
Published as a conference paper at ICLR 2023

DIGRESS: DISCRETE DENOISING DIFFUSION FOR
GRAPH GENERATION

Clément Vignac∗
LTS4, EPFL
Lausanne, Switzerland

Igor Krawczuk∗

LIONS, EPFL
Lausanne, Switzerland

Antoine Siraudin
LTS4, EPFL
Lausanne, Switzerland

Bohan Wang
LTS4, EPFL
Lausanne, Switzerland

Volkan Cevher
LIONS, EPFL
Lausanne, Switzerland

Pascal Frossard
LTS4, EPFL
Lausanne, Switzerland

ABSTRACT

This work introduces DiGress, a discrete denoising diffusion model for generat-
ing graphs with categorical node and edge attributes. Our model utilizes a discrete
diffusion process that progressively edits graphs with noise, through the process
of adding or removing edges and changing the categories. A graph transformer
network is trained to revert this process, simplifying the problem of distribution
learning over graphs into a sequence of node and edge classification tasks. We
further improve sample quality by introducing a Markovian noise model that pre-
serves the marginal distribution of node and edge types during diffusion, and by
incorporating auxiliary graph-theoretic features. A procedure for conditioning the
generation on graph-level features is also proposed. DiGress achieves state-of-the-
art performance on molecular and non-molecular datasets, with up to 3x validity
improvement on a planar graph dataset. It is also the first model to scale to the
large GuacaMol dataset containing 1.3M drug-like molecules without the use of
molecule-specific representations.

1 INTRODUCTION

Denoising diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) form a powerful class
of generative models. At a high-level, these models are trained to denoise diffusion trajectories,
and produce new samples by sampling noise and recursively denoising it. Diffusion models have
been used successfully in a variety of settings, outperforming all other methods on image and video
(Dhariwal & Nichol, 2021; Ho et al., 2022). These successes raise hope for building powerful mod-
els for graph generation, a task with diverse applications such as molecule design (Liu et al., 2018),
traffic modeling (Yu & Gu, 2019), and code completion (Brockschmidt et al., 2019). However,
generating graphs remains challenging due to their unordered nature and sparsity properties.

Previous diffusion models for graphs proposed to embed the graphs in a continuous space and add
Gaussian noise to the node features and graph adjacency matrix (Niu et al., 2020; Jo et al., 2022).
This however destroys the graph’s sparsity and creates complete noisy graphs for which structural
information (such as connectivity or cycle counts) is not defined. As a result, continuous diffusion
can make it difficult for the denoising network to capture the structural properties of the data.

In this work, we propose DiGress, a discrete denoising diffusion model for generating graphs with
categorical node and edge attributes. Our noise model is a Markov process consisting of successive
graphs edits (edge addition or deletion, node or edge category edit) that can occur independently on
each node or edge. To invert this diffusion process, we train a graph transformer network to predict
the clean graph from a noisy input. The resulting architecture is permutation equivariant and admits
an evidence lower bound for likelihood estimation.

We then propose several algorithmic enhancements to DiGress, including utilizing a noise model
that preserves the marginal distribution of node and edge types during diffusion, introducing a novel

∗Equal contribution. Contact: first name.last name@epfl.ch

1

Published as a conference paper at ICLR 2023

guidance procedure for conditioning graph generation on graph-level properties, and augmenting
the input of our denoising network with auxiliary structural and spectral features. These features,
derived from the noisy graph, aid in overcoming the limited representation power of graph neural
networks (Xu et al., 2019). Their use is made possible by the discrete nature of our noise model,
which, in contrast to Gaussian-based models, preserves sparsity in the noisy graphs. These improve-
ments enhance the performance of DiGress on a wide range of graph generation tasks.

Our experiments demonstrate that DiGress achieve state-of-the-art performance, generating a high
rate of realistic graphs while maintaining high degree of diversity and novelty. On the large MOSES
and GuacaMol molecular datasets, which were previously too large for one-shot models, it notably
matches the performance of autoregressive models trained using expert knowledge.

2 DIFFUSION MODELS

In this section, we introduce the key concepts of denoising diffusion models that are agnostic to
the data modality. These models consist of two main components: a noise model and a denoising
neural network. The noise model q progressively corrupts a data point x to create a sequence of
increasingly noisy data points (z1, . . . , zT). It has a Markovian structure, where q(z1, . . . , zT |x) =
q(z1|x)

∏T
t=2 q(z

t|zt−1). The denoising network ϕθ is trained to invert this process by predicting
zt−1 from zt. To generate new samples, noise is sampled from a prior distribution and then inverted
by iterative application of the denoising network.

While early models would directly predict zt−1 from zt (Sohl-Dickstein et al., 2015), these models
were difficult to train due to the dependence of zt−1 on the sampled diffusion trajectories. Ho et al.
(2020) considerably improved performance by establishing a connection with score-based models
(Song & Ermon, 2019). They showed that when

∫
q(zt−1|zt, x)dpθ(x) is tractable, x can be used

as the target of the denoising network, which removes an important source of label noise.

For a diffusion model to be efficient, three properties are required:

1. The distribution q(zt|x) should have a closed-form formula, to allow for parallel training
on different time steps.

2. The posterior pθ(zt−1|zt) =
∫
q(zt−1|zt, x)dpθ(x) should have a closed-form expression,

so that x can be used as the target of the neural network.
3. The limit distribution q∞ = limT→∞ q(zT |x) should not depend on x, so that we can use

it as a prior distribution for inference.

These properties are all satisfied when the noise is Gaussian. When the task requires to model
categorical data, Gaussian noise can still be used by embedding the data in a continuous space with
a one-hot encoding of the categories (Niu et al., 2020; Jo et al., 2022). We develop in Appendix A a
graph generation model based on this principle, and use it for ablation studies. However, Gaussian
noise is a poor noise model for graphs as it destroys sparsity as well as graph theoretic notions such
as connectivity. Discrete diffusion therefore seems more appropriate to graph generation tasks.

Recent works have considered the discrete diffusion problem for text, image and audio data (Hooge-
boom et al., 2021; Johnson et al., 2021; Yang et al., 2022). We follow here the setting proposed
by Austin et al. (2021). It considers a data point x that belongs to one of d classes and x ∈ Rd

its one-hot encoding. The noise is now represented by transition matrices (Q1, ...,QT) such that
[Qt]ij represents the probability of jumping from state i to state j: q(zt|zt−1) = zt−1Qt.

As the process is Markovian, the transition matrix from x to zt reads Q̄t = Q1Q2...Qt. As long
as Q̄t is precomputed or has a closed-form expression, the noisy states zt can be built from x using
q(zt|x) = xQ̄t without having to apply noise recursively (Property 1). The posterior distribution
q(zt−1|zt, x) can also be computed in closed-form using Bayes rule (Property 2):

q(zt−1|zt, x) ∝ zt (Qt)′ ⊙ x Q̄t−1 (1)

where ⊙ denotes a pointwise product and Q′ is the transpose of Q (derivation in Appendix D).
Finally, the limit distribution of the noise model depends on the transition model. The simplest and
most common one is a uniform transition (Hoogeboom et al., 2021; Austin et al., 2021; Yang et al.,
2022) parametrized by Qt = αtI + (1 − αt)1d1

′
d/d with αt transitioning from 1 to 0. When

limt→∞ αt = 0, q(zt|x) converges to a uniform distribution independently of x (Property 3).

2

Published as a conference paper at ICLR 2023

Figure 1: Overview of DiGress. The noise model is defined by Markov transition matrices Qt whose
cumulative product is Q̄t. The denoising network ϕθ learns to predict the clean graph from Gt.
During inference, the predicted distribution is combined with q(Gt−1|G,Gt) in order to compute
pθ(G

t−1|Gt) and sample a discrete Gt−1 from this product of categorical distributions.

The above framework satisfies all three properties in a setting that is inherently discrete. However,
while it has been applied successfully to several data modalities, graphs have unique challenges that
need to be considered: they have varying sizes, permutation equivariance properties, and to this date
no known tractable universal approximator. In the next sections, we therefore propose a new discrete
diffusion model that addresses the specific challenges of graph generation.

