
A Implementation Details

Kinetics action classification. Our settings mainly follow [31, 77]. Table 5a summarizes our pre-
training settings on Kinetics. Table 5b shows the corresponding fine-tuning settings for ViT-B/L/H.
For fine-tuning, we add a linear classifier layer to the encoder’s averaged tokens [18].

For fine-tuning the intermediately fine-tuned checkpoints from K600 in Table 7, we use the setting in
Table 5b with a lower learning rate (8e-4) and shorter duration (40 epochs for ViT-L; 30 for ViT-H)
and an increased drop path rate of 0.3 for ViT-H.

AVA action detection. Table 6a summarizes our fine-tuning settings on AVA [29]. The settings
mainly follow [39, 77]. We follow the detection architecture in [21, 39, 77] that adapts Faster R-
CNN [57] for video action detection. Only for the AVA results in Table 8, we use relative positions
[59, 54] (as implemented in [39]) during fine-tuning.

SSv2 action classification. Table 6b summarizes our fine-tuning settings on SSv2 [27]. The settings
mainly follow [39, 77]. For the frame sampling, we split each video into segments, and sample one
frame from each segment to form a clip following [39, 19].

Fine-tuning from image pre-training. In Table 3 we have compared with ImageNet-based super-
vised/MAE pre-training. When fine-tuning these variants for videos, we inflate the 2D kernel of the
patch embedding layer to 3D [8] and initialize the temporal position embeddings by zero.

config value
optimizer AdamW [43]
optimizer momentum β1, β2=0.9, 0.95 [9]
weight decay 0.05
learning rate 1.6e-3
learning rate schedule cosine decay [42]
warmup epochs [26] 120
epochs default 800
repeated sampling [33] 4
augmentation hflip, crop [0.5, 1]
batch size 512
gradient clipping 0.02

(a) Kinetics pre-training

config ViT-B ViT-L ViT-H
optimizer AdamW [43]
optimizer momentum β1, β2=0.9, 0.999
weight decay 0.05
learning rate 1.6e-2 4.8e-3 1.6e-3
learning rate schedule cosine decay [42]
warmup epochs [26] 5
epochs 150 100 75
repeated sampling [33] 2 2 1
augmentation RandAug (9, 0.5) [12]
batch size 768 256 256
mixup [86] 0.8
cutmix [84] 1.0
label smoothing [64] 0.1
drop path [34] 0.1 0.2 0.2
dropout [60] 0.3 0.3 0.5
layer-wise decay [11] 0.65 0.75 0.8

(b) Kinetics fine-tuning

Table 5: Settings on Kinetics.

config values
optimizer SGD
weight decay 1e-8
learning rate 7.2(L), 4.8(H)
learning rate schedule cosine decay [42]
warmup epochs [26] 5
epochs 30
batch size 128
drop path [34] 0.2
dropout [60] 0.5
layer-wise decay [11] 0.75 (L) 0.85 (H)

(a) AVA fine-tuning

config values
optimizer SGD
weight decay 1e-4
learning rate 0.64 (L) 0.32 (H)
learning rate schedule cosine decay [42]
warmup epochs [26] 3
epochs 40
augmentation RandAug (9,

0.5) [12]
batch size 256
mixup [86] 0.8
cutmix [84] 1.0
label smoothing [64] 0.1
drop path [34] 0.2
dropout [60] 0.5
layer-wise decay [11] 0.75 (L) 0.85 (H)

(b) SSv2 fine-tuning

Table 6: Settings on AVA and SSv2. (L) and (H) stands for ViT-L and ViT-H, respectively.
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pre-train extra data architecture input size top-1 top-5 FLOPs param.

