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1. Introduction

Somatic variant calling algorithms detect somatic
mutations in cancer genomes by analyzing sequenc-
ing data from tumor samples. While this is typ-
ically performed by comparing against a matched
normal sample, such samples are often unavailable
in clinical diagnostics or retrospective analyses of
archival tumor samples in biobanks. The lack of
a matched normal sample significantly affects vari-
ant calling accuracy due to the difficulty in distin-
guishing somatic mutations from germline muta-
tions as well as sequencing artifacts. This can neg-
atively impact cancer treatment decisions, such as
using tumor mutation burden to guide immunother-
apy recommendations, which depend on accurate
variant calling—often derived from tumor-only se-
quencing. Here, we present VarNet-T, an enhance-
ment over our previously published method, VarNet
[1], an end-to-end weakly supervised deep learning
framework for accurately identifying somatic vari-
ants from aligned tumor reads without a matched
normal sample and trained using millions of high-
confidence variants. We benchmarked VarNet-T on
publicly available whole genome benchmark tumor
sequencing datasets, demonstrating performance
significantly exceeding existing methods. Notably,
VarNet-T achieves an absolute improvement of 20%
and 33% in area under the precision-recall curve
over the next best method on two publicly available
benchmark datasets: the FDA created SEQC2 and
COLO829, respectively. Overall, the improved ac-
curacy of our method has the potential to enhance
the utility of tumor-only sequencing in precision
medicine and cancer genomics.

1.1 Related work

Multiple methods have been developed or
adapted for tumor-only somatic variant calling.
Mutect2 [2], a commonly used variant caller, can be
run in tumor-only mode. Recently, Google released
Deepsomatic [3], including models trained for
tumor-only somatic variant calling. DeepSomatic
uses convolutional neural networks trained on the
SEQC2 benchmark dataset. DeepSom [4] is another
recently published method that released multiple
pre-trained convolutional neural network models
for tumor-only whole genome somatic variant
calling. DeepSom uses variant calls first generated
by Mutect2 (tumor-only mode) as the initial call set
for prediction using its models. DeepSom includes
multiple models trained on cancer types.
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Fig. 1: Overview of VarNet-T. a Training labels were
generated from matched tumor/normal genomes
using high-confidence calls from four variant
callers. b During prediction, VarNet-T scans the
tumor genome, filters candidate mutations using
public databases, and classifies variants as somatic
or non-somatic. ¢ Genomic positions are encoded
as multi-dimensional matrices of tumor reads and
features, then processed by a CNN.

2. VarNet-T

VarNet-T is a novel framework for somatic vari-
ant calling in tumor-only samples without a matched
normal. VarNet-T uses deep convolutional neural
networks designed to process inputs lacking nor-
mal sequencing reads. VarNet-T is trained using
over 300 tumor whole genomes of seven cancer
types (Fig. 1a). High-confidence somatic mutation
calls were generated using an ensemble of muta-
tion callers using matched tumor-normal samples
to establish accurate training labels. While tumor-
normal pairs were used to generate training labels,
the input to the deep learning models do not include
normal reads. The training set included 1.25 mil-
lion high-confidence somatic SNVs and 1.05 million
high-confidence somatic indels, along with an equal
number of non-somatic sites for each. We trained
separate deep learning models for detecting somatic
SNVs and indels. In the prediction stage after train-
ing, as matched germline samples are not available,
VarNet-T uses public germline mutation databases to
exclude germline variants. VarNet-T first scans the
tumor genome to identify candidate mutations and
then filters mutations found in gnomAD v4.1 [5] or
dbSNP build 156 [6] (Fig. 1b). Additionally, VarNet-
T uses a panel of normals file to filter common se-
quencing artifacts. Aligned reads overlapping each
candidate mutation are encoded in an image-like
multi-channel numerical representation including
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base, base qualities, mapping qualities, strand bias
and reference base (Fig. 1c). This input represen-
tation is fed to the deep learning models for binary
classification as somatic vs non-somatic.
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Fig. 2: Tumor-only variant calling accuracy. a,b
Precision-recall curves for SNV calling on SEQC2
and COLO829 samples without matched normals,
showing VarNet-T achieving the highest AUPRC.
¢,d Maximum F1 scores for SNV calling on the
same samples.

