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1 Method Details

1.1 Notation: Camera Transformation and Projection

We assume that there are multiple RGBD cameras with fixed viewpoints. We assume all cameras’
intrinsic parameters K and extrinsic parameters T are known. The ith camera’s extrinsic parameters
are defined as follows:

T, — [OT 1] € SE(3), (1)

where Euclidean group SE(3) := {R,t | R € SO®,t € R?}. For a 3D point x in the world frame,
we could obtain the pixel u; projected in ith camera and distance to ith camera r; as follows:

u; = Proj (K; (Rix +t;)), 7 =1[0,0,1]" (Rix+t;), (2)
where Proj performs perspective projection, mapping a 3D vector p = [z,y, 2|7 to a 2D vector

q= [m/zyy/z]T
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Algorithm 1 Fusion Process

1: procedure FUSION(x) > Input 3D point
2: u;, r; < Project(x, i), v} < R;[u;] > 3D projection and depth reading
3: d; < r; —r;, d; < Truncate(d;, u) > Truncated depth difference using Eq. 3 in main paper
4: v, w; < Weights(d;) > Assign weights to each view using Eq. 4 in main paper
5: f;, p; < Interpolate(W, WP u;) > Interpolate features using Eq. 5 in main paper
6: f,p < Fuse(f;, pi, vi, w;) > Fuse features using Eq. 6 in main paper

1.2 Grounded-SAM Masks Association

Using Grounded-SAM [1, 2], we could extract instance segmentation masks from each view. How-
ever, masks from different views can contain a different number of instances, and the instance IDs
may not be consistent. To tackle this problem, we need to post-process the instance segmentation
results. The high-level idea is merging instances from different viewpoints given their geometric
distance.

We will save all merged instances to a list. Specifically, we will first start from the first viewpoint.
For each instance mask, we map them to 3D point clouds and save them into a list. Then we move to
the next viewpoint and map all instance masks to 3D point clouds. We will compare each instance
with the merged instances in the list. If they have significant overlapping, which is measured by the
Intersection of Union (IoU) of two point clouds, we will merge the instance in the new viewpoint to
the merged instances in the list. This process will continue until all viewpoints are iterated.

After merging all instances, we will filter instances not stably detected. Specifically, instances that
meet one of the following criteria will be filtered out:

* The instance has little point cloud.
* The instance is known to be a background, such as the table.

* The instance overlaps with other instances, while other instances have a higher confidence.

After the filtering, we will assign consistent instance IDs to the instance mask in each viewpoint.

1.3 Keypoints Tracking Initialization

To initialize keypoint tracking, we first densely sample points, which can either come from grid
sampling or instances’ 3D point clouds. Then we evaluate these points using our D®Fields and mask
out those points not belonging to the desired instance. Then we downsample these points to the
desired number using the farthest point sampling.

1.4 Model-Predictive Control (MPC) Details

As described in Section 3.4 of the main paper, our MPC framework needs a reference camera to
bridge the gap between 3D representation and 2D representation. In our work, the reference cam-
era’s extrinsic parameters are defined according to tasks. Typically, it looks down at the workspace
from the top of the workspace. Its intrinsic parameters are the same as the real camera’s intrinsic
parameters. The detailed MPC algorithm we used is described in Algorithm 2.

For the pick-and-place tasks, our dynamics model is simplified as the object is rigidly attached to
the end-effector.
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Algorithm 2 Trajectory optimization at each MPC step
Input: Current state S, goal g0, time horizon T', gradient descent iteration N
the perception module %, and the dynamics module f
Output: Actions ag.7_1

Sample current action sequence ag.;_;
fori=1,...,Ndo
Sample M action sequences aj3% | near current action sequence
form=1,...,M do
fort=0,..., T —1do
Predict the next step s;+1 < f(st, a}")
Calculate the task loss ¢ < c(s1, )

Calculate the current action sequence G-, using the task loss ¢!*M

Aok
Return ag.p_;

2D Image Reconstructed Mesh 2D Image Sequence ' Reconstructed Mesh
(a) FeatureNeRF Original Results (b) F3RM Original Results

- -
a | ~

Ours FeatureNeRF F3RM
(c) Comparisons with FeatureNeRF and F3RM

2D Image

Figure 1: Mesh Reconstruction Comparison. (a) shows the reconstructed mesh of the FeatureNeRF, given a
2D image from the training distribution. This reflects that our mesh extraction process can work well when the
input image is within the training distribution. Given a sequence of 2D images densely scanning the workspace,
(b) also shows good reconstruction quality of the scene. However, when given sparse views containing novel
instances, both FeatureNeRF and F3Rm fail to generate accurate meshes for the scene, which demonstrates the
effectiveness of our method.