3 DISCRETE DENOISING DIFFUSION FOR GRAPH GENERATION (DIGRESS)

In this section, we present the Discrete Graph Denoising Diffusion model (DiGress) for graph gen-
eration. Our model handles graphs with categorical node and edge attributes, represented by the
spaces X and E , respectively, with cardinalities a and b. We use xi to denote the attribute of node i
and xi ∈ Ra to denote its one-hot encoding. These encodings are organised in a matrix X ∈ Rn×a

where n is the number of nodes. Similarly, a tensor E ∈ Rn×n×b groups the one-hot encoding eij
of each edge, treating the absence of edge as a particular edge type. We use A′ to denote the matrix
transpose of A, while AT is the value of A at time T .

3.1 DIFFUSION PROCESS AND INVERSE DENOISING ITERATIONS

Similarly to diffusion models for images, which apply noise independently on each pixel, we diffuse
separately on each node and edge feature. As a result, the state-space that we consider is not that of
graphs (which would be too large to build a transition matrix), but only the node types X and edge
types E . For any node (resp. edge), the transition probabilities are defined by the matrices [Qt

X]ij =

q(xt = j|xt−1 = i) and [Qt
E]ij = q(et = j|et−1 = i). Adding noise to form Gt = (Xt,Et)

simply means sampling each node and edge type from a categorical distribution defined by:

q(Gt|Gt−1) = (Xt−1Qt
X ,Et−1Qt

E) and q(Gt|G) = (XQ̄t
X ,EQ̄t

E) (2)

for Q̄t
X = Q1

X ...Qt
X and Q̄t

E = Q1
E ...Q

t
E . When considering undirected graphs, we apply noise

only to the upper-triangular part of E and then symmetrize the matrix.

The second component of the DiGress model is the denoising neural network ϕθ parametrized by θ.
It takes a noisy graph Gt = (Xt,Et) as input and aims to predict the clean graph G, as illustrated
in Figure 1. To train ϕθ, we optimize the cross-entropy loss l between the predicted probabilities
p̂G = (p̂X , p̂E) for each node and edge and the true graph G:

l(p̂G, G) =
∑

1≤i≤n

cross-entropy(xi, p̂
X
i) + λ

∑
1≤i,j≤n

cross-entropy(eij , p̂
E
ij) (3)

where λ ∈ R+ controls the relative importance of nodes and edges. It is noteworthy that, unlike
architectures like VAEs which solve complex distribution learning problems that sometimes requires
graph matching, our diffusion model simply solves classification tasks on each node and edge.

Once the network is trained, it can be used to sample new graphs. To do so, we need to estimate the
reverse diffusion iterations pθ(Gt−1|Gt) using the network prediction p̂G. We model this distribu-

3

Published as a conference paper at ICLR 2023

tion as a product over nodes and edges:

pθ(G
t−1|Gt) =

∏
1≤i≤n

pθ(x
t−1
i |Gt)

∏
1≤i,j≤n

pθ(e
t−1
ij |G

t) (4)

To compute each term, we marginalize over the network predictions:

pθ(x
t−1
i |Gt) =

∫
xi

pθ(x
t−1
i | xi, G

t) dpθ(xi|Gt) =
∑
x∈X

pθ(x
t−1
i | xi = x,Gt) p̂Xi (x)

where we choose

pθ(x
t−1
i | xi = x, Gt) =

{
q(xt−1

i | xi = x, xt
i) if q(xt

i|xi = x) > 0

0 otherwise.
(5)

Similarly, we have pθ(et−1
ij |etij) =

∑
e∈E pθ(e

t−1
ij | eij = e, etij) p̂

E
ij(e). These distributions are used

to sample a discrete Gt−1 that will be the input of the denoising network at the next time step. These
equations can also be used to compute an evidence lower bound on the likelihood, which allows for
easy comparison between models. The computations are provided in Appendix C.

3.2 DENOISING NETWORK PARAMETRIZATION

The denoising network takes a noisy graph Gt = (X,E) as input and outputs tensors X ′ and E′

which represent the predicted distribution over clean graphs. To efficiently store information, our
layers also manipulate graph-level features y. We chose to extend the graph transformer network
proposed by Dwivedi & Bresson (2021), as attention mechanisms are a natural model for edge
prediction. Our model is described in details in Appendix B.1. At a high-level, it first updates
node features using self-attention, incorporating edge features and global features using FiLM layers
(Perez et al., 2018). The edge features are then updated using the unnormalized attention scores, and
the graph-level features using pooled node and edge features. Our transformer layers also feature
residual connections and layer normalization. To incorporate time information, we normalize the
timestep to [0, 1] and treat it as a global feature inside y. The overall memory and time complexity
of our network is Θ(n2) per layer, due to the attention scores and the predictions for each edge.

3.3 EQUIVARIANCE PROPERTIES

Graphs are invariant to reorderings of their nodes, meaning that n! matrices can represent the same
graph. To efficiently learn from these data, it is crucial to devise methods that do not require aug-
menting the data with random permutations. This implies that gradient updates should not change
if the train data is permuted. To achieve this property, two components are needed: a permutation
equivariant architecture and a permutation invariant loss. DiGress satisfies both properties.

Lemma 3.1. (Equivariance) DiGress is permutation equivariant.

Lemma 3.2. (Invariant loss) Any loss function (such as the cross-entropy loss of Eq. (3)) that
can be decomposed as

∑
i lX(p̂Xi , xi) +

∑
i,j lE(p̂

E
ij , eij) for two functions lX and lE computed

respectively on each node and each edge is permutation invariant.

Lemma 3.2 shows that our model does not require matching the predicted and target graphs, which
would be difficult and costly. This is because the diffusion process keeps track of the identity of the
nodes at each step, it can also be interpreted as a physical process where points are distinguishable.

Equivariance is however not a sufficient for likelihood computation: in general, the likelihood of a
graph is the sum of the likelihood of all its permutations, which is intractable. To avoid this compu-
tation, we can make sure that the generated distribution is exchangeable, i.e., that all permutations
of generated graphs are equally likely (Köhler et al., 2020).

Lemma 3.3. (Exchangeability)
DiGress yields exchangeable distributions, i.e., it generates graphs with node features X and ad-

jacency matrix A that satisfy P(X,A) = P (πTX, πTAπ) for any permutation π.

4

Published as a conference paper at ICLR 2023

Figure 2: Reverse diffusion chains generated from a model trained on uniform transition noise (top)
and marginal noise (bottom). When noisy graphs have the right marginals of node and edge types,
they are closer to realistic graphs, which makes training easier.

4 IMPROVING DIGRESS WITH MARGINAL PROBABILITIES AND STRUCTURAL
FEATURES

4.1 CHOICE OF THE NOISE MODEL

The choice of the Markov transition matrices (Qt)t≤T defining the graph edit probabilities is arbi-
trary, and it is a priori not clear what noise model will lead to the best performance. A common
model is a uniform transition over the classes Qt = αtI + (1− αt)(1d1

′
d)/d, which leads to limit

distributions qX and qE that are uniform over categories. Graphs are however usually sparse, mean-
ing that the marginal distribution of edge types is far from uniform. Starting from uniform noise, we
observe in Figure 2 that it takes many diffusion steps for the model to produce a sparse graph. To
improve upon uniform transitions, we propose the following hypothesis: using a prior distribution
which is close to the true data distribution makes training easier.

