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ABSTRACT

Denoising diffusion probabilistic models (DDPMs) estimate the data distribution
by sequentially denoising samples drawn from a prior distribution, which is typ-
ically assumed to be the standard Gaussian for simplicity. Owing to their ca-
pabilities of generating high-fidelity samples, DDPMs can be utilized for signal
restoration tasks in recovering a clean signal from its degraded observation(s), by
conditioning the model on the degraded signal. The degraded signals are them-
selves contaminated versions of the clean signals; due to this correlation, they
may encompass certain useful information about the target clean data distribu-
tion. However, naively adopting the standard Gaussian as the prior distribution in
turn discards such information. In this paper, we propose to improve conditional
DDPMs for signal restoration applications by leveraging a more informative prior
that is jointly learned with the diffusion model. The proposed framework, called
RestoreGrad, exploits the correlation between the degraded and clean signals to
construct a better prior for restoration tasks. In contrast to existing DDPMs that
just settle on using pre-defined or handcrafted priors, RestoreGrad learns the prior
jointly with the diffusion model. To this end, we first derive a new objective func-
tion from a modified evidence lower bound (ELBO) of the data log-likelihood, to
incorporate the prior learning process into conditional DDPMs. Then, we suggest
a corresponding joint learning paradigm for optimizing the new ELBO. Notably,
RestoreGrad requires minimum modifications to the diffusion model itself; thus,
it can be flexibly implemented on top of various conditional DDPM-based signal
restoration models. On speech and image restoration tasks, we show that Restore-
Grad demonstrates faster convergence (5-10 times fewer training steps) to achieve
on par or better perceptual quality of restored signals over existing DDPM base-
lines, along with improved robustness to using fewer sampling steps in inference
time (2-2.5 times fewer steps), advocating the advantages of leveraging jointly
learned prior for efficiency improvements in the diffusion process.

1 INTRODUCTION

Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020; Sohl-Dickstein et al., 2015) are
latent variable generative models that have shown impressive results in various generative modeling
tasks. DDPMs typically consist of i) the forward process, where the original data samples are
gradually corrupted by adding Gaussian noise to eventually become a standard normal prior; ii) the
reverse process, in which a neural network model is responsible for recovering the original data
samples from the corrupted data by learning to sequentially reverse the diffusion process. Thanks
to their exceptional capabilities of generating high-quality data, DDPMs can be applied to various
signal restoration tasks – recovering the missing components in a signal due to contamination (e.g.,
audio recorded with environmental noise (Lu et al., 2021; 2022; Tai et al., 2023b), images obstructed
by bad weather conditions (Özdenizci & Legenstein, 2023) or various measurement noises (Croitoru
et al., 2023), etc.), by conditioning the DDPM model on the degraded observations.

However, for the diffusion model to adequately learn the reverse process, a large number of training
iterations is typically required, leading to potentially slow model convergence. Such inefficiency
was recently related to the discrepancy between the real data distribution and the accustomed choice
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of the standard Gaussian prior by Lee et al. (2021). They have thus proposed a simple yet effective
approach called PriorGrad, which utilizes a data-dependent prior extracted from the conditioner data
to construct a better prior noise. Despite demonstrating improved performance on some generative
speech tasks, handcrafting a “better” prior from the conditioner would require certain knowledge
about the data characteristics, and such guidance may not always exist.

data

conditioner

jointly
learned prior
distribution

forward process

reverse process

[standard]

[proposed]

noise

Neural Net

Conditional DDPM

vs.

Figure 1: Overview of the proposed method.

In this paper, our main focus is to investigate
the question: Can we systematically learn a
better prior distribution to improve the ef-
ficiency of the diffusion generative process,
instead of settling on a pre-defined or hand-
crafted prior? More specifically, we propose
a framework as depicted in Figure 1 at a high
level, where the conditional DDPM (parame-
terized by θ) samples the latent noise ϵ from a
learned prior distribution estimated by another
neural network ψ, which takes the conditioner
y as input and is jointly trained with θ to synthesize the data x0. Currently, traditional DDPMs only
incorporate such conditioning information y in the modeling of the reverse process pθ(xt−1|xt,y).
The main idea here is, if there is certain correlation between the conditioner y and the target data
x0, e.g., in signal restoration problems where y is typically a degraded version of x0, our framework
can exploit such correlation to construct a more informative prior in a systematic manner.

To explore the idea, we introduce RestoreGrad, a new paradigm for improving conditional DDPM
by jointly learning the prior distribution, focusing on signal restoration applications. We apply Re-
storeGrad to speech enhancement (SE) and image restoration (IR) tasks to demonstrate its generality
for signals of different nature. For SE, we compare with PriorGrad (Lee et al., 2021) which provides
guidance on handcrafting suitable priors in the speech domain. For IR, we show that RestoreGrad
serves as a promising solution for improving the baseline DDPM even in a domain that lacks such
recipe for handcrafting the prior. As shown in Figure 2, models trained using RestoreGrad are more
data and compute-efficient than the baseline DDPM and PriorGrad; they converge faster to achieve
higher quality of the restored signal. Further shown in Figure 3, the learned prior is more informative
as it better correlates with the desired signal than an isotropic covariance, potentially simplifying the
diffusion trajectory for improved efficiency. Our main contributions are summarized as follows:

• We study the problem of learning the prior distribution jointly with the conditional DDPM
for signal restoration, aiming at providing a more systematic, learning-based treatment to
address the inefficiency incurred by existing selections of the prior distribution in DDPM-
based methods. In contrast, previous non-standard Gaussian works on DDPMs did not
exploit trainable priors, e.g., Nachmani et al. (2021), or were not able to demonstrate the
benefits of using learning-based over handcrafted priors for DDPMs, e.g., Lee et al. (2021).

• We propose a new framework called RestoreGrad that learns the prior in conjuncture with
the DDPM model through a prior encoder, by exploiting the correlation between the targe
signal and input degraded signal encoded by an auxiliary posterior encoder, for improved
model efficiency. Our two-encoder learning framework is established based on a novel in-
tegration of the evidence lower bounds (ELBOs) of the DDPM and variational autoencoder
(VAE) (Kingma & Welling, 2014) to enjoy the advantages of both methodologies.

• Experiments demonstrate that the proposed paradigm is quite general and parameter-
efficient, being applicable to DDPM-based signal restoration models for various modalities
including images and audio while requiring minimum increase in model complexity.

2 BACKGROUND ON DDPMS

Forward process. DDPMs (Ho et al., 2020; Sohl-Dickstein et al., 2015) slowly corrupt the training
data using Gaussian noise in the forward process. Let qdata(x0) be the data density of the original data
x0. The forward process is a fixed Markov Chain that sequentially corrupts the data x0 ∼ qdata(x0)
in T diffusion steps, by injecting Gaussian noise according to a variance schedule {βt}Tt=1 ∈ [0, 1):
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Speech enhancement (SE) comparison of conditional DDPMs Image restoration (IR) comparison of conditional DDPMs

Figure 2: Model learning performance. In speech domain (Left), RestoreGrad outperforms Prior-
Grad (Lee et al., 2021), a recently proposed improvement to baseline conditional DDPM (CDiffuSE)
by leveraging handcrafted prior. In image domain (Right), RestoreGrad provides a paradigm to im-
prove DDPM baseline (RainDropDiff) where there is no existing recipe for handcrafting the prior.

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), where q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (1)

is the transition probability at step t. It allows the direct sampling of xt according to q(xt|x0) =

N (xt;
√
ᾱtx0,

√
1− ᾱtI), where ᾱt :=

∏t
i=1 αi with αt := 1−βt. Thus, the sampling can be done

as xt =
√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I). A notable assumption is that with a carefully

designed variance schedule βt and large enough T , such that ᾱT is sufficiently small, q(xT |x0) con-
verges to N (xT ;0, I) so that the distribution of xT is well approximated by the standard Gaussian.

Reverse process. One can generate new data samples from qdata(x0) by reversing the predefined
forward process utilizing the same functional form. More specifically, starting from a noise sample
xT ∼ p(xT ) = N (xT ;0, I), we can progressively transform the prior noise back into the data by
approximating the reverse of the forward transition probability. This process is defined by the joint
distribution pθ(x0:T ) of a Markov Chain with learned Gaussian denoising (i.e., reverse) transitions:

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), where pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

is the reverse of the forward transition probability, parameterized using a deep neural network θ.

DDPM learning framework. In an ideal scenario, we would train the model θ with a maximum
likelihood objective such that pθ(x0) is as large as possible. However, pθ(x0) is intractable because
we have to marginalize over all the possible reverse trajectories to compute it. To circumvent such
difficulty, DDPMs (Ho et al., 2020) instead maximize an ELBO of the data log-likelihood, by intro-
ducing a sequence of hidden variables x1:T and the approximate variational distribution q(x1:T |x0):

log pθ(x0) = log

∫
pθ(x0:T )dx1:T ≥ Eq(x1:T |x0)

[
log

pθ(x0:T )

q(x1:T |x0)

]
. (3)

With the above parametric modeling of the forward and reverse processes, the ELBO in (3) suggests
training the network θ such that, at each time step t, pθ(xt−1|xt) is as close as possible to the true
forward process posterior conditioned on x0 (Luo, 2022; Croitoru et al., 2023), i.e.,

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI), (4)

where µ̃t(xt,x0) :=
√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt and β̃t :=

1−ᾱt−1

1−ᾱt
βt.

Based on using a fixed covariance Σθ(xt, t) = σ2
t I (e.g., σ2

t = β̃t) as in Ho et al. (2020), optimizing
(3) corresponds to training a network µθ(xt, t) that predicts µ̃t(xt,x0). Alternatively, Ho et al.
(2020) suggested the following reparameterization to rewrite the mean as a function of noise:

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
. (5)

They train a neural network ϵθ(xt, t) to predict the real noise ϵ and use that to compute the mean as
(5). Practically the optimization is carried out by minimizing a simplified training objective:

Lsimple(θ) := Ex0∼qdata(x0),ϵ∼N (0,I),t∼U({1,...,T})
[
∥ϵ− ϵθ(xt, t)∥2

]
, (6)

which measures, for a random time step t, the distance between the actual noise and estimated noise.
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Example learned prior in SE task Example learned prior in IR task

Targe clean image 𝐱! Learned 𝝈"#$%#

Figure 3: Visualizing the prior distribution learned by RestoreGrad. Here, the assumed form of the
prior is a Gaussian: pψ(ϵ|y) := N (ϵ;0, diag{σ2

prior(y;ψ)}), where σprior is estimated by the neural
network ψ with input y. It appears that σprior follows the level variation of the speech waveform and
preserves the structure of the original image. This indicates that an informative prior approximating
the data distribution has been obtained for improved efficiency of the diffusion process.