2 Additional Experiments

2.1 Implementation Details

For the truncation threshold p, we set it as 0.02 across all experiments. For the prompts used for

9%

Grounded-SAM [1, 2] in Figure 7 in the main paper, from left to right, they are “shoe”, “mug”,

9%

“spoon”, “can”, and “toothpaste” respectively. Their confidence threshold used for Grounded-SAM
is 0.2.
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We also compare with several baselines, with details listed below:

* Dense Object Nets (DON) [3]: We compare the effects of using different feature backbones,
where DON is one of the baseline backbones. We use the pre-trained DON model since our
method also uses off-the-shelf models with no re-training and additional data. Specifically,
we use the model trained on shoe class saved here.

* DINO [4]: Another backbone feature backbone we baseline on is DINO, which is the prior
work of DINOv2. We use the code provided by [5] to extract dense DINO features.

* RGBD+DINOv2: We also compare our method to simply merging point clouds with DI-
NOvV?2 features from multiple viewpoints [6].

» FeatureNeRF [7]: We compare our representation with other state-of-the-art 3D implicit
semantic representation including FeatureNeRF. We trained the model on the car example
dataset provided by the authors. To compare with our model, we do not distill the model
from the DINO model, but DINOv2. It is worth noting that FeatureNeRF only uses one
RGB image to generate the neural fields. We found that giving more views to the FeatureN-
eRF model during inference time will lead to worse performance. Therefore, we keep its
input as a single-view RGB image.

* Distilled Feature Fields (F3RM) [8]: Another 3D implicit semantic representation we com-
pare to is F3RM. We use the same training code as provided by the authors, except that we
distill from DINOv2 models to make it comparable with our model.

For the dynamics training of shoe pushing example, we collect 20 episodes of pushing one shoe.
Then we train a dynamics model that can take in current particles and a pushing action and predict
particles in the next step.

For the evaluation in the real world, we summarize details regarding our tasks in Table 1.

Environment Task Name Objects
Organize Shoes Shoe
Collect Debris Almonds
Organize Office Table Mouse, Pen, Mug
Real World Organize Utensils Khnife, Spoon, Fork, Bowl
Organize Fruits Apple, Banana
Push Shoes Shoe
Serve Food Cupcake, Bread, Tomato, Lemon, Banana
. . Organize Mugs Mug
Simulation Organize Shoes Shoe
Organize Utensils Knife, Spoon, Fork

Table 1: Task Details Summary. This table summarizes our task environment, specific tasks, and
objects. We evaluate our framework on eight tasks and fifteen object categories, where each object
category covers several object instances with diverse appearances and shapes.

2.2 Keypoint Tracking Results

We show two examples of 3D keypoint tracking in Figure 2. In the first scenario, we track a shoe
as it is pushed and subsequently flipped. The second example demonstrates tracking a shoe that is
lifted and then placed down. Our system robustly tracks the shoe in the 3D space. These examples
underscore the effectiveness of D3Fields in maintaining accurate tracking in dynamic scenarios,
which enables our dynamics learning capabilities.

2.3 Mesh Comparisons with FeatureNeRF and F3RM
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We qualitatively compare the descriptor fields
generated by the three methods. We extract the
mesh from these fields using marching cubes,
as shown in Figure 1. We observe that our
D3Fields could generate accurate color meshes
given sparse views. FeatureNeRF could recon-
struct a reasonable mesh given the single 2D
image from the training distribution, as shown
in Figure 1 (a). However, when it encoun-
ters a new object out of the training distribu-
tion, the reconstructed mesh will be totally off,
even when we apply the image preprocessing
to align the testing images with the training set
in terms of image sizes, data range, and back-
ground color. Although Figure 1 (b) shows that

we can reconstruct a clear mesh with dense im- Flguri.Z. Kiypmgt I;I‘racklng. We ?;(PPIY D Flf‘ilds
. to tracking tasks and showcase two tracking examples,

age sequences the same as the original paper, o ; ;

. & lq hi . g pap both of which involve 3D motions and partial observa-

1t§ color mesh 18 quite .lnaccurat§ 8IVEN SPAISe  ions from single viewpoints. This shows that our rep-

viewpoints in our experiment setting, except for  resentation is 3D, dynamic, and semantic.

the shoe case.