This prior distribution cannot be chosen arbitrarily, as it needs to be permutation invariant to satisfy
exchangeability (Lemma 3.3). A natural model for this distribution is therefore a product

∏
i u ×∏

i,j v of a single distribution u for all nodes and a single distribution v for all edges. We propose
the following result (proved in Appendix D) to guide the choice of u and v:
Theorem 4.1. (Optimal prior distribution)
Consider the class C = {

∏
i u×

∏
i,j v, (u, v) ∈ P(X)× P (E)} of distributions over graphs that

factorize as the product of a single distribution u over X for the nodes and a single distribution v
over E for the edges. Let P be an arbitrary distribution over graphs (seen as a tensor of order n+n2)
and mX ,mE its marginal distributions of node and edge types. Then πG =

∏
i mX ×

∏
i,j mE is

the orthogonal projection of P on C:

πG ∈ argmin
(u,v)∈C

|| P −
∏

1≤i≤n

u×
∏

1≤i,j≤n

v||22

This result means that to get a prior distribution qX × qE close to the true data distribution, we
should define transition matrices such that ∀i, limT→∞ Q̄T

X1i = mX (and similarly for edges). To
achieve this property, we propose to use

Qt
X = αtI + βt 1am

′
X and Qt

E = αtI + βt 1bm
′
E (6)

With this model, the probability of jumping from a state i to a state j is proportional to the marginal
probability of category j in the training set. Since (1m′)2 = 1m′, we still have Q̄t = ᾱtI +

β̄t1m′ for ᾱt =
∏t

τ=1 α
τ and β̄t =

∏t
τ=1(1 − ατ). We follow the popular cosine schedule

ᾱt = cos (0.5π(t/T + s)/(1 + s))
2 with a small s. Experimentally, these marginal transitions

improves over uniform transitions (Appendix F).

4.2 STRUCTURAL FEATURES AUGMENTATION

Generative models for graphs inherit the limitations of graph neural networks, and in particular their
limited representation power (Xu et al., 2019; Morris et al., 2019). One example of this limitation
is the difficulty for standard message passing networks (MPNNs) to detect simple substructures

5

Published as a conference paper at ICLR 2023

Algorithm 1: Training DiGress
Input: A graph G = (X,E)
Sample t ∼ U(1, ..., T)
Sample Gt ∼XQ̄t

X × EQ̄t
E ▷ Sample a (discrete) noisy graph

z ← f(Gt, t) ▷ Structural and spectral features
p̂X , p̂E ← ϕθ(G

t, z) ▷ Forward pass
optimizer. step(lCE(p̂

X ,X) + λ lCE(p̂
E ,E)) ▷ Cross-entropy

Algorithm 2: Sampling from DiGress
Sample n from the training data distribution
Sample GT ∼ qX(n)× qE(n) ▷ Random graph
for t = T to 1 do

z ← f(Gt, t) ▷ Structural and spectral features
p̂X , p̂E ← ϕθ(G

t, z) ▷ Forward pass
pθ(x

t−1
i |Gt)←

∑
x q(x

t−1
i |xi = x, xt

i) p̂
X
i (x) i ∈ 1, . . . , n ▷ Posterior

pθ(e
t−1
ij |Gt)←

∑
e q(e

t−1
ij |eij = e, etij) p̂

E
ij(e) i, j ∈ 1, . . . , n

Gt−1 ∼
∏

i pθ(x
t−1
i |Gt)

∏
ij pθ(e

t−1
ij |Gt) ▷ Categorical distr.

end
return G0

such as cycles (Chen et al., 2020), which raises concerns about their ability to accurately capture
the properties of the data distribution. While more powerful networks have been proposed such
as (Maron et al., 2019; Vignac et al., 2020; Morris et al., 2022), they are significantly more costly
and slower to train. Another strategy to overcome this limitation is to augment standard MPNNs
with features that they cannot compute on their own. For example, Bouritsas et al. (2022) proposed
adding counts of substructures of interest, and Beaini et al. (2021) proposed adding spectral features,
which are known to capture important properties of graphs (Chung & Graham, 1997).

DiGress operates on a discrete space and its noisy graphs are not complete, allowing for the com-
putation of various graph descriptors at each diffusion step. These descriptors can be input to the
network to aid in the denoising process, resulting in Algorithms 1 and 2 for training DiGress and
sampling from it. The inclusion of these additional features experimentally improves performance,
but they are not required for building a good model. The choice of which features to include and
the computational complexity of their calculation should be considered, especially for larger graphs.
The details of the features used in our experiments can be found in the Appendix B.1.

5 CONDITIONAL GENERATION

While good unconditional generation is a prerequisite, the ability to condition generation on graph-
level properties is crucial for many applications. For example, in drug design, molecules that are easy
to synthesize and have high activity on specific targets are of particular interest. One way to perform
conditional generation is to train the denoising network using the target properties (Hoogeboom
et al., 2022), but it requires to retrain the model when the conditioning properties changes.

To overcome this limitation, we propose a new discrete guidance scheme inspired by the classifier
guidance algorithm (Sohl-Dickstein et al., 2015). Our method uses a regressor gη which is trained
to predict target properties yG of a clean graph G from a noisy version of G: gη(G

t) = ŷ.This
regressor guides the unconditional diffusion model ϕθ by modulating the predicted distribution at
each sampling step and pushing it towards graphs with the desired properties. The equations for the
conditional denoising process are given by the following lemma:
Lemma 5.1. (Conditional reverse noising process) (Dhariwal & Nichol, 2021)
Denote q̇ the noising process conditioned on yG, q the unconditional noising process, and assume
that q̇(Gt|G,yG) = q̇(Gt|G). Then we have q̇(Gt−1|Gt,yG) ∝ q(Gt−1|Gt) q̇(yG|Gt−1).

While we would like to estimate q(Gt−1|Gt) q̇(yG|Gt−1) by pθ(G
t−1|Gt) pη(yG|Gt−1), pη cannot

be evaluated for all possible values of Gt−1. To overcome this issue, we view G as a continuous

6

Published as a conference paper at ICLR 2023

Algorithm 3: Sampling from DiGress with discrete regressor guidance.
Input: Unconditional model ϕθ, property regressor g, target y, guidance scale λ, graph size n
Sample GT ∼ qX(n)× qE(n) ▷ Random graph
for t = T to 1 do

z ← f(Gt, t) ▷ Structural and spectral features
p̂X , p̂E ← ϕθ(G

t, z) ▷ Forward pass
ŷ ← gη(G

t) ▷ Regressor model
pη(ŷ|Gt−1) ∝ exp(−λ ⟨∇Gt ||ŷ − y||2, Gt−1⟩) ▷ Guidance distribution
Sample Gt−1 ∼ pθ(G

t−1|Gt) pη(ŷ|Gt−1) ▷ Reverse process
end
return G0

tensor of order n+ n2 (so that∇G can be defined) and use a first-order approximation. It gives:

log q̇(yG|Gt−1) ≈ log q̇(yG|Gt) + ⟨∇G log q̇(yG|Gt), Gt−1 −Gt⟩

≈ c(Gt) +
∑

1≤i≤n

⟨∇xi
log q̇(yG|Gt),xt−1

i ⟩+
∑

1≤i,j≤n

⟨∇eij log q̇(yG|Gt), et−1
ij ⟩

for a function c that does not depend on Gt−1. We make the additional assumption that q̇(yG|Gt) =
N (g(Gt), σyI), where g is estimated by gη , so that ∇Gt log q̇η(y|Gt) ∝ −∇Gt ||ŷ − yG||2. The
resulting procedure is presented in Algorithm 3.

In addition to being conditioned on graph-level properties, our model can be used to extend an exist-
ing subgraph – a task called molecular scaffold extension in the drug discovery literature (Maziarz
et al., 2022). In Appendix E, we explain how to do it and demonstrate it on a simple example.

6 RELATED WORK

Several works have recently proposed discrete diffusion models for text, images, audio, and at-
tributed point clouds (Austin et al., 2021; Yang et al., 2022; Luo et al., 2022). Our work, DiGress,
is the first discrete diffusion model for graphs. Concurrently, Haefeli et al. (2022) designed a model
limited to unattributed graphs, and similarly observed that discrete diffusion is beneficial for graph
generation. Previous diffusion models for graphs were based on Gaussian noise: Niu et al. (2020)
generated adjacency matrices by thresholding a continuous value to indicate edges, and Jo et al.
(2022) extended this model to handle node and edge attributes.

Trippe et al. (2022), Hoogeboom et al. (2022) and Wu et al. (2022) define diffusion models for
molecule generation in 3D. These models actually solve a point cloud generation task, as they gen-
erate atomic positions rather than graph structures and thus require conformer data for training.
On the contrary, Xu et al. (2022) and Jing et al. (2022) define diffusion model for conformation
generation – they input a graph structure and output atomic coordinates.