Signal restoration by conditional DDPMs. Signal restoration problems are concerned with recov-
ering the original signals from their degraded observations, which are of paramount importance in
reality while remaining challenging, as noises are ubiquitous and may be strong enough to cause
significant degradation of the signal quality. Recently, adoption of deep generative models (Kingma
& Welling, 2014; Goodfellow et al., 2014; Ho et al., 2020) for signal restoration tasks has consid-
erably increased due to their remarkable capabilities of generating missing components in the data,
with conditional DDPMs (Croitoru et al., 2023; Cao et al., 2024) demonstrating substantial promise.

More formally, let y denote the degraded observation of the clean signal x0. The task of recovering
x0 given y by a model θ can be cast as maximizing the conditional likelihood of data pθ(x0|y). The
problem is in general intractable, but can be approximated by using a DDPM conditioned on y. The
main idea is, without modifying the forward diffusion process (1), to learn a conditional diffusion
model θ with y provided as input to the reverse process (Özdenizci & Legenstein, 2023):

pθ(x0:T |y) := p(xT )

T∏
t=1

pθ(xt−1|xt,y), where pθ(xt−1|xt,y) := N (xt−1;µθ(xt,y, t), σ
2
t I),

such that the sample has high fidelity to the target data distribution conditioned on y. Again, we will
consider using the noise estimator network ϵθ(xt,y, t) instead of predicting the mean µθ(xt,y, t).

3 PROPOSED METHOD

We follow conditional VAEs (Sohn et al., 2015) to maximize the conditional data log-likelihood,
log p(x0|y) = log

∫
p(x0, ϵ|y)dϵ, where ϵ is an introduced latent variable. To avoid intractable

integral, in VAEs an ELBO is utilized as the surrogate objective by introducing an approximate
posterior q(ϵ|x0,y). In this work, we propose to further lower bound the ELBO of the VAE by that
of the DDPM to incorporate diffusion processes. Specifically, we obtain the lower bound(s) as:

log p(x0|y) ≥Eq(ϵ|x0,y) [log p(x0|y, ϵ)]︸ ︷︷ ︸
reconstruction term

−DKL (q(ϵ|x0,y)||p(ϵ|y))︸ ︷︷ ︸
prior matching term

≥Eqϕ(ϵ|x0,y)

[
Eq(x1:T |x0)

[
log

pθ(x0:T |y, ϵ)
q(x1:T |x0)

]
︸ ︷︷ ︸

conditional DDPM

]
−DKL

(
qϕ(ϵ|x0,y)︸ ︷︷ ︸

Posterior Net

|| pψ(ϵ|y)︸ ︷︷ ︸
Prior Net

)
.

(7)

The first inequality comes similarly as the ELBO used in (conditional) VAEs (Esser et al., 2018; Luo,
2022) via Jensen’s inequality. It consists of the reconstruction and prior matching terms, which are
typically realized by an encoder-decoder architecture with ϵ being the bottleneck representations.

Our novelty comes with introducing the second inequality to explore the new idea of utilizing the
conditional DDPM θ as the decoder module of the VAE. Specifically, we propose to subsequently
lower bound log p(x0|y, ϵ) in the reconstruction term of the first inequality, by introducing a
sequence of hidden variables x1:T , parameterized by a conditional DDPM θ:

log pθ(x0|y, ϵ) = log

∫
pθ(x0:T |y, ϵ)dx1:T ≥ Eq(x1:T |x0)

[
log

pθ(x0:T |y, ϵ)
q(x1:T |x0)

]
, (8)
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Figure 4: Proposed RestoreGrad. During training, the conditional DDPM θ, Prior Net ψ, and Poste-
rior Net ϕ are jointly optimized by (10). During inference, the DDPM θ samples the latent noise ϵ
from the jointly learned prior distribution to synthesize the clean signal. (Details see Appendix B.1.)

which leads to the second inequality in (7). Moreover, in realization of the prior matching term, we
propose to parameterize the prior and posterior distributions with two encoder modules, Prior Net
ψ and Posterior Net ϕ, respectively. This design is inspired by Kohl et al. (2018) for image segmen-
tation with traditional U-Nets. We introduce the idea to DDPM-based signal restoration, where the
Posterior Net is exclusively used in training to help the Prior Net learn a more informative prior, by
“pulling” the posterior distribution (which encodes richer information of the target distribution by
exploiting the correlation between x0 and y) and the prior distribution towards each other.

Based on (7), we introduce the modified ELBO for the training objective of RestoreGrad:

Proposition 1 (RestoreGrad). Assume the prior and posterior distributions are both zero-
mean Gaussian, parameterized as pψ(ϵ|y) = N (ϵ;0,Σprior(y;ψ)) and qϕ(ϵ|x0,y) =
N (ϵ;0,Σpost(x0,y;ϕ)), respectively, where the covariances are estimated by the Prior Net ψ (tak-
ing y as input) and Posterior Net ϕ (taking both x0 and y as input). Let us simply use Σprior and
Σpost hereafter to refer to Σprior(y;ψ) and Σpost(x0,y;ϕ) for concise notation. Then, with the di-
rect sampling property in the forward path xt =

√
ᾱtx0 +

√
1− ᾱtϵ at arbitrary timestep t where

ϵ ∼ qϕ(ϵ|x0,y), and assuming the reverse process has the same covariance as the true forward
process posterior conditioned on x0, by utilizing the conditional DDPM ϵθ(xt,y, t) as the noise
estimator of the true noise ϵ, we have the modified ELBO associated with (7):

−ELBO =
ᾱT
2

Ex0
∥x0∥2Σ−1

post
+

1

2
log|Σpost|︸ ︷︷ ︸

Latent Regularization (LR) terms

+

T∑
t=1

γtE(x0,y),ϵ∼N (0,Σpost)∥ϵ− ϵθ(xt,y, t)∥2Σ−1
post︸ ︷︷ ︸

Denoising Matching (DM) terms

+
1

2

(
log

|Σprior|
|Σpost|

+ tr(Σ−1
priorΣpost)

)
︸ ︷︷ ︸

Prior Matching (PM) terms

+C, where γt =

{
β2
t

2σ2
tαt(1−ᾱt)

, t > 1
1

2α1
, t = 1

(9)
are weighting factors, ∥x∥2Σ−1 = xTΣ−1x, σ2

t = 1−ᾱt−1

1−ᾱt
βt and C is some constant not depending

on the learnable parameters θ, ϕ, and ψ.

The derivation (see Appendix A) is based on combining the conditional VAE and the results in
Lee et al. (2021). Notably, we join the conditional DDPM with the posterior/prior encoders
and optimize all modules at once, by connecting the DDPM prior space with the latent space
estimated by the encoders. To this end, the sampling of ϵ ∼ qϕ(ϵ|x0,y) is performed by the
standard reparameterization trick as in VAEs, unlocking end-to-end training via gradient descent on
the obtained loss terms explained below:
• Latent Regularization (LR) terms: help learn a reasonable prior latent space; e.g., minimizing
log|Σpost| avoids Σpost from becoming arbitrary large due to the presence of its inverse in the
weighted norms. These terms can be important for stability reasons in our learnable prior schemes.

• Denoising Matching (DM) terms: responsible for training the DDPM to predict the prior noise.
• Prior Matching (PM) terms: attempt to find a desirable latent space by agreeing the prior and

posterior distributions. Note that we model the distributions as zero-mean Gaussians, exploiting
the fact that signals (e.g., waveforms, image pixels) can be properly normalized to zero mean.
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Training of RestoreGrad. With the the conditional DDPM θ, Prior Net ψ, and Posterior Net ϕ
defined in Proposition 1, we are ready to perform optimization on learning the model parameters
of θ, ψ, ϕ based on the modified ELBO. The RestoreGrad framework jointly trains the three neural
network modules by minimizing (9). Following existing DDPM literature, we approximate the
objective by dropping the weighting constant γt of the DM terms, leading to the simplified loss:

min
θ,ϕ,ψ

η
(
ᾱT ∥x0∥2Σ−1

post
+ log|Σpost|︸ ︷︷ ︸

LLR

)
+ ∥ϵ− ϵθ(xt,y, t)∥2Σ−1

post︸ ︷︷ ︸
LDM

+λ
(
log

|Σprior|
|Σpost|

+ tr(Σ−1
priorΣpost)

)
︸ ︷︷ ︸

LPM

,

(10)
where we approximate the expectations by randomly sampling (x0,y) ∼ qdata(x0,y) and ϵ ∼
N (0,Σpost), and the summation by sampling t ∼ U({1, . . . , T}) (exploiting the independency due
to Markov assumption (Nichol & Dhariwal, 2021)) in each training iteration. We also introduce
η > 0 for the LR terms and λ > 0 for PM terms, to exert flexible control of the learned latent space.

Sampling of RestoreGrad. In applications that RestoreGrad is mainly concerned with, the
ground truth signal x0 is not available in inference time. The conditional DDPM then samples
ϵ ∼ pψ(ϵ|y) = N (0,Σprior) from the Prior Net instead; the Posterior Net is no longer needed.

Advantages of RestoreGrad over existing adaptive priors. In the training stage of RestoreGrad,
the latent code ϵ samples from the posterior qϕ(ϵ|x0,y) which exploits both the ground truth signal
x0 and conditioner y. It is thus more advantageous than existing works on adaptive priors that solely
utilize the conditioner y. To support this statement of the benefits brought by posterior information,
we can compare RestoreGrad with the one without the Posterior Net during training – i.e.,

min
θ,ψ

η
(
ᾱT ∥x0∥2Σ−1

prior
+ log|Σprior|

)
+ ∥ϵ− ϵθ(xt,y, t)∥2Σ−1

prior
, (11)

which basically removes the Posterior Net ϕ and only trains the Prior Net ψ and DDPM θ. In
this case, both training and testing become the same scheme. We will present results showing that
RestoreGrad performs better with Posterior Net than without it, to support its advantages.

