 the detailed performance results of standard object recognition in this section
with 95% confidence margin. The table shows the similar result with Table|1, We can observe that
the prototype classifier with Ly-norm, EST+Ly-norm, LDA+Lo-norm performs comparably with
ProtoNet and the linear-evaluation-based approach in most of the settings.
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A.7 Visualization of the feature distribution

We show in Figure 3 the distribution of features on testset of FC100 before and after applying the
data transformation. From figure[3] we can observe that the feature-transformation-methods slightly

change the distributions even the transformations improve the performance of a prototype classifier.
The projection into a lower dimensional space for visualization does not accurately represent the

relationship of a higher dimension.

w/o transformation

L2-normalization EST LDA

Figure 3
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