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What’s the Real: A Novel Design Philosophy for Robust
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ABSTRACT
Voice is one of the most widely used media for information trans-
mission in human society. While high-quality synthetic voices are
extensively utilized in various applications, they pose significant
risks to content security and trust building. Numerous studies have
concentrated on AI-synthesized voice detection to mitigate these
risks, with many claiming to achieve promising performance. How-
ever, recent researches have demonstrated that existing fake voice
detectors suffer from serious overfitting to speaker-irrelative fea-
tures (SiFs) and cannot be used in real-world scenarios. In this
paper, we analyze the limitations of existing fake voice detectors
and propose a new design philosophy, guiding the detection model
to prioritize learning human voice features rather than the differ-
ence between the human voice and the synthetic voice. Based on
this philosophy, we propose a novel AI-synthesized voice detection
framework named SiFSafer, which uses pre-trained speech repre-
sentation models to enhance the learning of feature distribution
in human voices and the adapter fine-tuning to optimize the per-
formance. The evaluation shows that the average EERs of existing
fake voice detectors in the ASVspoof datasets can exceed 20% if the
SiFs like silence segments are removed, while SiFSafer achieves an
EER of less than 8%, indicating that SiFSafer is robust to SiFs and
strongly resistant to existing attacks.

CCS CONCEPTS
• Security and privacy→ Intrusion/anomaly detection and
malware mitigation; Social network security and privacy; • Infor-
mation systems→Multimedia information systems.

KEYWORDS
AI-Synthesized Voice; DeepFake; AI-synthesized voice detection;
ASVspoof

1 INTRODUCTION
Voice is one of the primary mediators of information transmission
in human society, and it plays a significant role in digital systems
for instant messaging, trusted authentication, etc. High-quality
synthetic voices are now extensively utilized in various applica-
tions. However, the proliferation of voice clone technology also
poses significant risks - it threatens content security and can poten-
tially undermine trust-building processes. Most traditional voice
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synthesis approaches rely on old-style techniques such as splicing
and editing, often resulting in a discernible smoothness that hu-
man listeners can distinguish. In recent years, the advancement
of artificial intelligence (AI) has significantly enhanced the quality
of synthetic voice [31–33, 36, 41, 44], making them increasingly
difficult to distinguish by human ears.

Figure 1: Abuse of AI-synthesized voices. TTS and VC repre-
sent Text-to-Speech and Voice-Conversion respectively.

Numerous incidents demonstrate that malicious actors have ex-
tensively exploited AI-synthesized voices to deceive authentication
systems based on speaker verification, perpetrate telecom fraud,
and even orchestrate political smear campaigns. In 2019, fraud-
sters utilized voice synthesis technology to convincingly mimic
the voice of a CEO, successfully defrauding a substantial amount
totaling over $243,000 [18]. Then, during the U.S. presidential elec-
tion in New Hampshire in 2024, a significant number of voters
received mysterious calls featuring a recording purportedly from
U.S. President Biden, urging them not to vote in the state’s primary.
Subsequent investigation confirmed that the recording was gener-
ated using AI-synthesized voice [30]. These incidents underscore
the abuse of voice synthesis technology for fraudulent and manipu-
lative purposes, highlighting the urgent need for robust safeguards
and countermeasures to mitigate such risks.

In the past few years, there has been a significant increase in
research efforts focused on detecting fake voices. Early research
primarily focused on extracting traditional speech features such
as Mel-Frequency Cepstral Coefficients (MFCC) and spectrum to
detect fake voices [3, 13]. In recent years, end-to-end (E2E)-based
approaches have gained prominence. These methods utilize deep
neural network (DNN) models to extract speech features and dis-
tinguish synthetic speeches directly. Most of them assert that their
proposed methods are highly effective and perform excellently in
their evaluation experiments. Some even report Equal-Error Rates
(EER) lower than 1%, which is remarkable. However, several studies
[8, 29, 46, 47] have pointed out that the noticeable difference in
silence segments before and after human voice presented in the
ASVspoof datasets (the most widely used datasets in AI-synthesized
voice detection) could make all detectors trained and evaluated on

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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these datasets can easily detect spoof samples based on the silence
segment alone. [9, 26, 43]. Recent research [15, 25] suggests that
existing fake voice detectors exhibit serious robustness flaws and
demonstrate significant fluctuations when applied to unfamiliar
datasets. These studies indicate that the actual performance of ex-
isting fake voice detectors is not as excellent as portrayed in their
experiments. They may pay excessive attention to the speaker-
irrelative features (SiFs) that are not relative to the expression of
voice, such as silence segments before and after the human voice,
leading to a failure to capture the fundamental and essential differ-
ences between the synthetic voice and human voice. Consequently,
most existing fake voice detectors perform poorly when facing
silence-free voices or unfamiliar datasets, indicating that they are
unsuitable for deployment in real-world scenarios.