4 RELATED WORK

Diffusion model efficiency improvements. Das et al. (2023) utilized the shortest path between
two Gaussians to reduce the number of diffusion steps. Song et al. (2020) generalized DDPMs via
a class of non-Markovian diffusion processes, giving rise to implicit models that use much fewer
sampling steps. Nichol & Dhariwal (2021) introduced a few simple modifications to improve the
log-likelihood and sampling efficiency. Pandey et al. (2022; 2021) combined the VAE with DDPM to
achieve high-fidelity generation, by using DDPM to refine VAE-generated samples. Rombach et al.
(2022) performed the diffusion process in the lower dimensional latent space of an autoencoder to
achieve high-resolution image synthesis, and Liu et al. (2023b) studied using such latent diffusion
models for audio. Popov et al. (2021) explored using a text encoder to extract better representations
for continuous-time diffusion based text-to-speech generation. More recently, Nielsen et al. (2024)
explored using a time-dependent image encoder to parameterize the mean of the diffusion process.
Orthogonal to the above improvements, PriorGrad (Lee et al., 2021) and follow-up work (Koizumi
et al., 2022) studied utilizing informative prior extracted from the conditioner data for improving
learning efficiency. However, they are still sub-optimal when the conditioner data are degraded
versions of the target as in signal restoration applications, and only focused on speech-related tasks.

Diffusion model based signal restoration. Built on top of the diffusion models for audio generation
and synthesis, e.g., Kong et al. (2021); Chen et al. (2020); Leng et al. (2022), many SE models have
been proposed. One of the pioneering work may be CDiffuSE (Lu et al., 2022), which introduced
conditional DDPMs to the SE task and demonstrated the potential. Other works (Serrà et al., 2022;
Welker et al., 2022; Richter et al., 2023; Yen et al., 2023; Lemercier et al., 2023; Tai et al., 2023a)
have also attempted to improve SE by exploiting diffusion models. In the vision domain, diffusion
models have also demonstrated impressive performance for IR tasks (Li et al., 2023; Zhu et al., 2023;
Huang et al., 2024; Luo et al., 2023; Xia et al., 2023; Fei et al., 2023; Hurault et al., 2022; Liu et al.,
2023a; Chung et al., 2023b;a; Zhou et al., 2024; Xiao et al., 2024; Zheng et al., 2024). A notable
work utilizing conditional DDPMs for IR is Özdenizci & Legenstein (2023) that achieved impressive
performance on several benchmark datasets for restoring vision in adverse weather conditions. Our
goal is to add to this interesting body of signal restoration work using diffusion models by exploring
the idea of jointly learning the prior distribution and diffusion process for improved model efficiency.
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5 EXPERIMENTS

5.1 APPLICATION TO SPEECH ENHANCEMENT (SE)

5.1.1 EXPERIMENTAL SETUP

Dataset. We validate the SE performance on the benchmark SE dataset VoiceBank+DEMAND
(Valentini-Botinhao et al., 2016). The dataset consists of clean speech clips collected from the
VoiceBank corpus (Veaux et al., 2013), mixed with ten types of noise profiles from the DEMAND
database (Thiemann et al., 2013). Specifically, the training utterances from VoiceBank are artificially
contaminated with the noise samples from DEMAND at 0, 5, 10, and 15 dB signal-to-noise ratio
(SNR) levels, amounting to 11,572 utterances. The testing utterances are mixed with different noise
samples at 2.5, 7.5, 12.5, and 17.5 dB SNR levels, amounting to 824 utterances.

Evaluation metrics. We consider: PESQ: Perceptual Evaluation of Speech Quality (ITU-T Rec.
P.862.2, 2005). SI-SNR: Scale-Invariant SNR (Le Roux et al., 2019). CSIG, CBAK, COVL:
Mean-opinion-score predictors of signal distortion, background-noise intrusiveness, and overall sig-
nal quality, respectively (Hu & Loizou, 2007). In all metrics, a higher score indicates better SE.

Models. The following models are compared:

• Baseline DDPM: We adopt the CDiffuSE (Base) model as the baseline DDPM from Lu et al.
(2022), which is based on DiffWave (Kong et al., 2021) with 4.28M learnable parameters.

• PriorGrad: We implement the PriorGrad (Lee et al., 2021) on top of CDiffuSE by changing the
prior distribution from the standard Gaussian to N (0,Σy), where Σy is the covariance of the data-
dependent prior computed based on the conditioner y, using the approach for the application to
vocoder in Lee et al. (2021).

• RestoreGrad: We incorporate Prior Net and Posterior Net on top of CDiffuSE. Both modules
adopt the ResNet-20 architect (He et al., 2016) suitably modified to 1-D convolutions for wave-
form processing, each has only 93K learnable parameters (only 2% of the CDiffuSE model).

Configurations. We adopted the basic configurations same as in Lu et al. (2022). The waveforms
were processed at 16kHz sampling rate. The number of forward diffusion steps was T = 50. The
variance schedule was βt ∈ [10−4, 0.035], linearly spaced. The batch size was 16. The fast sampling
scheme in Kong et al. (2021) was used in the reverse processes with S = 6 steps to reduce inference
complexity. The inference variance schedule was βinfer

t = [10−4, 10−3, 0.01, 0.05, 0.2, 0.35]. Adam
optimizer (Kingma & Ba, 2014) was utilized with a learning rate of 2 × 10−4. We set η = 0.1 and
λ = 0.5 for (10) (we discuss different choices of (η, λ) in Appendix C.1). The models were trained
on one NVIDIA Tesla V100 GPU (32 GB CUDA memory) and finished 96 epochs in 1 day.

5.1.2 RESULTS

Improved model convergence. As shown in Figure 2 (test set performance), RestoreGrad shows
better convergence behavior over PriorGrad (handcrafted prior) and CDiffuSE (standard Gaussian
prior). For example, PriorGrad reaches 2.4 in PESQ at 96 epochs, whereas RestoreGrad
reaches it in (roughly) 10 epochs, indicating a 10× speed-up. The results suggest that jointly
learning the prior distribution can be beneficial for DDPMs.

Robustness to reduced number of reverse steps in inference. RestoreGrad can potentially reduce
the inference complexity too. In Figure 5, we show how the trained diffusion models tolerate reduc-
tion in the number of inference steps. In each model, we trained the network for 96 epochs and then
inferenced with S = 3 reverse steps to compare with the originally adopted S = 6 steps in Lu et al.
(2022). The noise schedule for S = 3 was βinfer

t = [0.05, 0.2, 0.35], a subset of the S = 6 schedule
that resulted in best performance. We can see that the baseline DDPM is most sensitive to the step
reduction, while PriorGrad shows certain tolerance as leveraging a closer-to-data prior distribution.
Finally, RestoreGrad barely degrades with reduced sampling steps, echoing that a better prior
has been obtained as it recovers higher fidelity signal even in fewer reverse steps.

Comparison to existing waveform-domain generative SE models. We present in Table 1 more
detailed comparison of RestoreGrad with the baseline CDiffuSE. Here, the scores of CDiffuSE were
directly taken from the results reported in Lu et al. (2022) where the model has been fully trained for
445 epochs. For PriorGrad and RestoreGrad we report the mean±std computed based on results of
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Figure 5: Robustness to the reduction in reverse sampling time steps for inference.

Table 1: Comparison with the fully-trained CDiffuSE model
performance reported in Lu et al. (2022). PriorGrad results
(trained by ourselves) are also attached for reference.
Methods # train # infer PESQ ↑ CSIG ↑ CBAK ↑ COVL ↑ SI-SNR ↑epochs steps

CDiffuSE 445 6 2.44 3.66 2.83 3.03 -

+ PriorGrad 96 6 2.42±3e-3 3.67±2e-3 2.93±1e-3 3.03±2e-3 14.21±2e-3

+ RestoreGrad 96 6 2.51±6e-4 3.80±4e-4 3.00±3e-4 3.14±5e-4 14.74±3e-4
(ours) 3 2.50±3e-4 3.75±2e-4 2.99±2e-4 3.11±3e-4 14.65±2e-4

Table 2: Comparison with existing
time-domain, generative SE models.
Methods PESQ↑ CSIG↑ CBAK↑ COVL↑
Unprocessed 1.97 3.35 2.44 2.63

SEGAN 2.16 3.48 2.94 2.80
DSEGAN 2.39 3.46 3.11 2.90
SE-Flow 2.28 3.70 3.03 2.97
DOSE 2.56 3.83 3.27 3.19
CDiffuSE 2.44 3.66 2.83 3.03
+ RestoreGrad (ours) 2.51 3.80 3.00 3.14

*Best and second best values are indicated with bold text and underlined text, respectively.

10 independent samplings. We can see that with RestoreGrad applied, the SE model can achieve
better performance over the baseline CDiffuSE by only training for 96 epochs (4.6 times lesser
than the baseline) in all the metrics. In addition, halving the number of reverse steps in inference
still maintains better performance than the fully-trained CDiffuSE and also the PriorGrad. In Table 2
we also benchmark RestoreGrad with several generative modeling SE approaches: SEGAN (Pascual
et al., 2017), DSEGAN (Phan et al., 2020), SE-Flow (Strauss & Edler, 2021), and DOSE (Tai et al.,
2023a). Note that although RestoreGrad performs slightly inferior to DOSE, a recent SE model also
based on DiffWave (Kong et al., 2021), it was actually achieved with 4.6× fewer epochs than DOSE.

Table 3: The better results with Posterior (Post.)
Net than without it indicate that exploiting the
posterior information during training is helpful.
SE model PESQ↑COVL↑SI-SNR↑

CDiffuSE (trained for 96 epochs) 2.32 2.89 11.84
+ PriorGrad 2.42 3.03 14.21
+ RestoreGrad 2.51 3.14 14.74

+ RestoreGrad w/o Post. Net (η = 0.01) 2.47 3.08 11.22
+ RestoreGrad w/o Post. Net (η = 1) 2.48 3.12 13.29

*Best values are indicated with bold text.