Push and Rotate Lifting

2.4 Quantitative Correspondence Comparisons with FeatureNeRF and F3RM

10 1.0 10 1.0

038 038 038 0.8
= = Ours
806 ——F3RM[8] 0.6 0.6 0.6
% FeatureNeRF [7]
3 04 —DoN[3] 04 04 0.4
(o —DINOM4] 02 02 02

—— RGBD + DINOV2 [6]
0.0 == 00 0.0 0.0 -
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
. Recall
(a) Drill (b) Hammer (c) Mug (d) Shoe

Figure 3: Precision-Recall of Various Thresholds for Different Instances. The curves show how D*Fields
compares with 3 baseline methods in terms of matching quality, tested on 4 different instances: mug, bag, pan,
and shoe. We use the precision-recall curve to measure the correspondence quality. Our method shows to con-
sistently exceeds the performance of the baseline approaches, which demonstrates our method’s capability to
encode semantic information accurately and establish precise correspondences using the semantic information.

In addition, we also measure the quantitative correspondence accuracy of our method, FeatureNeRF,
and F3RM. We manually label the ground truth correspondence keypoints on the source image and
the target descriptor fields. We measure the correspondence quality using the precision-recall curve,
as shown in Figure 3 A larger area under the curve indicates better correspondence quality. Details
regarding the precision-recall curve are provided later. We could see that F3RM and FeatureNeRF
collapse to the origin point except for the shoe example for F3RM. This is because these two methods
fail to reconstruct meshes given sparse observations and unseen instances. In contrast, our method
shows a much better correspondence quality.

To generate the precision-recall curve, we manually label one point x4 on the 2D source image, and
a set of corresponding 3D points X. For 2D points, we can get the associated semantic feature fy.
For vertices on the reconstructed mesh, we can obtain a set of semantic features {0, ..., figt, N }-
Then we compute the cosine similarity between features fg,. and {ftgt,07 . 7 ~ }. For one similarity
threshold 7, we can filter out a set of points F . with similarity scores higher than 7. In addition, we
can get the set of points G that are close to X,. Then we can define precision P, and R, as follows:

_[F.nG|

IF, NG|
=t = g ==
G

P‘I’* |F | ) (3)
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Figure 4: Correspondence Quantitative Comparison. The top row shows the selected pixel from the source
image, and the following rows show the corresponding areas for different methods. While our method could
have accurate correspondence, RGBD+DINOV2 corresponds to some points in the background. For example,
the drill tip is not accurately highlighted in the RGBD+DINOv2 example, while ours can accurately highlight
the drill tip. Ours with DINO feature backbones fail to identify objects accurately, while ours with DON fail to
generalize to novel scenes and novel instances.

By varying 7, we can plot the precision-recall curve as shown in Figure 3.

2.5 Ablation Study: Qualitative Correspondence Comparisons

In this section, we first study how different feature backbones could affect the correspondence
quality. Then we show the qualitative correspondence results of our method. As mentioned in
Section 2.1, we substitute our method’s backbone with other pre-trained models, like DON and
DINO [3, 4]. We also compare with RGBD+DINOV?2 to show the effectiveness of our method.
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Figure 5: Cross-Domain Correspondence. The red triangles represent query points in the source image, and
the corresponding areas are highlighted in the 3D mesh. First, we observe that our representation can encode
features for object parts and establish the correspondence, such as spoon tips and spoon handles. In addition,
we found the correspondence can be multimodal. When the shoe head is selected, multiple shoe heads in the
workspace are highlighted. At last, the correspondence is generalizable across different contexts, instances, and
domains, which demonstrates our method’s generalization capabilities.

Figure 4 shows the qualitative correspondence results of all ablation baselines. There are three key
messages we observe from this figure.

* Compared with RGBD+DINOv2, our method’s correspondence quality is better. We have
more accurate correspondence since our representation can amortize noises from single
views by considering 3D consistency. Although, RGBD+DINOV2 could have certain spa-
tial consistency, there are still variances in results from different viewpoints, while our
method can guarantee spatial consistency.

* Compared with DINO, our correspondence is more fine-grained and accurate. Thanks to
the advancement of foundation visual models, DINOv2 encodes more fine-grained features
and enables correspondence with higher accuracy.