scratch SlowFast [21] 64 × 2242 79.8 93.9 234 × 3 ×10 60
scratch X3D-XL [20] 16 × 3122 79.1 93.9 48 × 3 ×10 11
scratch MoViNet [36] 120 × 3202 81.5 95.3 386 × 1 × 1 31
scratch MViT-B [19] 64 × 2242 81.2 95.1 455 × 3 × 3 37
scratch MViTv2-B [19] 32 × 2242 82.9 95.7 255 × 1 × 5 51
supervised IN21K Swin-B [41] 32 × 2242 82.7 95.5 282 × 3 × 4 88
supervised IN21K Swin-L [41] 32 × 2242 83.1 95.9 604 × 3 × 4 197
supervised IN21K Swin-L [41] 32 × 3842 84.9 96.7 2107 × 5 ×10 200
BEVT [73] IN1K+DALLE Swin-B [41] 32 × 2242 81.1 n/a 282 × 3 × 4 88
MaskFeat [77] MViTv2-L [39] 16 × 2242 84.3 96.3 377 × 1 ×10 218
MaskFeat [77] MViTv2-L [39] 40 × 3522 86.7 97.3 3790 × 3 × 4 218
MaskFeat [77] K600 MViTv2-L [39] 40 × 3522 87.0 97.4 3790 × 3 × 4 218
MAE ViT-B 16 × 2242 81.3 94.9 180 × 3 × 7 87
MAE ViT-L 16 × 2242 84.8 96.2 598 × 3 × 7 304
MAE ViT-H 16 × 2242 85.1 96.6 1193 × 3 × 7 632
MAE ViT-L 40 × 3122 85.8 96.9 4757 × 3 × 7 304
MAE ViT-H 32 × 3122 86.0 97.0 6382 × 3 × 7 632
MAE K600 ViT-L 16 × 2242 86.5 97.2 598 × 3 × 7 304
MAE K600 ViT-H 16 × 2242 86.8 97.2 1193 × 3 × 7 632
using in-house data for supervision:
supervised JFT-300M ViViT-L [2] 32 × 3202 83.5 94.3 3980 × 3 × 1 308
supervised JFT-300M ViViT-H [2] 32 × 3202 84.9 95.8 3981 × 3 × 4 654
supervised + text FLD-900M Florence [83] n/a × 3842 86.5 97.3 n/a × 3 × 4 647
SimMIM [80] + sup. IN21K+70M SwinV2-G [40] 8 × 3842 86.8 n/a n/a × 5 × 4 3000
supervised JFT-3B+SSv2+MiT+IN CoVeR [85] 16 × 4482 87.2 n/a n/a × 3 × 1 n/a
supervised WTS-60M MTV-H [82] 32 × 2802 89.9 98.3 6130 × 3 × 4 n/a

Table 7: System-level comparisons on Kinetics-400 action classification. We report top-1 and
top-5 accuracy on the validation set. The input size is T×H×W . FLOPs (in 109) are presented as
“FLOPs per view × spatial views × temporal views”, following the literature. Parameters are in 106.
The “extra data” column specifies the data used in addition to K400. Entries using spatial resolution
>2242 are noted in gray; entries using in-house data for supervision are in light blue. Our results
with K600 are with intermediate fine-tuning.
∗This table does not include results using K700, because the K700 training set has 13.9k videos duplicated with
the K400 validation set (19.9k). Results with K700 are in Table 8 (AVA) and Table 9 (SSv2).

B Additional Experimental Results

B.1 System-level Comparisons

Kinetics-400. Table 7 compares on Kinetics-400 (K400). Our results are competitive with the leading
ones. Importantly, our method is much simpler than many other entries. Our method is the only
leading entry based on vanilla ViT, while others were based on hierarchical or specialized designs
for videos. Our model does not use relative position embedding, which could have extra gains that
are orthogonal to our thesis. Our results can compete with some strong results that were based on
in-house data for supervision. Our models achieve this at standard 224×224 spatial resolution, while
higher-resolution fine-tuning and testing may improve results at a higher cost, as shown in gray
indicating entries using spatial resolution >2242.

AVA. Table 8 compares on AVA [29] action detection. Using only a resolution of 16×2242, our results
are close to those of MaskFeat on higher-resolution inputs (40×3122). Importantly, our architectures
are plain ViT models without feature hierarchies, yet they perform strongly on this detection task.