Does Posterior Net help? To validate the ben-
efits brought by Posterior Net, we compare the
models trained with (11) with the baseline CD-
iffuSE, PriorGrad, and RestoreGrad models for
the SE task in Table 3. For fairness, all mod-
els were trained with 96 epochs, inferred with 6
steps. From the results we observe that Restore-
Grad achieves better results with Posterior Net
than without it, indicating the benefits from be-
ing informed of the target x0 by Posterior Net.

5.2 APPLICATION TO IMAGE RESTORATION (IR)

5.2.1 EXPERIMENTAL SETUP

Dataset. Following Özdenizci & Legenstein (2023), we consider the IR task of recovering clean
images from their degraded versions contaminated by synthesized noises corresponding to different
weather conditions. Two datasets are mainly considered here, where one is a weather-specific dataset
called RainDrop (Qian et al., 2018) and the other is a multi-weather dataset named AllWeather
(Valanarasu et al., 2022). The RainDrop dataset consists of images captured with raindrops on the
camera sensor which obstruct the view. It has 861 training images with synthetic raindrops, and
a test set of 58 images dedicated for quantitative evaluations. The AllWeather dataset is a curated
training dataset from Valanarasu et al. (2022), which has 18,069 samples composed of subsets of
training images from Snow100K (Liu et al., 2018), Outdoor-Rain (Li et al., 2019) and RainDrop
(Qian et al., 2018), in order to create a balanced training set across three weather conditions.

Evaluation metrics. Quantitative evaluations between ground truth and restored images are per-
formed via the conventional Peak Signal-to-Noise Ratio (PSNR) (Huynh-Thu & Ghanbari, 2008)
and Structural SIMilarity (SSIM) (Wang et al., 2004), based on the luminance channel Y of the
YCbCr color space following Özdenizci & Legenstein (2023), and Learned Perceptual Image Patch
Similarity (LPIPS)(Zhang et al., 2018) and Fréchet Inception Distance (FID) (Heusel et al., 2017).

Models. The following IR models are compared:
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Ground Truth Image Degraded Input Image
[PSNR: 24.20 | SSIM:0.8445]

RainDropDiff
[PSNR: 30.60 | SSIM: 0.9167]

RestoreGrad
[PSNR: 31.85 | SSIM: 0.9246]

Figure 6: Restored images by RainDropDiff (Özdenizci & Legenstein, 2023) and RestoreGrad (ours)
for a test sample from the RainDrop dataset. We provide more examples in Appendix C.2.

Table 4: Weather-specific (RainDrop
dataset) model comparison.

Methods RainDrop

PSNR ↑ SSIM ↑
DuRN 31.24 0.9259
RaindropAttn 31.44 0.9263
AttentiveGAN 31.59 0.9170
IDT 31.87 0.9313

RainDropDiff 32.29 0.9422
+ RestoreGrad (ours) 32.69±0.03 0.9441±7e-5

Table 5: Multi-weather model comparison. The models
were trained on the AllWeather training set (Valanarasu
et al., 2022) and tested on three different weather types.

Methods Snow100K-L Outdoor-Rain RainDrop

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
All-in-One 28.33 0.8820 24.71 0.8980 31.12 0.9268
TransWeather 29.31 0.8879 28.83 0.9000 30.17 0.9157

WeatherDiff 30.09 0.9041 29.64 0.9312 30.71 0.9312
+ RestoreGrad (ours) 30.82 0.9159 30.83 0.9411 31.78 0.9394

*Best and second best values are indicated with bold text and underlined text, respectively.

• Baseline DDPMs: We consider the RainDropDiff64 and WeatherDiff64 in Özdenizci & Legen-
stein (2023) trained on the RainDrop and AllWeather datasets, respectively, as baseline DDPMs.
Our work is based on the implementation provided by Özdenizci & Legenstein (2023).

• RestoreGrad: We incorporate the additional encoder modules Prior Net and Posterior Net on top
of the baseline DDPM. Both encoder modules adopt the ResNet-20 architect (He et al., 2016) with
only 0.27M learnable parameters, significantly smaller (< 0.3%) than the baseline DDPM model.

Configurations. We used Adam optimizer with a learning rate of 2×10−5. An exponential moving
average with a weight of 0.999 was applied. We used T = 1000 and linear noise schedule βt ∈
[10−4, 0.02], same as Özdenizci & Legenstein (2023). A batch size of 4 was used. The models were
trained on two NVIDIA Tesla V100 GPUs of 32 GB CUDA memory and finished training for 9,261
epochs on the RainDrop dataset in 12 days and 887 epochs on the AllWeather dataset in 21 days.

5.2.2 RESULTS

Model convergence: As presented in Figure 2 (test set performance), RestoreGrad demonstrates
faster convergence and better restored image quality over the baseline DDPM (RainDropDiff). For
example, RainDropDiff reaches 32.0 in PSNR at 9.2k epochs, while RestoreGrad reaches it in
1.8k epochs only, indicating a 5× speed-up due to the effectiveness of the prior learning scheme.

Image restoration example. Figure 6 presents examples of the restored images by the models. As
can be seen from the images, RestoreGrad is able to better recover the original image, especially
in regions of the blue and red boxes where the baseline RainDropDiff fails to remove the rain drop
obstructions. The higher PSNR and SSIM scores of RestoreGrad also reflect the improvements.

Comparison with state-of-the-art IR models. We compare our method with existing IR models in
Table 4, including DuRN (Liu et al., 2019), RaindropAttn (Quan et al., 2019), AttentiveGAN (Qian
et al., 2018), and IDT (Xiao et al., 2022). The models were all trained and tested on the RainDrop
dataset. The results of the compared models were taken from Özdenizci & Legenstein (2023), where
the RainDropDiff was trained for 37,042 epochs. Our RestoreGrad was only trained for 9,261
epochs (4× fewer than RainDropDiff), and has achieved the highest scores (here we report
mean ± std of RestoreGrad based on results of 10 independent samplings). We also evaluate our
method for the multi-weather case in Table 5 with All-in-One (Li et al., 2020) and TransWeather
(Valanarasu et al., 2022), where all the models were trained on the AllWeather dataset and tested on
the three weather-specific test sets. The numbers of the compared models were taken from Özdenizci
& Legenstein (2023), where the WeatherDiff was trained for 1,775 epochs and inferenced with
S = 25 steps. Our RestoreGrad was trained for only 887 epochs (2× fewer than WeatherDiff)
and inferenced with S = 10 steps to already achieve the best performance in all test schemes.
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Table 6: Evaluation on realistic image datasets
of IR models trained on synthetic images of
AllWeather training set.

Methods Gen. RainDS-Real Snow-Real

NIQE ↓ NIQE ↓
TransWeather N 4.005 3.161

WeatherDiff Y 3.050 2.985
+ RestoreGrad (ours) Y 2.556 3.015

Table 7: Evaluation of SE models on CHiME-3
test set, where the models were trained on Voice-
Bank+DEMAND training set.
Methods Gen. PESQ↑ CSIG↑ CBAK↑ COVL↑ SI-SNR↑
Unprocessed - 1.27 2.61 1.93 1.88 7.51

Demucs N 1.38 2.50 2.08 1.88 -
WaveCRN N 1.43 2.53 2.03 1.91 -
DOSE Y 1.52 2.71 2.15 2.06 -

CDiffuSE Y 1.55 2.87 2.09 2.15 7.67
+ RestoreGrad (ours) Y 1.54 2.88 2.14 2.16 8.45

*Best and second best values are indicated with bold text and underlined text, respectively. The column
“Gen.” indicates if the model is generative (Y) or not (N) in each table.

5.3 GENERALIZATION TO OUT-OF-DISTRIBUTION (OOD) AND REALISTIC DATA

We have so far evaluated the models on in-domain scenarios with synthetic noisy data where Re-
storeGrad has shown substantial improvements. A natural question is that if the demonstrated im-
provements have actually come at the expense of the model’s generalizability to unseen or realistic
data. To address the concern, we evaluate the IR models on two additional datasets from Quan et al.
(2021); Liu et al. (2018) that consist of real-world images, using the reference-free Natural Image
Quality Evaluator (NIQE) metric (Mittal et al., 2012) (a lower score indicates better quality). In
Table 6 we see that RestoreGrad is able to perform on par with or better than WeatherDiff and the
non-generative TransWeather model. For OOD testing, we evaluate the SE models on the CHiME-
3 dataset (Barker et al., 2017) unseen during model training. Table 7 compares RestoreGrad with
CDiffuSE that was also trained for 96 epochs, DOSE (Tai et al., 2023a), and two discriminative SE
models. We can see that RestoreGrad is able to perform equally well as the CDiffuSE while out-
performing DOSE and other non-generative SE models (Demucs (Defossez et al., 2020), WaveCRN
(Hsieh et al., 2020)). The results in both tables show that RestoreGrad is capable of improving in-
domain performance while maintaining desirable generalization capabilities of generative models.

5.4 APPLICATIONS TO OTHER IMAGE RESTORATION TASKS

Table 8: Image deblurring of realistic blurred images.
Methods RealBlur-J RealBlur-R

PSNR↑SSIM↑LPIPS↓ FID↓ PSNR↑SSIM↑LPIPS↓ FID↓
SRN-DeblurNet 31.38 0.9091 - - 38.65 0.9652 - -
DeblurGAN-v2 29.69 0.8703 - - 36.44 0.9347 - -

Baseline cDDPM 30.69 0.9043 0.220 15.17 37.71 0.9777 0.126 14.46
+ RestoreGrad (ours) 31.51 0.9095 0.224 15.53 38.78 0.9796 0.122 13.61

*Bold text for best and underlined text for second best values.