* DON struggles to generalize to novel scenes and unseen object categories. Although the
original DON shows good correspondence quality, it is trained on one type of object with
a relatively small dataset. Compared with visual foundational models, it shows limited
generalization capabilities in terms of scenes and object categories.

We also visualize the correspondence from 2D images to our workspace as shown in Figure 5.
Specifically, we extract the DINOv2 feature of the selected pixel in the 2D image. Then we high-
light the part of the 3D mesh with features close to the query feature. There are two observations
regarding the qualitative correspondence results. First, the semantically similar parts are correctly
matched across different instances and contexts. For example, when we select the rim of the plate
in the 2D image, the corresponding part in the 3D mesh is highlighted. This matching is consistent
across different object parts, such as the head and tail of the shoe, the handle and blade of the knife,
and the tip and bar of the drill. Second, the correspondence is multimodal when there are multiple
semantically similar object parts in the workspace. For example, when we select the spoon handle
in the 2D image, multiple utensil handles in the workspace are highlighted. The correspondence
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qualitative results show that our D3Fields could establish meaningful correspondences across differ-
ent instances and contexts, so that we can rely on correspondence to define the planning objective
function.

2.6 Ablation Study: Quantitative Correspondence Comparisons

Similar to Section 2.4, we generate the precision-recall curve to quantitatively compare the corre-
spondence quality with ablation baselines. We can make the following observations regarding the
baseline correspondence results.

* Compared with RGBD+DINOV2, our method shows to have more accurate correspondence
results. This is because our D3Fields can average out noises from each viewpoint, while
RGBD+DINOV2 will accumulate noises.

* DINO faces challenges in accurately distinguishing specific object components. This limi-
tation results in less precise correspondence, as shown in Figure 3.

* Although DON can encode semantic features in seen environments and instances, it fails
to generalize to novel environments and object categories. Therefore, its correspondence
results are even worse than DON, as shown in Figure 3.

2.7 Abaltion Study: Quantitative Manipulation Results

0.7 EE D3Fields (Ours)

B DINO (Caron et al.)
0.6 ﬁ [ DON (Florence et al.)
05 ?
0.3
° o
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Shoe Pan Banana Scissor Wrench Distance Threshold (pixel)
(a) Goal Achieving Performance (higher is better) (b) Correspondence Results
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Fraction of Points with Correct Matches

e
=

Figure 6: Quantitative Evaluation. We perform real-world quantitative evaluations by measuring final goal-
achieving performance and keypoints correspondence accuracy. (a) We use IoU to measure goal-achieving
performance. Results indicate that our method aligns with the goal configurations much better than DON and
DINO across various object categories and scenarios. (b) We measure the keypoints correspondence accuracy
according to the fraction of points with accurate matches, with correct matches determined by a distance thresh-
old. Our method is consistently better at aligning with the goal image, regardless of the chosen threshold.

In Figure 6 (a), we measure performance using the IoU between the mask of the goal image and the
mask of the final state post-manipulation. Higher IoU values indicate a greater degree of alignment
between the intended and achieved configurations. Our method demonstrates superior performance
across five distinct object categories, consistently outshining the baseline methods. For each cate-
gory, we performed 5 experiments for the evaluation results. This not only highlights its exceptional
manipulation accuracy but also its robust generalization capabilities. While the DINO model ex-
hibits some struggles, particularly in distinguishing specific object components and consequently
yielding less precise results, it still performs better than DON. Although DON shows commendable
results with familiar objects and configurations, its performance dips in novel scenarios, revealing a
lack of generalization. These results collectively emphasize the significant advantages of our method
in diverse and accurate object manipulation.

In Figure 6 (b), we present the correspondence results. We label 10 corresponding keypoint pairs on
both the goal image and the final manipulation result to sufficiently evaluate the correspondence ac-
curacy. The accuracy of correspondence was determined by calculating the proportion of keypoints
that were accurately matched, using a predefined distance threshold as the criterion. If the dis-
tance between corresponding keypoints exceeds this threshold, they are determined as unmatched.
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Our method shows superior performance across various thresholds, consistently outperforming the
baseline models. DINO emerges as the second-best in terms of performance, exhibiting broad appli-
cability but with a lower precision compared to our method. Meanwhile, DON lags in performance,
primarily due to its struggles with generalization in novel scenarios. These results, in conjunction
with those from Figure 6(a), reiterate our method’s outstanding capabilities in both generalization
and accuracy. While DINO provides reasonable applicability, it lacks the precision of our approach,
and the performance of DON is hindered by its limited adaptability.
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