Apart from diffusion models, there has recently been a lot of interest in non-autoregressive graph
generation using VAEs, GANs or normalizing flows (Zhu et al., 2022). (Madhawa et al., 2019; Lippe
& Gavves, 2021; Luo et al., 2021) are examples of discrete models using categorical normalizing
flows. However, these methods have not yet matched the performance of autoregressive models
(Liu et al., 2018; Liao et al., 2019; Mercado et al., 2021) and motifs-based models (Jin et al., 2020;
Maziarz et al., 2022), which can incorporate much more domain knowledge.

7 EXPERIMENTS

In our experiments, we compare the performance of DiGress against several state-of-the-art one-
shot graph generation methods on both molecular and non-molecular benchmarks. We compare its
performance against Set2GraphVAE (Vignac & Frossard, 2021), SPECTRE (Martinkus et al., 2022),
GraphNVP (Madhawa et al., 2019), GDSS (Jo et al., 2022), GraphRNN (You et al., 2018), GRAN
(Liao et al., 2019), JT-VAE (Jin et al., 2018), NAGVAE (Kwon et al., 2020) and GraphINVENT

7

Published as a conference paper at ICLR 2023

Table 2: Molecule generation on QM9. Training time is the time needed to reach 99% validity. On
small graphs, DiGress achieves similar results to the continuous model but is faster to train.

Method NLL Valid Unique Training time (h)

Dataset – 99.3 100 –

Set2GraphVAE – 59.9 93.8 –
SPECTRE – 87.3 35.7 –
GraphNVP – 83.1 99.2 –
GDSS – 95.7 98.5 –
ConGress (ours) – 98.9±.1 96.8±.2 7.2
DiGress (ours) 69.6±1.5 99.0±.1 96.2±.1 1.0

(Mercado et al., 2021). We also build Congress, a model that has the same denoising network as
DiGress but Gaussian diffusion (Appendix A). Our results are presented without validity correction1.

7.1 GENERAL GRAPH GENERATION

Table 1: Unconditional generation on SBM and planar
graphs. VUN: valid, unique & novel graphs.

Model Deg ↓ Clus ↓ Orb↓ V.U.N. ↑
Stochastic block model
GraphRNN 6.9 1.7 3.1 5 %
GRAN 14.1 1.7 2.1 25%
GG-GAN 4.4 2.1 2.3 25%
SPECTRE 1.9 1.6 1.6 53%
ConGress 34.1 3.1 4.5 0%
DiGress 1.6 1.5 1.7 74%

Planar graphs
GraphRNN 24.5 9.0 2508 0%
GRAN 3.5 1.4 1.8 0%
SPECTRE 2.5 2.5 2.4 25%
ConGress 23.8 8.8 2590 0%
DiGress 1.4 1.2 1.7 75%

Figure 3: Samples from DiGress trained
on SBM and planar graphs.

We first evaluate DiGress on the benchmark proposed in Martinkus et al. (2022), which consists
of two datasets of 200 graphs each: one drawn from the stochastic block model (with up to 200
nodes per graph), and another dataset of planar graphs (64 nodes per graph). We evaluate the ability
to correctly model various properties of these graphs, such as whether the generated graphs are
statistically distinguishable from the SBM model or if they are planar and connected. We refer to
Appendix F for a description of the metrics. In Table 1, we observe that DiGress is able to capture
the data distribution very effectively, with significant improvements over baselines on planar graphs.
In contrast, our continuous model, ConGress, performs poorly on these relatively large graphs.

7.2 SMALL MOLECULE GENERATION

We then evaluate our model on the standard QM9 dataset (Wu et al., 2018) that contains molecules
with up to 9 heavy atoms. We use a split of 100k molecules for training, 20k for validation and
13k for evaluating likelihood on a test set. We report the negative log-likelihood of our model,
validity (measured by RDKit sanitization) and uniqueness over 10k molecules. Novelty results are
discussed in Appendix F. 95% confidence intervals are reported based on five runs. Results are
presented in Figure 2. Since ConGress and DiGress both obtain close to perfect metrics on this
dataset, we also perform an ablation study on a more challenging version of QM9 where hydrogens
are explicitly modeled in Appendix F. It shows that the discrete framework is beneficial and that
marginal transitions and auxiliary features further boost performance.

1Code is available at github.com/cvignac/DiGress.

8

github.com/cvignac/DiGress

Published as a conference paper at ICLR 2023

Table 3: Molecule generation on MOSES. DiGress is the first one-shot graph model that scales
to this dataset. While all graph-based methods except ours have hard-coded rules to ensure high
validity, DiGress outperforms GraphInvent on most other metrics.

Model Class Val ↑ Unique↑ Novel↑ Filters↑ FCD↓ SNN↑ Scaf↑
VAE SMILES 97.7 99.8 69.5 99.7 0.57 0.58 5.9
JT-VAE Fragment 100 100 99.9 97.8 1.00 0.53 10
GraphINVENT Autoreg. 96.4 99.8 – 95.0 1.22 0.54 12.7
ConGress (ours) One-shot 83.4 99.9 96.4 94.8 1.48 0.50 16.4
DiGress (ours) One-shot 85.7 100 95.0 97.1 1.19 0.52 14.8

Table 4: Molecule generation on GuacaMol. We report scores, so that higher is better for all metrics.
While SMILES seem to be the most efficient molecular representation, DiGress is the first general
graph generation method that achieves correct performance, as visible on the FCD score.

Model Class Valid↑ Unique↑ Novel↑ KL div↑ FCD↑
LSTM Smiles 95.9 100 91.2 99.1 91.3
NAGVAE One-shot 92.9 95.5 100 38.4 0.9
MCTS One-shot 100 100 95.4 82.2 1.5
ConGress (ours) One-shot 0.1 100 100 36.1 0.0
DiGress (ours) One-shot 85.2 100 99.9 92.9 68.0

7.3 CONDITIONAL GENERATION

Figure 4: Mean absolute error on conditional gen-
eration with discrete regression guidance on QM9.

Target µ HOMO µ & HOMO

Uncondit. 1.71±.04 0.93±.01 1.34±.01

Guidance 0.81±.04 0.56±.01 0.87±.03

To measure the ability of DiGress to condi-
tion the generation on graph-level properties,
we propose a conditional generation setting on
QM9. We sample 100 molecules from the
test set and retrieve their dipole moment µ and
the highest occupied molecular orbit (HOMO).
The pairs (µ,HOMO) constitute the conditioning vector that we use to generate 10 molecules. To
evaluate the ability of a model to condition correctly, we need to estimate the properties of the gener-
ated samples. To do so, we use RdKit (Landrum et al., 2006) to produce conformers of the generated
graphs, and then Psi4 (Smith et al., 2020) to estimate the values of µ and HOMO. We report the mean
absolute error between the targets and the estimated values for the generated molecules (Fig. 4).

7.4 MOLECULE GENERATION AT SCALE

We finally evaluate our model on two much more challenging datasets made of more than a million
molecules: MOSES (Polykovskiy et al., 2020), which contains small drug-like molecules, and Gua-
caMol (Brown et al., 2019), which contains larger molecules. DiGress is to our knowledge the first
one-shot generative model that is not based on molecular fragments and that scales to datasets of
this size. The metrics used as well as additional experiments are presented in App. F. For MOSES,
the reported scores for FCD, SNN, and Scaffold similarity are computed on the dataset made of
separate scaffolds, which measures the ability of the networks to predict new ring structures. Re-
sults are presented in Tables 3 and 4: they show that DiGress does not yet match the performance
of SMILES and fragment-based methods, but performs on par with GraphInvent, an autoregressive
model fine-tuned using chemical softwares and reinforcement learning. DiGress thus bridges the
important gap between one-shot methods and autoregressive models that previously prevailed.

8 CONCLUSION

We proposed DiGress, a denoising diffusion model for graph generation that operates on a discrete
space. DiGress outperforms existing one-shot generation methods and scales to larger molecular
datasets, reaching the performance of autogressive models trained using expert knowledge.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

We thank Nikos Karalias, Éloi Alonso and Karolis Martinkus for their help and useful suggestions.
Clément Vignac thanks the Swiss Data Science Center for supporting him through the PhD fellow-
ship program (grant P18-11). Igor Krawczuk and Volkan Cevher acknowledge funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innova-
tion programme (grant agreement n°725594 - time-data).