To demonstrate the generality of our
method to benefit conditional DDPMs for
IR from other types of degradation, we
also perform experiments on image de-
blurring and super-resolution. We ap-
ply RestoreGrad to the baseline condi-
tional DDPM (cDDPM) which imple-
ments the same architecture as the patch-
based DDPM of Özdenizci & Legenstein (2023) used for weather degradations. Due to space limit,
we present results on image deblurring in this section, and leave the discussion on super-resolution
to Appendix C.2. For deblurring, we trained the baseline cDDPM and RestoreGrad models and vali-
dated their performance on the RealBlur dataset (Rim et al., 2020), a large-scale dataset of real-world
blurred images captured both in the camera raw and JPEG formats, leading to two sub-datasets:
RealBlur-R from the raw images and RealBlur-J from the JPEG images. Each training set consists
of 3,758 image pairs and each test set consists of 980 image pairs. In Table 8, we present results of
the baseline cDDPM and RestoreGrad models trained after 853 epochs. We also include scores of
two existing models, SRN-DeblurNet (Tao et al., 2018) and DeblurGAN-v2 (Kupyn et al., 2019),
which performed similarly to the baseline cDDPM (taken from results by Rim et al. (2020)), as ref-
erences for comparison. We can see that, except for LPIPS and FID on RealBlur-J, RestoreGrad is
able to achieve improved scores than the baseline cDDPM, and outperform the compared methods.

6 CONCLUSION

We investigated the potential of jointly learning the prior distribution with the conditional DDPM
for improved efficiency. The proposed RestoreGrad provides a more systematic way of estimating
the prior than existing selections for diffusion models. Via experiments on SE and IR tasks, we
demonstrated the advantages of leveraging learning-based prior with RestoreGrad. A limitation of
the current work is that we only focus on signal restoration applications, where we suitably assume a
zero-mean Gaussian prior and only learn its covariance. In the future, it can be interesting to research
on using a more generic prior form and extend the idea to other modalities and applications.
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A DERIVATION OF PROPOSITION 1

Proposition 1 (RestoreGrad). Assume the prior and posterior distributions are both zero-
mean Gaussian, parameterized as pψ(ϵ|y) = N (ϵ;0,Σprior(y;ψ)) and qϕ(ϵ|x0,y) =
N (ϵ;0,Σpost(x0,y;ϕ)), respectively, where the covariances are estimated by the Prior Net ψ (tak-
ing y as input) and Posterior Net ϕ (taking both x0 and y as input). Let us simply use Σprior and
Σpost hereafter to refer to Σprior(y;ψ) and Σpost(x0,y;ϕ) for concise notation. Then, with the di-
rect sampling property in the forward path xt =

√
ᾱtx0 +

√
1− ᾱtϵ at arbitrary timestep t where

ϵ ∼ qϕ(ϵ|x0,y), and assuming the reverse process has the same covariance as the true forward
process posterior conditioned on x0, by utilizing the conditional DDPM ϵθ(xt,y, t) as the noise
estimator of the true noise ϵ, we have the modified ELBO associated with (7):

−ELBO =
ᾱT
2

Ex0∥x0∥2Σ−1
post

+
1

2
log|Σpost|︸ ︷︷ ︸

Latent Regularization (LR) terms

+

T∑
t=1

γtE(x0,y),ϵ∼N (0,Σpost)∥ϵ− ϵθ(xt,y, t)∥2Σ−1
post︸ ︷︷ ︸

Denoising Matching (DM) terms

+
1

2

(
log

|Σprior|
|Σpost|

+ tr(Σ−1
priorΣpost)

)
︸ ︷︷ ︸

Prior Matching (PM) terms

+C, where γt =

{
β2
t

2σ2
tαt(1−ᾱt)

, t > 1
1

2α1
, t = 1

are weighting factors, ∥x∥2Σ−1 = xTΣ−1x, σ2
t = 1−ᾱt−1

1−ᾱt
βt and C is some constant not depending

on the learnable parameters θ, ϕ, and ψ.

Derivation:

Recall our proposed lower bound in (7) to incorporate the conditional DDPM into the VAE frame-
work is given as:

Eqϕ(ϵ|x0,y)

[
Eq(x1:T |x0)

[
pθ(x0:T |y, ϵ)
q(x1:T |x0)

]
︸ ︷︷ ︸

L(θ,ϕ)

]
−DKL

(
qϕ(ϵ|x0,y)||pψ(ϵ|y)

)
. (12)

As assumed in standard DDPMs, the forward diffusion process gradually corrupts the data distribu-
tion into the prior distribution, which can be achieved by carefully designing the variance schedule
for the forward pass, i.e., {βt}Tt=1, such that xT → ϵ (as a result of ᾱT → 0). More specifically,
the q(xT |x0) of the forward diffusion process converges in distribution to the approximate posterior
qϕ(ϵ|x0,y) from the posterior encoder ϕ. Then, the term L(θ, ϕ) in (12) suggests training a condi-
tional diffusion model θ to reverse the diffusion trajectory from the estimated distribution of ϵ given
by the posterior encoder ϕ back to the target data distribution of x0.

According to Lee et al. (2021), the form of the loss function L(θ) for training the noise estimator
network θ of the conditional DDPM for an arbitrary ϵ ∼ N (0,Σ) is given as:

L(θ) = L0 + LT +

T∑
t=2

Lt−1, (13)

where the terms can be explicitly written as:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

L0 :=− Eq(x1|x0) [log pθ(x0|x1,y)]

=
1

2
log

(
(2πβ1)

d|Σ|
)
+

1

2α1
Ex0,ϵ∼N (0,Σ)∥ϵ− ϵθ(x1,y, 1)∥2Σ−1 ,

Lt−1 :=Eq(xt|x0) [DKL (q(xt−1|xt,x0)||pθ(xt−1|xt,y))]

=
βt

2αt(1− ᾱt−1)
Ex0,ϵ∼N (0,Σ)∥ϵ− ϵθ(xt,y, t)∥2Σ−1

=
β2
t

2σ2
tαt(1− ᾱt)

Ex0,ϵ∼N (0,Σ)∥ϵ− ϵθ(xt,y, t)∥2Σ−1 ,

LT :=DKL (q(xT |x0)||p(xT ))

=
ᾱT
2

Ex0∥x0∥2Σ−1 −
d

2
(ᾱT + log(1− ᾱT )),

(14)

with ᾱt :=
∏t
i=1 αi and αt := 1−βt for t = 1, . . . , T where {βt}Tt=1 is the noise variance schedule

as a hyperparameter, d is the parameter freedom and σ2
t = 1−ᾱt−1

1−ᾱt
βt.

In our case, we have assumed modeling of the posterior distribution where the ϵ is sampled from as
the zero-mean Gaussian ϵ ∼ N (0,Σpost) where the covariance Σpost := Σpost(x0,y;ϕ) is estimated
by the Posterior Net ϕ, taking both the ground truth data x0 and the conditioner y as input. By
directly plugging in Σ = Σpost for each term in (14), we obtain:

L(θ, ϕ) = ᾱT
2

Ex0
∥x0∥2Σ−1

post
+

1

2
log|Σpost|

+

T∑
t=1

γtE(x0,y),ϵ∼N (0,Σpost)∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ︸ ︷︷ ︸

xt

,y, t)∥2
Σ−1

post
+ C,

(15)

where

γt =

{
β2
t

2σ2
tαt(1−ᾱt)

, t > 1
1

2α1
, t = 1

and C is some constant not depending on the learnable parameters.

For the prior matching term in (12), we can utilize the analytic form of the KL divergence between
two Gaussians which leads to:

DKL
(
qϕ(ϵ|x0,y)||pψ(ϵ|y)

)
=

1

2

(
log

|Σprior|
|Σpost|

+ tr(Σ−1
priorΣpost)

)
, (16)

where the covariances Σprior := Σprior(y;ψ) and Σpost := Σpost(x0,y;ϕ).

Combining (15) and (16), we have obtained the −ELBO of Proposition 1.
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B IMPLEMENTATION DETAILS

B.1 ALGORITHMS

Algorithm 1: Training of RestoreGrad
1 for i = 0, 1, 2..., Niter do
2 Sample (x0,y) ∼ qdata(x0,y)
3 Σprior ←Prior Net(y;ψ)
4 Σpost ←Posterior Net(x0,y;ϕ)
5 Sample ϵ ∼ N (0,Σpost) and t ∼ U({1, . . . , T})
6 xt =

√
ᾱtx0 +

√
1− ᾱtϵ

7 LLR = ᾱT ||x0||2Σ−1
post

+ log|Σpost|

8 LDM = ||ϵ− ϵθ(xt,y, t)||2Σ−1
post

9 LPM = log
|Σprior|
|Σpost| + tr(Σ−1

priorΣpost)

10 Update θ, ψ, ϕ with∇θ,ψ,ϕ ηLLR +LDM + λLPM

11 end for

Algorithm 2: Sampling of RestoreGrad
1 Σprior ←Prior Net(y;ψ)
2 Sample xT ∼ N (0,Σprior)
3 for t = T, T − 1, ..., 1 do
4 if t > 0 then
5 Sample ϵ ∼ N (0,Σprior)
6 else
7 ϵ = 0
8 end if
9 xt−1 =

1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt,y, t)

)
+σtϵ

10 end for
11 return x0

B.2 EXPERIMENTS ON SPEECH ENHANCEMENT (SE)

B.2.1 DATASET

We used the VoiceBank+DEMAND dataset (Valentini-Botinhao et al., 2016) with the same experi-
mental setup as in previous work (Pascual et al., 2017; Phan et al., 2020; Strauss & Edler, 2021; Lu
et al., 2022) to perform a direct comparison. The clean speech and noise recordings were provided
from the VoiceBank corpus (Veaux et al., 2013) and the Diverse Environments Multichannel Acous-
tic Noise Database (DEMAND) (Thiemann et al., 2013), respectively, each recorded with sampling
rate of 48kHz. Noisy speech inputs used for training were composed by mixing the two datasets
with four signal-to-noise ratio (SNR) settings from {0, 5, 10, 15} dB, using 10 types of noise (2
artificially generated + 8 real recorded from the DEMAND dataset) and 28 speakers from the Voice
Bank corpus. The test set inputs were made with four SNR settings different from the training set,
i.e., {2.5, 7.5, 12.5, 17.5} dB, using the remaining 5 noise types from DEMAND and 2 speakers
from the VoiceBank corpus. There are totally 11527 utterances for training and 824 for testing. Note
that the speaker and noise classes were uniquely selected for the training and test sets. The dataset
is publicly available at: https://datashare.ed.ac.uk/handle/10283/2826. In our
experiments, the audio steams were resampled to 16kHz sampling rate.