SSv2. Table 9 compares on SSv2 [27] action classification. On the resolution of 16×2242 and using
vanilla ViT, our results compare favorably with those of MaskFeat on 40×3122 inputs.
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pre-train pre-train data architecture input size mAP
center

mAP
full FLOPs param.

supervised K400 SlowFast [21] 32 × 2242 23.8 - 138 53
supervised K400 MViTv1-B [19] 64 × 2242 27.3 - 455 36
supervised K400 MViTv2-B [39] 32 × 2242 28.1 29.0 225 51
MaskFeat [77] K400 MViTv2-L [39] 40 × 3122 36.3 37.5 2828 218
MAE K400 ViT-L 16 × 2242 35.9 36.8 598 304
MAE K400 ViT-H 16 × 2242 36.8 37.4 1193 632

(a) AVA results using Kinetics-400 pre-training

pre-train pre-train data architecture input size mAP
center

mAP
full FLOPs param.

supervised K600 SlowFast [21] 64 × 2242 27.5 - 296 59
supervised K600 X3D-XL [20] 16 × 3122 27.4 - 48 11
supervised K600 MViT-B [19] 32 × 2242 28.7 - 236 53
supervised K600 MViTv2-B [39] 32 × 2242 29.9 30.5 225 51
supervised K600 ACAR [48] 64 × 2242 - 31.4 n/a n/a
MaskFeat [77] K600 MViTv2-L [39] 40 × 3122 37.8 38.8 2828 218
MAE K600 ViT-L 16 × 2242 37.7 38.4 598 304
MAE K600 ViT-H 16 × 2242 39.2 40.3 1193 632

(b) AVA results using Kinetics-600 pre-training

pre-train pre-train data architecture input size mAP
center

mAP
full FLOPs param.

supervised K700 MViTv2-B [39] 32 × 2242 31.3 32.3 225 51
supervised K700 ACAR [48] 64 × 2242 - 33.3 n/a n/a
supervised K700 + IN21K MViTv2-L [39] 40 × 3122 33.5 34.4 2828 213
MAE K700 ViT-L 16 × 2242 38.4 39.5 598 304
MAE K700 ViT-H 16 × 2242 39.3 40.1 1193 632

(c) AVA results using Kinetics-700 pre-training

Table 8: System-level comparisons on AVA v2.2 action detection. We report mAP using center-crop
or full-resolution inference, following the literature. FLOPs (in 109) are measured with center-crop
inference. Parameter numbers are in 106. Only in this table, following MaskFeat [77], our results are
with intermediate fine-tuning and with relative positions [59, 54] during fine-tuning.

pre-train pre-train data architecture input size top-1 top-5 FLOPs param.

supervised K400 SlowFast [21] 32 × 2242 63.1 87.6 106 × 3 × 1 53
supervised K400 MViTv1-B [19] 64 × 2242 67.7 90.9 454 × 3 × 1 37
supervised K400 MViTv2-B [39] 32 × 2242 70.5 92.7 225 × 3 × 1 51
supervised K400 + IN21K Swin-B [41] 32 × 2242 69.6 92.7 321 × 3 × 1 89
supervised K400 + IN21K MViTv2-B [39] 32 × 2242 72.1 93.4 225 × 3 × 1 51
supervised K400 + IN21K MViTv2-L [39] 40 × 2242 73.3 94.1 2828 × 3 × 1 213
BEVT [73] K400 + IN1K Swin-B [41] 32 × 2242 71.4 n/a 321 × 3 × 1 88
MaskFeat [77] K400 MViTv2-L [39] 40 × 3122 74.4 94.6 2828 × 3 × 1 218
MAE K400 ViT-L 16 × 2242 72.1 93.9 598 × 3 × 1 304
MAE K400 ViT-H 16 × 2242 74.1 94.5 1193 × 3 × 1 632

(a) SSv2 results using Kinetics-400 pre-training

pre-train pre-train data architecture input size top-1 top-5 FLOPs param.

supervised K600 MViTv1-B [19] 32 × 2242 67.7 90.9 454 × 3 × 1 37
MaskFeat [77] K600 MViTv2-L [39] 40 × 3122 75.0 95.0 2828 × 3 × 1 218
MAE K600 ViT-L 16 × 2242 73.0 94.2 598 × 3 × 1 304
MAE K600 ViT-H 16 × 2242 75.2 94.9 1193 × 3 × 1 632

(b) SSv2 results using Kinetics-600 pre-training

pre-train pre-train data architecture input size top-1 top-5 FLOPs param.