This work is licensed under a Creative Commons “Attribution 3.0 Un-
ported” license.

REFERENCES

Jacob Austin, Daniel Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34, 2021. 2, 7

Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro
Liò. Directional graph networks. In International Conference on Machine Learning, pp. 748–
758. PMLR, 2021. 6

Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022. 6

Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, and Oleksandr Polozov. Generative
code modeling with graphs. In International Conference on Learning Representations (ICLR),
2019. 1

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
models for de novo molecular design. Journal of chemical information and modeling, 59(3):
1096–1108, 2019. 9

Davide Buffelli, Pietro Liò, and Fabio Vandin. Sizeshiftreg: a regularization method for improving
size-generalization in graph neural networks. arXiv preprint arXiv:2207.07888, 2022. 21

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020. 6,
15

Fan RK Chung and Fan Chung Graham. Spectral graph theory, volume 92. American Mathematical
Soc., 1997. 6

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021. 1, 6

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021. 4

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Diffu-
sion models for graphs benefit from discrete state spaces. arXiv preprint arXiv:2210.01549, 2022.
7

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf. 1, 2, 14

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv preprint arXiv:2204.03458, 2022. 1

10

https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en
https://creativecommons.org/licenses/by/3.0/deed.en
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

Published as a conference paper at ICLR 2023

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in Neural Information
Processing Systems, 34, 2021. 2

Emiel Hoogeboom, Vicctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant dif-
fusion for molecule generation in 3d. In International Conference on Machine Learning, pp.
8867–8887. PMLR, 2022. 6, 7, 20

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018. 7

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular graphs
using structural motifs. In International Conference on Machine Learning, pp. 4839–4848.
PMLR, 2020. 7

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional diffu-
sion for molecular conformer generation. arXiv preprint arXiv:2206.01729, 2022. 7

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. arXiv preprint arXiv:2202.02514, 2022. 1, 2, 7, 14,
19, 20

Daniel D Johnson, Jacob Austin, Rianne van den Berg, and Daniel Tarlow. Beyond in-place corrup-
tion: Insertion and deletion in denoising probabilistic models. arXiv preprint arXiv:2107.07675,
2021. 2

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-
vances in neural information processing systems, 34:21696–21707, 2021. 13, 16

Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: Exact likelihood generative learning
for symmetric densities. In Proceedings of the 37th International Conference on Machine Learn-
ing, ICML, volume 119 of Proceedings of Machine Learning Research, pp. 5361–5370. PMLR,
2020. 4

Youngchun Kwon, Dongseon Lee, Youn-Suk Choi, Kyoham Shin, and Seokho Kang. Compressed
graph representation for scalable molecular graph generation. Journal of Cheminformatics, 12
(1):1–8, 2020. 7

Greg Landrum et al. Rdkit: Open-source cheminformatics. 2006. 9

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamilton, David
Duvenaud, Raquel Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent
attention networks. In NeurIPS, 2019. 7

Phillip Lippe and Efstratios Gavves. Categorical normalizing flows via continuous transfor-
mations. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=-GLNZeVDuik. 7

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph varia-
tional autoencoders for molecule design. Advances in neural information processing systems, 31,
2018. 1, 7

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471, 2022.
19

Shitong Luo, Yufeng Su, Xingang Peng, Sheng Wang, Jian Peng, and Jianzhu Ma. Antigen-specific
antibody design and optimization with diffusion-based generative models. bioRxiv, 2022. 7

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In Proceedings of the 38th International Conference on Machine Learning (ICML),
pp. 7192–7203, 2021. 7

11

https://openreview.net/forum?id=-GLNZeVDuik
https://openreview.net/forum?id=-GLNZeVDuik

Published as a conference paper at ICLR 2023

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An in-
vertible flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.
7

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. Advances in neural information processing systems, 32, 2019. 6

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spec-
tral conditioning helps to overcome the expressivity limits of one-shot graph generators. arXiv
preprint arXiv:2204.01613, 2022. 7, 8, 19

Krzysztof Maziarz, Henry Richard Jackson-Flux, Pashmina Cameron, Finton Sirockin, Nadine
Schneider, Nikolaus Stiefl, Marwin Segler, and Marc Brockschmidt. Learning to extend molec-
ular scaffolds with structural motifs. In International Conference on Learning Representations
(ICLR), 2022. 7, 19

Rocı́o Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming
Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. Machine Learning:
Science and Technology, 2(2):025023, 2021. 7, 8

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.
5

Christopher Morris, Gaurav Rattan, Sandra Kiefer, and Siamak Ravanbakhsh. Speqnets: Sparsity-
aware permutation-equivariant graph networks. arXiv preprint arXiv:2203.13913, 2022. 6

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation invariant graph generation via score-based generative modeling. In International Con-
ference on Artificial Intelligence and Statistics, pp. 4474–4484. PMLR, 2020. 1, 2, 7

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018. 4

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
Veselov, et al. Molecular sets (moses): a benchmarking platform for molecular generation models.
Frontiers in pharmacology, 11:565644, 2020. 9

Daniel GA Smith, Lori A Burns, Andrew C Simmonett, Robert M Parrish, Matthew C Schieber,
Raimondas Galvelis, Peter Kraus, Holger Kruse, Roberto Di Remigio, Asem Alenaizan, et al.
Psi4 1.4: Open-source software for high-throughput quantum chemistry. The Journal of chemical
physics, 152(18):184108, 2020. 9

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In Francis R. Bach and David M. Blei
(eds.), Proceedings of the 32nd International Conference on Machine Learning, ICML, 2015. 1,
2, 6, 16

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019. 2

Brian L Trippe, Jason Yim, Doug Tischer, Tamara Broderick, David Baker, Regina Barzilay, and
Tommi Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
scaffolding problem. arXiv preprint arXiv:2206.04119, 2022. 7

Clement Vignac and Pascal Frossard. Top-n: Equivariant set and graph generation without ex-
changeability. arXiv preprint arXiv:2110.02096, 2021. 7, 20

Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
neural networks with structural message-passing. Advances in Neural Information Processing
Systems, 33:14143–14155, 2020. 6

12

Published as a conference paper at ICLR 2023

Fang Wu, Qiang Zhang, Xurui Jin, Yinghui Jiang, and Stan Z. Li. A score-based geometric model for
molecular dynamics simulations. CoRR, abs/2204.08672, 2022. doi: 10.48550/arXiv.2204.08672.
URL https://doi.org/10.48550/arXiv.2204.08672. 7

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chem. Sci., 9:513–530, 2018. doi: 10.1039/C7SC02664A. URL http://dx.doi.org/
10.1039/C7SC02664A. 8

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km. 2, 5

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A
geometric diffusion model for molecular conformation generation. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
PzcvxEMzvQC. 7, 17

Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu.
Diffsound: Discrete diffusion model for text-to-sound generation. arXiv e-prints, pp. arXiv–2207,
2022. 2, 7

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International conference on machine
learning, pp. 5708–5717. PMLR, 2018. 7

James Jian Qiao Yu and Jiatao Gu. Real-time traffic speed estimation with graph convolutional
generative autoencoder. IEEE Transactions on Intelligent Transportation Systems, 20(10):3940–
3951, 2019. 1

Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A survey
on deep graph generation: Methods and applications. arXiv preprint arXiv:2203.06714, 2022. 7

A CONTINUOUS GRAPH DENOISING DIFFUSION MODEL (CONGRESS)

In this section we present a diffusion model for graphs that uses Gaussian noise rather than a discrete
diffusion process. Its denoising network is the same as the one of our discrete model. Our goal is
to show that the better performance obtained with DiGress is not only due to the neural network
design, but also to the discrete process itself.