3. Results

We benchmarked the performance of VarNet-T
on independent and publicly available benchmark
datasets derived from real tumor samples. Ground-
truth labels in these datasets were established us-
ing both tumor and normal samples. However, we
did not use the matched normal samples while run-
ning and evaluating the tumor-only variant callers.
We benchmarked callers on a somatic reference
callset derived from a breast cancer cell line es-
tablished by the FDA led Sequencing Quality Con-
trol Phase 2 (SEQC2) consortium [7], and COLO829
[8], a metastatic melanoma cell line with a multi-
institutionally defined reference set of somatic mu-
tations by the Translational Genomics Research In-
stitute (TGEN). These two reference datasets were
created by an ensemble approach using data from
multiple sequencing and algorithmic pipelines. The
SEQC2 dataset was partially validated with targeted
sequencing (>2,000-fold coverage) to establish high
confidence calls in the original study. On the SEQC2
dataset, VarNet-T achieved the highest Area Under
the Precision-Recall Curve (AUPRC) among bench-
marked callers by a significant margin (Fig. 2a).
VarNet-T achieved AUPRC of 0.773 on SEQC2, com-
pared to the second highest achieved by DeepSom-
ESAD (0.577). On COLO829, VarNet-T again achieved
the best performing AUPRC of 0.656 (Fig. 2b), fol-
lowed by DeepSom-LINC (0.318). F1 scores are re-
ported in Figs. 2c and 2d. Notably, VarNet-T ap-
proaches the SNV calling performance observed in
tumor-normal settings on these samples. On in-
del calling, VarNet-T again achieved the best AUPRC
scores on both SEQC2 (0.527) and COLO829 (0.101).
However, all callers performed less accurately on in-
del calling as it is generally a harder problem even in
the tumor-normal setting [1, 9].

4. Analysis

We analysed the features that the VarNet-T mod-
els focus on in the input. We computed importance
of input pixels using gradients of the model’s out-
puts with respect to its inputs, using a method called
guided backpropagation [10]. We visualized the in-
put representation used by VarNet-T (Fig. 3a) and
their associated pixel importance scores (Fig. 3b).
This analysis highlighted that VarNet-T is most atten-
tive to the candidate mutation column even though
it was not explicitly trained to do so (Fig. 3b). More-
over, the data suggests that VarNet-T also pays atten-
tion to input pixels surrounding the candidate muta-
tion site, which suggests that the model likely lever-
ages mutational signatures in the sequence con-
text. It is noteworthy that VarNet-T was trained from
scratch without including any specialized knowl-
edge of mutations and yet has managed to learn im-
portant features such as variant alleles and other rel-
evant mutation signatures in the sequence context to
solve the task.

5. Conclusion

Identification of somatic variants in tumor-only
mode is common in the setting of clinical diagnos-
tics and archival analysis of tumor banks or cell
lines. We have described a novel method for tumor-
only somatic variant calling that can substantially
outperform existing methods. Our results signifi-
cantly improve upon existing methods for genome
level mutation calling from tumor only samples,
which could play a significant role in emerging clin-
ical applications and tumor-based markers, such
as tumor mutation burden (TMB) for immunother-
apy and DNA mismatch repair (MMR) deficiency for
PARP inhibitor therapies.
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Fig. 3: Input and pixel importance visualization. a
VarNet-T encoding (base channel) of a T>C mu-
tation, with the candidate site repeated 5x. b
Heatmap of pixel importance scores averaged
over 30 mutations, showing VarNet-T focusing
on the candidate site and surrounding context.
Scores were computed via Guided Backpropaga-
tion.
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