B.2.2 MODEL ARCHITECTURE

Baseline DDPM-based SE model. The baseline SE model considered in this work, i.e., CDiffuSE
(Lu et al., 2022), performs enhancement in the time domain. We utilized the CDiffuSE base model,
which has approximately 4.28M learnable parameters, from the implementation at: https://
github.com/neillu23/CDiffuSE. The model is implemented based on DiffWave (Kong
et al., 2021), a versatile diffusion probabilistic model for conditional and unconditional waveform
generation. The basic model structure of CDiffuSE is similar to that of DiffWave. However, since
the target task is SE, CDiffuSE uses the noisy spectral features as the conditioner, rather than the
clean Mel-spectral features used in DiffWave utilized for vocoders. After the reverse process is
completed, the enhanced waveform further combine the observed noisy signal y with the ratio 0.2
to recover the high frequency speech in the final enhanced waveform, as suggested in Abd El-Fattah
et al. (2008); Defossez et al. (2020).

PriorGrad. We implemented the PriorGrad (Lee et al., 2021) on top of the CDiffuSE model by us-
ing a data-dependent prior N (0,Σy), where Σy is the covariance of the prior distribution computed
based on using the mel-spectrogram of the noisy input y. Following the application to vocoder in
Lee et al. (2021), we leveraged a normalized frame-level energy of the mel-spectrogram for acquir-
ing data-dependent prior, exploiting the fact that the spectral energy contains an exact correlation to
the waveform variance (by Parseval’s theorem (Stoica et al., 2005)). More specifically, we computed
the frame-level energy by taking the square root of the sum of exp(Y) over the frequency axis for
each time frame, where Y is the mel-spectrogram of the noisy input y from the training data. We
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then normalized the frame-level energy to a range of (0, 1] to acquire the data-dependent diagonal
variance ΣY . Then we upsampled ΣY in the frame level to Σy in the waveform-level using the
given hop length of computing the mel-spectrogram. We imposed the minimum standard deviation
of the prior to 0.1 through clipping to ensure numerical stability during training, as suggested in Lee
et al. (2021).

Prior Net and Posterior Net for RestoreGrad. The additional encoder modules for the Restore-
Grad adopt the ResNet-20 architect (He et al., 2016) using the implementation from: https:
//github.com/akamaster/pytorch_resnet_cifar10. We suitably modified the orig-
inal 2-D convolutions in ResNet-20 to 1-D convolutions for waveform processing. The modified
ResNet-20 model has only 93K learnable parameters (only 2% of the size of CDiffuSE model). The
Prior Net takes the noisy speech waveform y as input, while the Posterior Net takes both the clean
and noisy waveforms, x0 and y, as input, which are concatenated along the channel dimension. We
employed the exponential nonlinearity at the network output for estimating the variances of the prior
and posterior distributions.

B.2.3 OPTIMIZATION AND INFERENCE

We used the same configurations of CDiffuSE (Base) (Lu et al., 2022) for optimizing all the models,
where the batch size was 16, the Adam optimizer was used with a learning rate of 2× 10−4, and the
diffusion steps T = 50 with linearly spaced βt ∈ [10−4, 0.035]. For RestoreGrad, we imposed the
minimum standard deviation σmin = 0.1 by adding it to the output of the Prior Net and Posterior Net
to ensure stability during training. The fast sampling scheme in Kong et al. (2021) was used in the
reverse processes with S = 6 and the inference schedule βinfer

t = [10−4, 10−3, 0.01, 0.05, 0.2, 0.35].
The models were trained on one NVIDIA Tesla V100 GPU of 32 GB CUDA memory and finished
training for 96 epochs in 1 day.

B.2.4 EVALUATION METRICS

PESQ: a speech quality measure using the wide-band version recommended in ITU-T P.862.2 (ITU-
T Rec. P.862.2, 2005). It basically models the mean opinion scores (MOS) that cover a scale
from 1 (bad) to 5 (excellent). We used the Python-based PESQ implementation from: https:
//github.com/ludlows/python-pesq.

SI-SNR: a variant of the conventional SNR measure taking into account the scale-invariance
of audio signals. The SI-SDR is a more robust and meaningful metric than the traditional
SNR for measuring speech quality. A higher SI-SNR score indicates better perceptual speech
quality. We adopted the SI-SNR implementation from: https://lightning.ai/docs/
torchmetrics/stable/audio/scale_invariant_signal_noise_ratio.html.

CSIG: The mean opinion score (MOS) prediction of the signal distortion (from 1 to 5, the higher
the better) (Hu & Loizou, 2007). We used the implementation from: https://github.com/
schmiph2/pysepm.

CBAK: MOS prediction of the intrusiveness of background noises (from 1 to 5, the higher the better)
(Hu & Loizou, 2007). We used the implementation from: https://github.com/schmiph2/
pysepm.

COVL: MOS prediction of the overall effect (from 1 to 5, the higher the better) (Hu & Loizou,
2007). We used the implementation from: https://github.com/schmiph2/pysepm.

B.3 EXPERIMENTS ON IMAGE RESTORATION (IR)

B.3.1 DATASETS

We used three standard benchmark image restoration datasets considering adverse weather condi-
tions of snow, heavy rain with haze, and raindrops on the camera sensor, following Özdenizci &
Legenstein (2023).

Snow100K (Liu et al., 2018): a dataset for evaluation of image desnowing models. We used the
test set for evaluation, which consist of 50,000 samples. The images are split into approximately
equal sizes of three Snow100K-S/M/L sub-test sets (16,611/16,588/16,801), indicating the synthetic
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snow strength imposed via snowflake sizes (light/mid/heavy). The dataset can be downloaded from:
https://sites.google.com/view/yunfuliu/desnownet.

Outdoor-Rain (Li et al., 2019): a dataset of simultaneous rain and fog which exploits a physics-
based generative model to simulate not only dense synthetic rain streaks, but also incorporating
more realistic scene views, constructing an inverse problem of simultaneous image deraining and
dehazing. We used the test set, denoted in Li et al. (2019) as Test1, which is of size 750 for quan-
titative evaluations. The dataset can be accessed at: https://github.com/liruoteng/
HeavyRainRemoval.

RainDrop (Qian et al., 2018): a dataset of images with raindrops introducing artifacts on the camera
sensor and obstructing the view. It consists of 861 training images with synthetic raindrops, and a test
set of 58 images dedicated for quantitative evaluations, denoted in Qian et al. (2018) as RainDrop-A.
The dataset is provided at: https://github.com/rui1996/DeRaindrop.

In addition, we also used the composite dataset for multi-weather IR model training:

AllWeather (Valanarasu et al., 2022): is a dataset of 18,069 samples composed of subsets of
training images from the training sets of the three datasets above, in order to create a balanced
training set across three weather conditions with a similar approach to Li et al. (2020). The dataset
is publicly available at: https://github.com/jeya-maria-jose/TransWeather.

B.3.2 MODEL ARCHITECTURE

Baseline DDPM-based IR models. The baseline IR models considered in this work, i.e., the Rain-
DropDiff and WeatherDiff from Özdenizci & Legenstein (2023), perform patch-based diffusive
restoration of the images. The models perform diffusion process at the patch level, where over-
lapping p × p patches are taken as input. When sampling, all p × p patches extracted from the
image with a hop size r are processed by the DDPM model, utilizing the mean estimated noise
based sampling updates for the overlapping pixels to synthesize the clean image. In this work,
we considered p = 64 and r = 16, which correspond to the RainDropDiff64and WeatherDiff64
models (with 110M and 82 M learnable parameters, respectively) provided by the authors at:
https://github.com/IGITUGraz/WeatherDiffusion.

Prior Net and Posterior Net for RestoreGrad. The additional encoder modules for the Restore-
Grad adopt the ResNet-20 architect (He et al., 2016) using the implementation from: https://
github.com/akamaster/pytorch_resnet_cifar10. The ResNet-20 model has 0.27M
learnable parameters, which is less than 0.3% of the size of RainDropDiff and WeatherDiff. The
Prior Net takes the noisy image y as input, while the Posterior Net takes both the clean and noisy
images, x0 and y, as input, which are concatenated along the channel dimension. We employed the
exponential nonlinearity at the network output for estimating the variances of the prior and posterior
distributions.

B.3.3 OPTIMIZATION AND INFERENCE

We used the same configurations of Özdenizci & Legenstein (2023) for optimizing all the models,
except the batch size was 4 instead of 16 due to GPU memory limitation. The Adam optimizer
with a fixed learning rate of 2 × 10−5 was used for training models without weight decay, and an
exponential moving average with a weight of 0.999 was applied during parameter updates. The
number of diffusion steps was T = 1000 and the noise schedule was βt ∈ [10−4, 0.02], linearly
spaced. For inference, we used S = 10 sampling timesteps for each model that we trained on
our own. We did not use the deterministic implicit sampling scheme as in Özdenizci & Legenstein
(2023) for our RestoreGrad-based DDPM models as we found using the normal stochastic sampling
scheme actually works better. The models were trained on 2 NVIDIA Tesla V100 GPU of 32 GB
CUDA memory and finished training for 9,261 epochs on the RainDrop dataset in 12 days and 887
epochs on the AllWeather dataset in 21 days.

B.3.4 EVALUATION METRICS

PSNR: a non-linear full-reference metric that compares the pixel values of the original reference
image to the values of the degraded image based on the mean squared error (Huynh-Thu & Ghan-
bari, 2008). A higher PSNR indicates better reconstruction quality of images in terms of distortion.
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PSNR can be calculated for the different color spaces. We followed Özdenizci & Legenstein (2023)
to compute PSNR based on the luminance channel Y of the YCbCr color space. We used the imple-
mentation form https://github.com/JingyunLiang/SwinIR for PSNR calculation.