A.1 DIFFUSION PROCESS

Consider a graph G = (X,E). Similarly to the discrete diffusion model, this diffusion process adds
noise independently on each node and each edge, but this time the noise considered is Gaussian:

q(Xt|Xt−1) = N (αt|t−1Xt−1, (σt|t−1)2I) and q(Et|Et−1) = N (αt|t−1Et−1, (σt|t−1)2I)
(7)

This process can equivalently be written:

q(Xt|X) = N (Xt|αtX, σtI) q(Et|E) = N (Et|αtE, σtI) (8)

where αt|t−1 = αt/αt−1 and (σt|t−1)2 = (σt)2 − (αt|t−1)2(σt−1)2.

The variance is chosen as (σt)2 = 1 − (αt)2 in order to obtain a variance-preserving process
(Kingma et al., 2021). Similarly to DiGress, when we consider undirected graphs, we only apply the
noise on the upper-triangular part of E without the main diagonal, and then symmetrize the matrix.
The true denoising process can be computed in closed-form:

q(Xt−1|X,Xt) = N (µt→t−1(X,Xt), (σt→t−1)2 I) (and similarly for E), (9)

13

https://doi.org/10.48550/arXiv.2204.08672
http://dx.doi.org/10.1039/C7SC02664A
http://dx.doi.org/10.1039/C7SC02664A
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=PzcvxEMzvQC
https://openreview.net/forum?id=PzcvxEMzvQC

Published as a conference paper at ICLR 2023

Algorithm 4: Training ConGress
Input: A graph G = (X,E)
Sample t ∼ U(1, ..., T)
Sample ϵX ∼ N (0, In)
Sample ϵE ∼ N (0, In(n−1)/2) and symmetrize if needed
zt ← αt(X,E) + σt (ϵX , ϵE) ▷ Add noise
Minimize ||(ϵX , ϵE)− ϕθ(z

t, t)||2

Algorithm 5: Sampling from ConGress
Sample n from the training data distribution
Sample ϵX ∼ N (0, In)
Sample ϵE ∼ N (0, In(n−1)/2) and symmetrize if needed
zT ← (ϵX , ϵE)
for t = T to 1 do

Sample ϵX ∼ N (0, In)
Sample and symmetrize ϵE ∼ N (0, In(n−1)/2)

zt−1 ← 1
αt|t−1

zt − σ2
t|t−1

αt|t−1σtϕθ(z
t, t) + σt→t−1(ϵX , ϵE) ▷ Reverse iterations

end
return argmax(X0), argmax(E0)

with

µt→t−1(X,Xt) =
αt|t−1 (σ

t−1)2

σ2
t

Xt+
αt−1 (σt|t−1)2

(σt)2
X and σt→t−1 =

σt|t−1 σt−1

σt
. (10)

As commonly done for Gaussian diffusion models, we train the denoising network to predict the
noise components ϵ̂X , ϵ̂E instead of X̂ and Ê themselves (Ho et al., 2020). Both relate as follows:

αt X̂ = Xt − σtϵ̂X and α̂tE = Et − σt ϵ̂E (11)

To optimize the network, we minimize the mean squared error between the predicted noise and
the true noise, which results in Algorithm 4 for training ConGress. Sampling is done similarly to
standard Gaussian diffusion models, except for the last step: since continuous valued features are
obtained, they must be mapped back to categorical values in order to obtain a discrete graph. For
this purpose, we then take the argmax of X0,E0 across node and edge types (Algorithm 5).

Overall, ConGress is very close to the GDSS model proposed in Jo et al. (2022), as it is also a
Gaussian-based diffusion model for graphs. An important difference is that we define a diffusion
process that is independent for each node and edge, while GDSS uses a more complex noise model
that does not factorize. We observe empirically that a simple noise model does not hurt performance,
since ConGress outperforms GDSS on QM9 (Table 2).

B NEURAL NETWORK PARAMETRIZATION

B.1 GRAPH TRANSFORMER NETWORK

Figure 5: Architec-
ture of the denoising
network.

The parametrization of our denoising network is presented in Figure 5. It
takes as input a noisy graph (X,E) and predicts a distribution over the clean
graphs. We compute structural and spectral features in order to improve the
network expressivity. Internally, each layer manipulates nodes features X ,
edge features E but also graph level features y. Each graph transformer
layer is made of a graph attention module (presented in Figure 6), as well as
a fully-connected layers and layer normalization.

14

Published as a conference paper at ICLR 2023

Figure 6: The self-attention module of our graph transformer network. It takes as input node features
X , edge features E and global features y, and updates their representation. These features are then
passed to normalization layers and a fully connected network, similarly to the standard transformer
architecture. FiLM(M1,M2) = M1W1 + (M1W2) ⊙M2 +M2 for learnable weight matrices
W1 and W2, and PNA(X) = cat(max(X),min(X),mean(X), std(X))W .

B.2 AUXILIARY STRUCTURAL AND SPECTRAL FEATURES

The structural features that we use can be divided in two types: graph-
theoretic (cycles and spectral features) and domain specific (molecular fea-
tures).

Cycles Since message-passing neural networks are unable to detect cycles (Chen et al., 2020), we
add cycle counts to our model. Because computing traversals would be impractical on GPUs (all
the more as these features are recomputed at every diffusion step), we use formulas for cycles up to
size 6. We build node features (how many k−cycles does this node belong to?) for up to 5-cycles,
and graph-level features (how many k−cycles does this graph contain?) for up to k = 6. We use
the following formulas, where d denotes the vector containing node degrees and ||.||F is Frobenius

15

Published as a conference paper at ICLR 2023

norm:

X3 = diag(A3)/2

X4 = (diag(A4)− d(d− 1)−A(d1T
n)1n)/2

X5 = (diag(A5)− 2 diag(A3)⊙ d−A(diag(A3)1T
n)1n + diag(A3))/2

y3 = XT
3 1n/3

y4 = XT
4 1n/4

y5 = XT
5 1n/5

y6 = Tr(A6)− 3Tr(A3 ⊙A3) + 9||A(A2 ⊙A2)||F − 6 ⟨diag(A2),diag(A4)⟩
+ 6Tr(A4)− 4Tr(A3) + 4Tr(A2Ȧ2 ⊙A2) + 3||A3||F − 12Tr(A2 ⊙A2) + 4Tr(A2)

Spectral features We also add the option to incorporate spectral features to the model. While this
requires a O(n3) eigendecomposition, we find that it is not a limiting factor for the graphs that we
use in our experiments (that have up to 200 nodes). We first compute some graph-level features that
relate to the eigenvalues of the graph Laplacian: the number of connected components (given by
the multiplicity of eigenvalue 0), as well as the 5 first nonzero eigenvalues. We then add node-level
features relative to the graph eigenvectors: an estimation of the biggest connected component (using
the eigenvectors associated to eigenvalue 0), as well as the two first eigenvectors associated to non
zero eigenvalues.

Molecular features On molecular datasets, we also incorporate the current valency of each atom
and the current molecular weight of the full molecule.

C LIKELIHOOD COMPUTATION

Figure 7: The graphical model of DiGress and ConGress

The graphical model associated to our problem is presented in figure 7: the graph size is sampled
from the training distribution and kept constant during diffusion. One can notice the similarity
between this graphical model and hierarchical variational autoencoders (VAEs): diffusion models
can in fact be interpreted as a particular instance of VAE where the encoder (i.e., the diffusion
process) is fixed. The likelihood of a data point x under the model writes:

log pθ(G) = log
∑
n∈N

p(n)

∫
p(GT | n) pθ(Gt−1, . . . , G1|GT) pθ(G|G1) d(G1, . . . , GT) (12)

= log p(nG) + log

∫
p(GT | nG)

T∏
t=2

pθ(G
t−1 | Gt) pθ(G|G1) d(G1, . . . , GT) (13)

As for VAEs, an evidence lower bound (ELBO) for this integral can be computed (Sohl-Dickstein
et al., 2015; Kingma et al., 2021). It writes:

log pθ(G) ≥ log p(nG)+DKL[q(G
T |G) || qX(nG)× qE(nG)]︸ ︷︷ ︸

Prior loss

+

T∑
t=2

Lt(x)︸ ︷︷ ︸
Diffusion loss

+Eq(G1|G)[log pθ(G|G1)]︸ ︷︷ ︸
Reconstruction loss

(14)
with

Lt(G) = Eq(Gt|G)

[
DKL[q(G

t−1|Gt, G) || pθ(Gt−1|Gt)]
]

(15)

All these terms can be estimated: log p(nG) is computed using the frequencies of the number of
nodes for each graph in the dataset. The prior loss and the diffusion loss are KL divergences be-
tween categorical distribution, and the reconstruction loss is simply computed from the predicted
probabilities for the clean graph given the last noisy graph G1.