MAE K700 ViT-L 16 × 2242 73.6 94.4 598 × 3 × 1 304
MAE K700 ViT-H 16 × 2242 75.5 95.0 1193 × 3 × 1 632

(c) SSv2 results using Kinetics-700 pre-training

Table 9: System-level comparisons on SSv2 action classification. Notations of FLOPs (109) and
parameters (106) follow Table 7. We do not use intermediate fine-tuning here (see Table 10).
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B.2 Ablation on Intermediate Fine-tuning

In Table 3 we have shown results of self-supervised pre-training directly transferred to downstream
datasets. Following the literature, we also investigate an another scenario: after self-supervised pre-
training, we perform intermediate fine-tuning on the pre-training set using labels, before transferring.
Table 10 studies its influence. Intermediate fine-tuning has substantial improvements on AVA, while
on SSV2 its effect is marginal.

pre-train data # intermediate FT K400 AVA SSv2
K400 240k 84.8 32.3 72.1
K400 240k ✓ - 36.8 72.6
K600 387k 84.9 33.7 73.0
K600 387k ✓ 86.5 37.9 73.1
K700 537k n/a 34.2 73.6
K700 537k ✓ n/a 39.3 73.7

Table 10: Influence of intermediate fine-tuning, evaluated on AVA and SSv2. The model is ViT-L.
The MAE pre-training length is 1600 epochs on K400/600/700. Using K700 training set for K400
validation is not legitimate due to the duplications in these training and validation sets.

B.3 Masking during fine-tuning

We perform an ablation that applies masking during the supervised fine-tuning phase. We explore a
masking ratio of 50% that is annealed to 0% with a cosine schedule during fine-tuning. The result is
84.1%, comparred to 84.4% for full fine-tuning without masking, but at a 1.2× speedup. If we start
fine-tuning with a masking ratio of 50% and anneal it to 0%, the accuracy is 83.8% at a speedup of
1.3×. The experiments are summarized in Table 11. We think this is an interesting result showing
that masking can also speedup fine-tuning.

start fine-tune masking ratio K400 accuracy speed
0% 84.4 1.0×

50% 84.1 1.2×
75% 83.8 1.3×

Table 11: Masking during fine-tuning on Kinetics-400. We use Cosine annealing of masking ratio
during fine-tuning. The starting masking ratio is varied between 0% (baseline without masking), 50%
and 75%. The annealing is towards 0% at the end of fine-tuning. The model is ViT-L and the MAE
pre-training length is 800 epochs on K400; cf . Table 2.

B.4 Ablation on SSv2

We perform a subset of the ablations that were carried out for Kinetics in Table 2 on the SSv2 dataset.
We directly pre-train and fine-tune on SSv2 and use a short pre-training schedule of 200 epochs to
save training resources. The results in Table 12 indicate that the default choices for Kinetics also lead
to good performance on SSv2. Namely, spacetime agnostic mask sampling (Table 12a) as well as
decoder width (12b) of 512 and depth (12c) of 4 provide better accuracy than other design choices.

case ratio acc.
agnostic 90 63.4
space-only 90 59.5
time-only 75 61.9

(a) Mask sampling. See also Fig. 4
and Table 2. Random sampling that is
spacetime-agnostic works best.

dim acc.
128 59.4
256 63.2
512 63.4

(b) Decoder width. Similar to Table 2,
a narrow decoder (128-d) drops accu-
racy.

blocks acc.
1 63.9
2 63.4
4 63.4
8 62.0

(c) Decoder depth. Four or two de-
coder layers provides good accuracy
on SSv2.

Table 12: Ablation experiments on SSv2. We use a short pre-training length of 200 epochs. The model is
ViT-L, with an input size of 16×224×224 and a spacetime patch size of 2×16×16. This table format follows
[31] and Table 2. The entries marked in gray are the same, which specify the default settings, and achieve
best performance (similar to the results for Kinetics in Table 2).
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Figure 7: More visualizations on Kinetics-400 following Fig. 2 (masking ratio 90%).
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C Potential negative societal impacts

The potential negative societal impact of our approach is related to other machine learning methods
that are learning from training data and therefore reflect statistics and biases of the datasets used. Our
method could also be used to generate content that may or may not reflect biases of the training data.

Video understanding research requires compute-intensive experiments because of the large input
dimensionality and the large training datasets which can have negative environmental impact. To
mitigate this effect, our approach greatly reduces the computational cost for performing research.
Further, there is potential of misuse for video classification methods, e.g. for surveillance purpose.

References

[1] Pulkit Agrawal, João Carreira, and Jitendra Malik. Learning to see by moving. In ICCV, 2015.
[2] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia
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