SSIM: a non-linear full-reference metric compares the luminance, contrast and structure of the
original and degraded image (Wang et al., 2004). It provides a value from 0 to 1, the closer the
score is to 1, the more similar the degraded image is to the reference image. We followed Özdenizci
& Legenstein (2023) to compute SSIM based on the luminance channel Y of the YCbCr color
space. We used the implementation form https://github.com/JingyunLiang/SwinIR
for SSIM calculation.

Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) and Fréchet Inception
Distance (FID) (Heusel et al., 2017): to provide better quantification of perceptual quality over
the traditional distortion measures of PSNR and SSIM (Blau & Michaeli, 2018; Freirich et al.,
2021). For the LPIPS we used the implementation from https://github.com/richzhang/
PerceptualSimilarity, and for FID we used the implementation from https://github.
com/chaofengc/IQA-PyTorch. In both metrics, a lower score indicates better perceptual
quality of the restored image.

B.4 EXPERIMENTS ON GENERALIZATION TO OOD AND REALISTIC DATA

B.4.1 DATASETS

The additional datasets considered for experiments on realistic data for the IR task are:

RainDS-Real (Qian et al., 2018): is the raindrop removal test subset of the RainDS dataset pre-
sented in Qian et al. (2018). It consists of 98 real-world captured raindrop obstructed images. The
dataset is publicly available at: https://github.com/Songforrr/RainDS_CCN.

Snow100K-Real (Liu et al., 2018): is the subset of the Snow100K dataset (Liu et al., 2018) that
consists of 1,329 realistic snowy images for testing real-world restoration cases. The dataset can be
accessed at: https://sites.google.com/view/yunfuliu/desnownet.

The additional dataset considered for experiments on OOD data of the SE task is:

CHiME-3 (Barker et al., 2017): is a 6-channel microphone recording of talkers speaking in a noisy
environment, sampled at 16 kHz. It consists of 7138 and 1320 simulated utterances for training
and testing, respectively, which are generated by artificially mixing clean speech data with noisy
backgrounds of four types, i.e. cafe, bus, street, and pedestrian area. In this paper, we only take
the 5-th channel recordings for the experiments. The dataset information can be found at: https:
//www.chimechallenge.org/challenges/chime3/data.

B.4.2 EVALUATION METRICS

The additional evaluation metric used in the corresponding section is:

NIQE: is a reference-free quality assessment of real-world restoration performance introduced by
Mittal et al. (2012) which measures the naturalness of a given image without using any reference
image. A lower NIQE score indicates better perceptual image quality. We used the NIQE imple-
mentation from: https://github.com/chaofengc/IQA-PyTorch.

B.5 APPLICATIONS TO OTHER IMAGE RESTORATION TASKS

B.5.1 DATASETS

The datasets considered for experiments on image deblurring and super-resolution tasks are:

RealBlur (Rim et al., 2020): a large-scale dataset of real-world blurred images and ground truth
sharp images for learning and benchmarking single image deblurring methods. The images were
captured both in the camera raw and JPEG formats, leading to two datasets: RealBlur-R from the
raw images and RealBlur-J from the JPEG images. Each training set consists of 3,758 image pairs
and each test set consists of 980 image pairs. The dataset can be downloaded from: https:
//cg.postech.ac.kr/research/realblur/.
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Figure 7: Model learning performance in terms of CSIG, CBAK, and SI-SNR metrics. Improved
training behavior of RestoreGrad over CDiffuSE and PriorGrad is observed among all metrics.

DIV2K (Agustsson & Timofte, 2017; Timofte et al., 2017): a dataset of 2K resolution high quality
images collected from the Internet as part of the NTIRE 2017 super-resolution challenge. There are
800, 100, and 100 images for training, validation, and testing, respectively. The dataset provides ×2,
×3, and ×4 downscaled images with bicubic and unknown downgrading operations. The dataset
can be downloaded from:https://data.vision.ee.ethz.ch/cvl/DIV2K/.

B.5.2 MODEL ARCHITECTURE

The baseline conditional DDPM (cDDPM) implements the same architecture as the patch-based
denoising diffusion model of WeatherDiff (Özdenizci & Legenstein, 2023). The Prior Net and Pos-
terior Net of RestoreGrad also adopt the same ResNet models as in the IR experiments under adverse
weather conditions. For more details please refer to Appendix B.3.2.

B.5.3 OPTIMIZATION AND INFERENCE

The models were optimized and inferenced using the same configurations and settings as given in
Appendix B.3.3 for the IR experiments under adverse weather conditions. The models were trained
on 2 NVIDIA Tesla V100 GPU of 32 GB CUDA memory and finished training for 853 epochs on
the RealBlur-{R,J} dataset each in 5 days and 2000 epochs on the DIV2K-{×2,×4} dataset each in
3 days.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ADDITIONAL RESULTS ON SE

Model learning performance in terms of other metrics. In addition to the results evaluated by
PESQ and COVL in Figure 2, we provide the learning curves in terms of the CSIG, CBAK, and SI-
SNR metrics in Figure 7, to further support the advantages of RestoreGrad over the baseline DDPM
and PriorGrad for improved training behavior and efficiency.

Performance with using different numbers of inference steps. In Figure 8, we show how the
trained diffusion models perform with respect to using different numbers of reverse steps for infer-
ence. Specifically, in each case of CDiffuSE, PriorGrad, and RestoreGrad, we trained the model
for 96 epochs and then inferenced with S ∈ {3, 4, 5} reverse steps to compare with the origi-
nally adopted S = 6 steps in Lu et al. (2022). We used βinfer

t = [10−4, 10−3, 0.05, 0.2, 0.35]
for S = 5, βinfer

t = [10−4, 0.05, 0.2, 0.35] for S = 4, and βinfer
t = [0.05, 0.2, 0.35] for S = 3.

These choices were selected from the subsets of the original noise schedule for S = 6, i.e.,
βinfer
t = [10−4, 10−3, 0.01, 0.05, 0.2, 0.35], that resulted in best performance of the models. For the

figure we can see that as S becomes smaller, the baseline CDiffuSE degrades considerably, while
PriorGrad shows certain resistance, and RestoreGrad manages to maintain the high performance.

We present more comparison in Table 9 in terms of SI-SNR, CSIG, CBAK, and COVL metrics.
The results further support that RestoreGrad is much more robust to the reduction in sampling steps,
achieving the best quality scores in all the metrics over the baseline DDPM and PriorGrad across all
sampling steps considered.
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Figure 8: Effect of using reduced numbers of sampling steps in inference on the SE performance,
in terms of PESQ. RestoreGrad demstrates strongest endurance to the reduction in reverse sampling
steps for inference.

Table 9: Performance comparison of RestoreGrad with the baseline DDPM (CDiffuSE) and Prior-
Grad for using various numbers of sampling steps S during inference.

Methods SI-SNR ↑ CSIG ↑ CBAK ↑ COVL ↑
S=6 S=5 S=4 S=3 S=6 S=5 S=4 S=3 S=6 S=5 S=4 S=3 S=6 S=5 S=4 S=3

CDiffuSE (Lu et al., 2022) 11.84 11.46 11.32 11.28 3.52 3.44 3.15 3.13 2.76 2.72 2.64 2.63 2.89 2.82 2.60 2.58
+ PriorGrad (Lee et al., 2021) 14.21 13.98 13.93 13.93 3.67 3.61 3.56 3.54 2.93 2.90 2.88 2.88 3.02 2.97 2.93 2.92
+ RestoreGrad (ours) 14.74 14.66 14.64 14.65 3.80 3.77 3.75 3.75 3.00 2.99 2.99 2.99 3.14 3.12 3.11 3.11

*Best values are indicated with bold text.

Visualizing the learned prior. It would be interesting to see how the latent noise prior that has
been learned by RestoreGrad looks like and how it compares with that of the PriorGrad. In Figure 9
we present an example of a randomly chosen noisy speech waveform and the corresponding latent
noise Σy = diag{σ2

y} of PriorGrad and that of RestoreGrad (with (η, λ) = (0.1, 0.5) for (10)). It
can be seen that the variances of the pre-defined (PriorGrad) and learned (RestoreGrad) latent noise
distributions are actually quite different, though both show the trend of following the variation of the
conditioner signal level. This trend indicates that both latent distributions aim to better approximate
the true signal distribution in a more informative manner for improved efficiency, as against the
standard Gaussian prior used in the original DDPM. Note that in the RestoreGrad training, we have
chosen a proper KL weight λ so that the Prior Net distribution matches the Posterior Net distribution
reasonably well without harming the reconstruction ability of the DDPM model. On the other hand,
using a too large λ might lead to a collapsed latent space as the optimization could have put too
much emphasis on matching the prior and posterior distribution, discarding the contribution of the
reconstruction loss term. In contrast, using a too small λ might result in large discrepancy between
the learned prior and posterior distributions, as also illustrated in Figure 9. Empirically, we found a
naive choice of 1 works reasonably well and also for similar values, e.g., 0.5, 10, etc., as similarly
observed in the VAE-type model of Kohl et al. (2018).

Restoration performance vs η. An additional hyperparameter introduced in the RestoreGrad ob-
jective function (10) is the latent regularization weight η. An appropriate value of η should be large
enough to properly regularize the learned latent space for avoiding instability, while not putting too
much contribution so that it will not adversely affect the signal reconstruction and prior matching
aspects. Empirically, we found the overall SE performance is not very sensitive to the value of η
across a wide range, as shown in Figure 10: roughly in the range of [10−2, 10] of the η value we see
that RestoreGrad (here λ was fixed at 0.5) gives better (or equally good) results over both PriorGrad
and CDiffuSE, indicating that a good η is not challenging to find. On the right-hand side of the
figure, we also show how the learned latent variances look like if using a too small and a too large
η. We can see that if η is too small, it might fail to regularize the latent space properly and result
in arbitrary large variances that could lead to degraded performance. On the other hand, if η is too
large, it might affect the signal reconstruction and prior matching facets, causing the performance to
also degrade.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Too large λ

Too small λ

Figure 9: An example of learned latent distribution variances, Σprior = diag{σ2
prior} and Σpost =

diag{σ2
post} by RestoreGrad, and the effect of the KL weight λ of the prior matching loss LPM on

the resulting latent distribution variances. The pre-computed variance of the handcrafted prior using
PriorGrad is also presented for reference purposes.

