Dataset	MNIST			FMNIST			CIFAR10		
ϵ	0.25	0.50	1.00	0.25	0.50	1.00	0.25	0.50	1.00
SH+SG (Us)	9.6e-7	7.8e-6	6.7e-5	6.5e-7	4.0e-6	4.3e-5	9.8e-4	2.2e-2	1.2e-1
SG	4.5e-6	4.1e-5	3.9e-4	3.0e-6	2.7e-5	2.6e-4	1.3e-2	8.6e-2	4.9e-1
SP(H+G)	1.2e-6	9.6e-6	8.1e-5	9.6e-7	7.5e-6	6.5e-5	2.1e-3	3.3e-2	2.5e-1
SP G	4.6e-6	4.1e-5	3.9e-4	3.2e-6	2.8e-5	2.6e-4	1.3e-2	9.0e-2	5.2e-1
Swish $(H + G)$	2.4e-6	2.0e-5	1.9e-4	2.1e-6	1.7e-5	1.8e-4	1.1e-2	3.3e-1	7.9e0
Swish G	5.6e-6	5.0e-5	4.9e-4	3.9e-6	3.5e-5	3.5e-4	4.9e-2	9.8e-2	6.0e-1
G	4.2e-3	1.7e-2	6.7e-2	3.8e-3	1.5e-2	6.0e-2	3.0e-1	1.2e-0	5.0e-0

Table 1: The average \mathcal{P}_{MSE} achieved by first and second order methods are compared as a proxy for explainer quality. The predicted class logit is modeled for three datasets: MNIST, FMNIST and CIFAR10 at three radii each. A fully connected network is used for MNIST and FMNIST, wheras a ResNet18 was trained on CIFAR10. We include new results for Swish smoothed ReLU networks, Swish Hessian + Gradient (Swish (H + G)) and Swish Gradient (Swish G). Other methods include: SmoothHess + SmoothGrad (SH+SG,Us), SmoothGrad (SG), SoftPlus Gradient (SP G), SoftPlus Hessian + SoftPlus Gradient (SP (H + G)), and the Vanilla Gradient (G). Our method SH + SG achieves the lowest \mathcal{P}_{MSE} for each permutation of dataset and radii ε .

ε	0.25	0.50	1.00
SH+SG (Us)	1.3e-4	9.5e-4	6.9e-3
SG	5.3e-4	4.3e-3	3.3e-2
G	3.8e0	1.5e+1	6.0e+1

Table 2: Using a ResNet101 trained on CIFAR10, the average \mathcal{P}_{MSE} achieved by SmoothHess + SmoothGrad (SH + SG, Us), SmoothGrad (SG) and Vanilla Gradient (G), is evaluated as a proxy for explainer quality. Results are reported at three radii ε , for the predicted class logit. *Our method, SH* + *SG, achieves the lowest* \mathcal{P}_{MSE} for each of the three radii ε . This indicates that the interactions SmoothHess captures improve the model of network behaviour over first-order approaches, even for large networks such as ResNet101. The camera ready version of Table 2 will contain additional results for SoftPlus and Swish, which we were not able evaluate for the rebuttal due to their expensive validation procedures described in the global response (G4).