16

Published as a conference paper at ICLR 2023

D PROOFS

True posterior distribution

We recall the derivation of the true posterior distribution q(zt−1|zt, x) ∝ zt (Qt)′ ⊙ x Q̄t−1.

By Bayes rule, we have:
q(zt−1|zt, x) ∝ q(zt|zt−1, x) q(zt−1|x)

Since the noise is Markovian, q(zt|zt−1, x) = q(zt|zt−1). A second application of Bayes rule gives
q(zt|zt−1) ∝ q(zt−1|zt)q(zt).
By writing the definition of Qt, we then observe that q(zt−1|zt) = zt (Qt)′. We also have
q(zt−1|x) = x Q̄t−1 by definition.

Finally, we observe that q(zt) does not depend on zt−1. It can therefore be seen as a part of the
normalization constant. By combining the terms, we have q(zt−1|zt, x) ∝ zt (Qt)′ ⊙ x Q̄t−1 as
desired.

Lemma 3.1: Equivariance

Proof. Consider a graph G with n nodes, and π ∈ Sn a permutation. π acts trivially on y (π.y = y),
it acts on X as π.X = π′X and on E as:

(π.E)ijk = Eπ−1(i),π−1(j),k

Let Gt = (Xt,Et) be a noised graph, and (π.Xt, π.Et) its permutation. Then:

• Our spectral and structural features are all permutation equivariant (for the node features)
or invariant (for the graph level features): f(π.Gt, t) = π.f(Gt, t).

• The self-attention architecture is permutation equivariant. The FiLM blocks are permuta-
tion equivariant, and the PNA pooling function is permutation invariant.

• Layer-normalization is permutation equivariant.

DiGress is therefore the combination of permutation equivariant blocks. As a result, it is permutation
equivariant: ϕθ(π.G

t, f(π.Gt, t)) = π.ϕθ(G
t, f(Gt, t)).

Lemma 3.2: Invariant loss

Proof. It is important that the loss function be the same for each node and each edge in order to
guarantee that

l(π.Ĝ, π.G) =
∑
i

lX(π.X̂i, xπ−1(i)) +
∑
i,j

lE(π.Êij , eπ−1(i),π−1(j))

=
∑
i

lX(X̂i, xi) +
∑
i,j

lE(Êij , ei,j)

= l(Ĝ,G)

Lemma 3.3: Exchangeability

Proof. The proof relies on the result of Xu et al. (2022): if a distribution p(GT) is invariant to
the action of a group G and the transition probabilities p(Gt−1|Gt) are equivariant, them p(G0) is
invariant to the action of G. We apply this result to the special case of permutations:

• The limit noise distribution is the product of i.i.d. distributions on each node and edge. It
is therefore permutation invariant.

• The denoising neural networks is permutation equivariant.
• The function p̂θ(G) → pθ(G

t−1|Gt) =
∑

G q(Gt−1, G|Gt)p̂θ(G) defining the transition
probabilities is equivariant to joint permutations of p̂θ(G) and Gt.

The conditions of (Xu et al., 2022) are therefore satisfied, and the model satisfies P(X,E) =
P (π.X, π.E) for any permutation π.

17

Published as a conference paper at ICLR 2023

Theorem 4.1: Optimal prior distribution We first prove the following result:
Lemma D.1. Let p be a discrete distribution over two variables. It is represented by a matrix
P ∈ Ra×b. Let m1 and m2 the marginal distribution of p: m1

i =
∑b

j=1 pij and m2
i =

∑a
i=1 pij .

Then
(m1,m2) ∈ argmin

u,v
u≥0,

∑
ui=1

v≥0,
∑

vj=1

||P − u v′||22

Proof. We define L(u,v) := ||P − uv′||22 =
∑

i,j(pij − uivj)
2. We derive this formula to obtain

optimality conditions:

L

∂ui
= 0 ⇐⇒

∑
j

(pij − uivj)vi = 0

⇐⇒
∑
j

pijvj = ui

∑
j

v2j

⇐⇒ ui =
∑
j

pijvj /
∑
j

v2j

Similarly, we have ∂L
∂vj

= 0 ⇐⇒ vj =
∑

i pijui /
∑

j u
2
i .

Since p, u and v are probability distributions, we have
∑

i,j pi,j = 1,
∑

i ui = 1 and
∑

j vj = 1.
Combining these equations, we have:

ui =

∑
j pijvj∑
j v

2
j

=⇒
∑
i

ui = 1 =

∑
i,j pijvj∑

j v
2
j

⇐⇒
∑
j

v2j =
∑
j

(
∑
i

pij)vj

⇐⇒
∑
j

v2j =
∑
j

bjvj

So that:
ui0 =

∑
j pi0jvj∑
j bjvj

=

∑
j pi0j

∑
i pijui∑
i aiui∑

j bj
∑

i pijui∑
i aiui

=
∑
j

pi0j = m1
i0

and similarly vj0 = bi0 . Conversely, m1 and m2 belong to the set of feasible solutions.

We have proved that the product distribution that is the closest to the true distribution of two variables
is the product of marginals (for l2 distance). We need to extend this result to a product

∏n
i=1 u ×∏

1≤i,j≤n v of a distribution for nodes and a distribution for edges.

We now view p as a tensor in dimension anbn
2

. We denote pX the marginalisation of this tensor
across the node dimensions (pX ∈ Ran

), and pE the marginalisation across the edge dimensions
(pE ∈ Rbn×n

). By flattening the n first dimensions and the n2 next, p can be viewed as a distribution
over two variables (a distribution for the nodes and a distribution for the edges). By application of
our Lemma, pX and pE are the optimal approximation of p. However, pX is a joint distribution for
all nodes and not the product

∏n
i=1 u of a single distribution for all nodes.

We then notice that:

||
n∏

i=1

u− pX ||22 =
∑
i

||u||2 − 2
∑
i

⟨u, pXi ⟩+
∑
i

||pXi ||2

= n (||u||2 − 2 ⟨u, 1
n

∑
i

pXi ⟩+
1

n

∑
i

||pXi ||2)

= ||u− 1

n

∑
i

pXi ||22 + f(pX)

18

Published as a conference paper at ICLR 2023

Figure 8: An example of molecular scaffold extension. We sometimes observe long-range consis-
tency issues in the generated samples, which is in line with the observations of (Lugmayr et al.,
2022) for image data. A resampling strategy similar to theirs could be used to solve this issue.

for a function f that does not depend on u. As
∑

i p
X
i /n is exactly the empirical distribution of node

types, the optimal u is the empirical distribution of node types as desired. Overall, we have made
two orthogonal projections: a projection from the distributions over graphs to the distributions over
nodes, and a projection from the distribution over nodes to the product distributions u × · · · × u.
Since the product distributions forms a linear space contained in the distributions over nodes, these
two projections are equivalent to a single orthogonal projection from the distributions over graphs
to the product distributions over nodes. A similar reasoning holds for edges.

E SUBSTRUCTURE CONDITIONED GENERATION

Given a subgraph S = (XS ,ES) with ns nodes, we can condition the generation on S by masking
the generated node and edge feature tensor at each reverse iteration step (Lugmayr et al., 2022).
As our model is permutation equivariant, it does not matter what entries are masked: we therefore
choose the first ns ones. After sampling Gt−1, we update X and E using

Xt−1 = MX ⊙Xs + (1−MX)⊙Xt−1 and Et−1 = ME ⊙Es + (1−ME)⊙ Et−1,

where MX ∈ Rn×a and ME ∈ Rn×n×b are masks indicating the ns first nodes. In Figure 8, we
showcase an example for molecule generation: we follow the setting proposed by (Maziarz et al.,
2022) and generate molecules starting from a particular motif called 1,4-Dihydroquinoline2.

F EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

F.1 ABSTRACT GRAPH GENERATION

Metrics The reported metrics compare the discrepancy between the distribution of some metrics
on a test set and the distribution of the same metrics on a generated graph. The metrics measured
are degree distributions, clustering coefficients, and orbit counts (it measures the distribution of all
substructures of size 4). We do not report raw numbers but ratios computed as follows:

r = MMD(generated, test)2 /MMD(training, test)2

The denominator MMD(training, test)2 is taken from the results table of SPECTRE (Martinkus
et al., 2022). Note that what the authors report as MMD is actually MMD squared.

Community-20 In Table 5, we also provide results for the smaller Community-20 dataset which
contains 200 graphs drawn from a stochastic block model with two communities. We observe that
DiGress performs very well on this small dataset.

F.2 QM9

Metrics Because it is the metric reported in most papers, the validity metric we report is computed
by building a molecule with RdKit and trying to obtain a valid SMILES string out of it. As explained
by Jo et al. (2022), this method is not perfect because QM9 contains some charged molecules which
would be considered as invalid by this method. They thus compute validity using a more relaxed
definition that allows for some partial charges, which gives them a small advantage.

2https://pubchem.ncbi.nlm.nih.gov/compound/1_4-Dihydroquinoline

19

https://pubchem.ncbi.nlm.nih.gov/compound/1_4-Dihydroquinoline

Published as a conference paper at ICLR 2023

Table 5: Results on the small Community-20 dataset.

Degree↓ Clustering↓ Orbit↓ Ratio↓
GraphRNN 4.0 1.7 4.0 3.2
GRAN 3.0 1.6 1.0 1.9
GG-GAN 4.0 3.1 8.0 5.5
SPECTRE 0.5 2.7 2.0 1.7
DiGress 1.0 0.9 1.0 1.0

Table 6: Ablation study on QM9 with explicit hydrogens. Marginal transitions improve over uniform
transitions, and spectral and structural features further boost performance.

Model Valid↑ Unique↑ Atom stable↑ Mol stable↑
Dataset 97.8 100 98.5 87.0

ConGress 86.7±1.8 98.4±0.1 97.2±0.2 69.5±1.6

DiGress (uniform) 89.8±1.2 97.8±0.2 97.3±0.1 70.5±2.1

DiGress (marginal) 92.3±2.5 97.9±0.2 97.3±0.8 66.8±11.8

DiGress (marg. + features) 95.4±1.1 97.6±0.4 98.1±0.3 79.8±5.6

Ablation study We perform an ablation study in order to highlight the role of marginal transitions
and auxiliary features. In this setting, we also measure atom stability and molecule stability as
defined in (Hoogeboom et al., 2022). Results are presented in Figure 6.

Novelty We follow Vignac & Frossard (2021) and don’t report novelty for QM9 in the main table.
The reason is that since QM9 is an exhaustive enumeration of the small molecules that satisfy a
given set of constrains, generating molecules outside this set is not necessarily a good sign that the
network has correctly captured the data distribution. For the interested reader, DiGress achieves on
average a novelty of 33.4% on QM9 with implicit hydrogens, while ConGress obtains 40.0%.

F.3 MOSES AND GUACAMOL

Datasets For both MOSES and GuacaMol, we convert the generated graphs to SMILES using the
code of Jo et al. (2022) that allows for some partial charges.

We note that GuacaMol contains complex molecules that are difficult to process, for example be-
cause they contain formal charges or fused rings. As a result, mapping the train smiles to a graph
and then back to a train SMILES does not work for around 20% of the molecules. Even if our
model is able to correctly model these graphs and generate graphs that are similar, these graphs can-
not be mapped to SMILES strings to be evaluated by GuacaMol. More efficient tools for processing
complex molecules as graphs are therefore needed to truly achieve good performance on this dataset.

Metrics Since MOSES and Guacamol are benchmarking tools, they come with their own set of
metrics that we use to report the results. We briefly describe this metrics: Validity measures the
proportion of molecules that pass basic valency checks. Uniqueness measures the proportion of
molecules that have different SMILES strings (which implies that they are non-isomorphic). Novelty
measures the proportion of generated molecules that are not in the training set. The filter score
measures the proportion of molecules that pass the same filters that were used to build the test set.
The Frechet ChemNetDistance (FCD) measures the similarity between molecules in the training
set and in the test set using the embeddings learned by a neural network. SNN is the similarity to a
nearest neighbor, as measured by Tanimoto distance. Scaffold similarity compares the frequencies of
Bemis-Murcko scaffolds. The KL divergence compares the distribution of various physicochemical
descriptors.

Likelihood Since other methods did not report likelihood for GuacaMol and MOSES, we did not
include our NLL results in the table neither. We obtain a test NLL of 129.7 on QM9 with explicit
hydrogens, 205.2 on MOSES (on the separate scaffold test set) and 308.1 on GuacaMol.

20

Published as a conference paper at ICLR 2023

Table 7: Proportion of valid and unique molecules obtained when sampling larger molecules than
the maximal size in the training set. Interestingly, DiGress performs very well on GuacaMol and
poorly on MOSES. We hypothesize that this is due to GuacaMol being a more diverse dataset, which
forces the network to learn to generate good molecules of all sizes.

Dataset statistics Valid and unique (%)
nmin naverage nmax nmax + 5 nmax + 10 nmax + 20

MOSES 8 21.7 27 2.6 2.2 0.0
GuacaMol 2 27.8 88 87.3 85.6 80.5

Figure 9: Non curated samples generated by DiGress trained on planar graphs (top) and graphs
drawn from the stochastic block model (bottom).

Size extrapolation While the vast majority of molecules in QM9 have the same number of atoms,
molecules in MOSES and Guacamol have varying sizes. On these datasets, we would like to know
if DiGress can generate larger molecules than it has been trained on. This problem is usually called
size extrapolation in the graph neural network literature.

To measure the network ability to extrapolate, we set the number of atoms to generate to nmax + k,
where nmax is the maximal graph size in the dataset and k ∈ [5, 10, 20]. We generate 24 batches of
256 molecules (=6144 molecules) in each setting and measure the proportion of valid and unique
molecules – all these molecules are novel since they are larger than the training set.

The results are presented in Table 7. We observe an important discrepancy between the two datasets:
DiGress is very capable of extrapolation on GuacaMol, but completely fails on MOSES. This can be
explained by the respective statistics of the datasets: MOSES features molecules that are relatively
homogeneous in size. On the contrary, GuacaMol features molecules that are much larger than the
dataset average. The network is therefore trained on more diverse examples, which we conjecture is
why it learns some size invariance properties. The major difference in extrapolation ability that we
obtain clearly highlights the value of large and diverse datasets.

We finally note that our denoising network was not designed to be size invariant, as it for example
features sum aggregation functions at each layer. Specific techniques such as SizeShiftReg (Buffelli
et al., 2022) could also be used to improve the size-extrapolation ability of DiGress if needed for
downstream applications.

G SAMPLES FROM OUR MODEL

21

Published as a conference paper at ICLR 2023

Figure 10: Non curated samples generated by DiGress, trained on QM9 with implicit hydrogens
(top), and explicit hydrogens (bottom).

Figure 11: Non curated samples generated by Guacamol (top) and Moses (bottom). While there
are some failure cases (disconnected molecules or invalid molecules), our model is the first non
autoregressive method that scales to these datasets that are much more complex than the standard
QM9.

22

	Introduction
	Diffusion models
	Discrete denoising diffusion for graph generation (DiGress)
	Diffusion process and inverse denoising iterations
	Denoising network parametrization
	Equivariance properties

	Improving DiGress with marginal probabilities and structural features
	Choice of the noise model
	Structural features augmentation

	Conditional generation
	Related work
	Experiments
	General graph generation
	Small molecule generation
	Conditional generation
	Molecule generation at scale

	Conclusion
	Continuous Graph Denoising diffusion model (ConGress)
	Diffusion process

	Neural network parametrization
	Graph transformer network
	Auxiliary Structural and spectral features

	Likelihood computation
	Proofs
	Substructure conditioned generation
	Experimental details and additional results
	Abstract graph generation
	QM9
	MOSES and GuacaMol

	Samples from our model