Figure 10: SE performance sensitivity to the latent regularization weight η of LLR.

Evaluation using automatic speech recognition (ASR). Following Benita et al. (2024) who per-
form evaluation of diffusion-based speech generation using ASR, we evaluate the SE model as a
front-end denoiser for ASR under noisy environments. To this end, we pre-process the noisy Voice-
Band+DEMAND test data samples through the well-trained SE model and feed the denoised audio
separately to two pre-trained ASR engines taken from the NVIDIA NeMo toolkit1: Conformer-
transducer-large (Gulati et al., 2020) and Citrinet-1024 (Majumdar et al., 2021). We report the
word error rate (WER) and character error rate (CER) for each ASR engine outcome, where the
lower WER / CER indicate better performance. The results are presented in Table 10 with all the
SE models trained after 96 epochs, inferred using 6 steps. It is interesting to see that CDiffuSE and
PriorGrad actually lead to worse performance than the unprocessed speech case for Citrinet ASR.
Our RestoreGrad is able to achieve the lowest WER and CER for both ASR models, demonstrating
its efficacy for enhancing machine learning capabilities under noisy environments.

Table 10: Following Benita et al. (2024) who perform evaluation of diffusion-based speech gener-
ation using ASR, we evaluate SE models on two ASR engines (Conformer, Citrinet) for the Voice-
Band+DEMAND test set. The results further confirm the superiority of RestoreGrad over the base-
line and PriorGrad.

SE model
ASR: WER ↓ (%) / CER ↓ (%)

Conformer (Gulati et al., 2020) Citrinet (Majumdar et al., 2021)

Unprocessed 6.62 / 6.15 8.69 / 6.86

CDiffuSE 6.55 / 6.01 9.77 / 7.41
+ PriorGrad 6.13 / 5.70 9.15 / 7.00
+ RestoreGrad 5.07 / 5.27 8.15 / 6.51

*Best values are indicated with bold text.

1https://github.com/NVIDIA/NeMo

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

PESQ: 2.48 PESQ: 2.68

PESQ: 2.85 PESQ: 3.16

PESQ: 2.60 PESQ: 3.05

PESQ: 1.97 PESQ: 2.17

Figure 11: Enhanced speech examples of the baseline DDPM (CDiffuSE) and the proposed Restore-
Grad for several noisy samples taken from the VoiceBank+DEMAND test set.

Enhanced speech examples. We present several audio examples in Figure 11 to facilitate the
comparison of the baseline DDPM and our RestoreGrad. It can be seen the RestoreGrad is
able to recover a better speech signal closer to the target clean speech, which is also reflected
by the higher PESQ scores obtained. A few more audio samples can be accessed at https:
//anonymous.4open.science/r/SE_audio_samples-2D7C/.

SE quality and encoder model size trade-offs. We have further conducted experiments on using
different model sizes for the Prior and Posterior Nets. The results shown in Table 11 clearly show
that the restore speech quality improves with increased model size of the encoders (Prior Net and
Posterior Net), indicating there is a trade-off between the restoration signal quality and encoder
model complexity.

Table 11: SE comparison of RestoreGrad models using three different sizes of the encoder modules
(i.e., Prior Net and Posterior Net). *The Base (96K) model is the one used in main experiments.

Encoder size PESQ ↑ COVL ↑ SSNR ↑ SI-SNR ↑
Tiny (24K params) 2.48 3.11 5.10 13.74
Base (96K params) 2.51 3.14 5.92 14.74
Large (370K params) 2.54 3.16 6.15 15.01
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Learned 𝝈!"#$" (𝜂 = 0.001)

Learned 𝝈!"#$" (𝜂 = 0.005)

Learned 𝝈!"#$" (𝜂 = 0.1)

Degraded image (conditioner)

Figure 12: Visualization of learned prior distribution variances with various η for a sample image
taken from the RainDrop test set (Qian et al., 2018). Mind the magnitude color bar of each figure.
We can see that a larger η results in smaller variance of the prior distribution, while a smaller η leads
to larger variance.

C.2 ADDITIONAL RESULTS ON IR

Visualizing the learned prior. We visualize the learned prior distribution variances for a chosen
image input with various η values in Figure 12 since we are interested in the effect of this newly
introduced hyperparameter. We plot the results for the first channel of the image. The original
contaminated image (i.e., the conditioner y to the DDPM model) is also presented for reference
purposes. As expected for the latent space regularization effect, a large η results in smaller variances
as enforcing stronger regularization, while a small η leads to larger variances, as observed in the
plots. Moreover, the learned prior appears to preserve the structure of the image, indicating that it
tends to learn a prior distribution that approximates the data distribution.

Restoration performance vs. η and λ. We also study the IR performance of the RestoreGrad
models trained across various combinations of η and λ in Table 12, where the models were trained
and tested on the RainDrop dataset. The results show that RestoreGrad works effectively for a wide
range of η and λ values as outperforming the baseline DDPM model, RainDropDiff from Özdenizci
& Legenstein (2023), which utilizes the standard Gaussian prior for the diffusion process.

Experiments on image super-resolution. We further study the benefits of RestoreGrad over the
baseline conditional DDPM (cDDPM) model on image super-resolution tasks with the DIV2K
dataset (Agustsson & Timofte, 2017; Timofte et al., 2017). We compare RestoreGrad with the base-
line cDDPM model (the same architecture of the patch-based DDPM of WeatherDiff (Özdenizci &
Legenstein, 2023)) for ×2 and ×4 downscale factor subsets (with bicubic downgrading operators).
There are 800 images for training and 100 images for validation in each subset. For both subsets,
we trained a baseline cDDPM and the RestoreGrad models for 2000 epochs on the training set and
evaluated their performance on the corresponding validation set. The results are presented in Table
13, where we can see that except for the LPIPS metric, RestoreGrad is more beneficial then the
baseline cDDPM in terms of achieving better scores in the other three metrics.
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Table 12: RestoreGrad performance for various η and λ, where the models were trained for 9,261
epochs and tested with S = 10 sampling steps on the RaindDrop dataset (Qian et al., 2018).
The baseline RainDropDiff model results reported in the original paper of Özdenizci & Legenstein
(2023) (which was trained for 37,042 epochs, 4 times more than our RestoreGrad models) are also
presented here for comparison purposes.

Model η λ PSNR ↑ SSIM ↑

RestoreGrad (ours)

0.05

0.1

32.55 0.9440
0.01 32.73 0.9448
0.005 32.69 0.9441
0.001 32.63 0.9404
0.0005 32.50 0.9405

RestoreGrad (ours) 0.005

10 32.74 0.9442
1 32.72 0.9441
0.1 32.69 0.9441
0.01 32.41 0.9417

RainDropDiff (Özdenizci & Legenstein, 2023) - - 32.29 0.9422

*Values in bold text indicate better scores than the baseline ReainDropDiff model.

Table 13: Comparison of baseline conditional DDPM (cDDPM) and the RestoreGrad on image
super-resolution tasks.

Methods DIV2K ×2 DIV2K ×4

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Baseline cDDPM (Özdenizci & Legenstein, 2023) 27.40 0.9291 0.127 7.577 25.18 0.8064 0.269 7.849
+ RestoreGrad (ours) 27.56 0.9341 0.136 7.547 25.56 0.8228 0.290 7.839

*Better values are indicated with bold text.

More image restoration examples. We provide more examples in Figures 13, 15, 16 for comparing
our RestoreGrad with the baseline DDPM approach (i.e., WeatherDiff) of Özdenizci & Legenstein
(2023). Both models were trained on the multi-weather AllWeather dataset, where our RestoreGrad
model was trained for only 887 epochs while WeatherDiff was trained for 1,775 epochs. The restored
images of WeatherDiff were obtained by using the trained model weights provided by Özdenizci &
Legenstein (2023) at https://github.com/IGITUGraz/WeatherDiffusion.

Ground Truth Image Degraded Input Image
[PSNR: 23.25 | SSIM:0.8943]

WeatherDiff
[PSNR: 28.77 | SSIM: 0.9619]

RestoreGrad
[PSNR: 30.17 | SSIM: 0.9723]

Figure 13: Image restoration examples using a test image taken from the Snow100K-L test set.
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Ground Truth Image Degraded Input Image
[PSNR: 19.69 | SSIM:0.6346]

WeatherDiff
[PSNR: 30.38 | SSIM: 0.9230]

RestoreGrad
[PSNR: 31.44 | SSIM: 0.9356]

Figure 14: Image restoration examples using a test image taken from the Snow100K-L test set.

Ground Truth Image Degraded Input Image
[PSNR: 17.00 | SSIM:0.5015]

WeatherDiff
[PSNR: 27.11 | SSIM: 0.8344]

RestoreGrad
[PSNR: 27.86 | SSIM: 0.8528]

Figure 15: Image restoration examples using a test image taken from the Outdoor-Rain test set.

Ground Truth Image Degraded Input Image
[PSNR: 23.81 | SSIM:0.8600]

WeatherDiff
[PSNR: 30.88 | SSIM: 0.9178]

RestoreGrad
[PSNR: 32.74 | SSIM: 0.9309]

Figure 16: Image restoration examples using a test image taken from the RainDrop test set.

Ground Truth Image Degraded Input Image
[PSNR: 22.75 | SSIM:0.8655]

WeatherDiff
[PSNR: 31.28 | SSIM: 0.9497]

RestoreGrad
[PSNR: 32.97 | SSIM: 0.9578]

Figure 17: Image restoration examples using a test image taken from the RainDrop test set.
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Ground Truth Image Degraded Input Image
[PSNR: 25.42 | SSIM:0.7025]

Baseline cDDPM
[PSNR: 28.61 | SSIM: 0.8526]

RestoreGrad
[PSNR: 29.90 | SSIM: 0.8726]

Figure 18: Image deblurring examples using a test image taken from the RealBlur test set.

Ground Truth Image Degraded Input Image
[PSNR: 26.38 | SSIM:0.7594]

Baseline cDDPM
[PSNR: 29.68 | SSIM: 0.8891]

RestoreGrad
[PSNR: 30.77 | SSIM: 0.9012]

Figure 19: Image deblurring examples using a test image taken from the RealBlur test set.
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