The design objective of existing fake voice detectors is to discern
the difference between synthetic voice and human speech. However,
this often results in the detection model prioritizing the conspic-
uous differences between synthetic and genuine human voice in
the training dataset. Consequently, the detector may become prone
to overfitting, thereby disregarding the essential distinctions be-
tween synthetic voice and genuine human voice. In this paper,
we propose a new philosophy for designing fake voice detectors,
which aims to guide the detection model to learn what is "real"
rather than the difference between the "real" and the "fake". We pro-
pose an AI-synthesized voice detection framework named SiFSafer,
which employs the speech representation model as the upstream
model to enhance the learning of genuine human voice feature
distribution. We utilize a Bi-directional Long Short-Term Memory
(BiLSTM) model to identify abnormal features that deviate from the
genuine sample distribution to distinguish fake voices. We design
a special upstream architecture comprising two identical speech
representation models to optimize the detection performance. One
model undergoes fine-tuning using adapter tuning, while the other
remains an original model without fine-tuning, serving to miti-
gate model overfitting. Our main contributions are summarized as
follows:

• We are the first to discuss the limitations of existing design
philosophy, which guides models to learn the difference
between synthetic and genuine human voices. And then, we
propose that paying more attention to learning what is "real"
is much more effective.

• We propose a new end-to-end fake voice detection frame-
work named SiFSafer to counter the SiF-driven attacks. SiF-
Safer utilizes fine-tuned speech representation models and
BiLSTM to detect fake voices effectively.

• We count a series of experiments to evaluate how SiFs influ-
ence existing detectors and the performance of SiFSafer. The
results demonstrate SiFSafer’s advantages over existing fake
voice detectors.

The rest of this paper is structured as follows: Section 2 provides
a brief overview of related technologies, including voice synthesis
and AI-synthesized voice detection. Section 3 explains the details of
SiFSafer, the AI-synthesized voice detection framework proposed
in this paper. Section 4 outlines several experiments we designed to
evaluate the performance of SiFSafer and existing detectors. Finally,
in Section 5, we present our conclusions.

2 RELATEDWORKS
2.1 Voice Synthesis
Voice synthesis can be divided into two categories: Text-to-Speech
(TTS) and Voice Conversion (VC). TTS takes the text as input and
generates the voice corresponding to the text. VC converts the
timbre of the input voice to that of the target speaker.

The traditional TTS approaches generate new speech by concate-
nating pre-recorded segments, resulting in low-quality and poor
flexibility. Most of the TTS approaches in recent years are based on
Deep Neural Networks (DNN) to generate high-quality speeches. In
2016, DeepMind proposed WaveNet [39], which achieves powerful
performance and gains widespread application. In 2017, Wang et al.
[44] introduced Tacotron, an end-to-end TTS framework. Tacotron
can directly map text to voice, but the performance is not as good as
WaveNet’s. Baidu proposed Deep Voice [4], which requires fewer
parameters and achieves faster generation. In 2018, Shen et al. [32]
introduced Tacotron 2, which improves the model structure and
gets better performance compared with Tacontron. In 2021, Weiss
et al. [45] proposed Wave-Tacotron, which extends the Tacotron
model by incorporating a normalizing flow into the autoregressive
decoder loop. Jaehyeon et al. [24] proposed VITS by combining
three technologies: conditional variational autoencoder, normaliz-
ing flows, and Generative Adversarial Network (GAN). It gets ideal
performance in speed and stability. In 2023, Wang et al. [41] pro-
posed VALL-E, which is the first large-model-based TTS approach.
It has excellent performance and supports zero-shot TTS.

Early VC approaches are usually implemented based on statistical
transformation. The voice quality they generate is poor, and they
require high-quality corpus data. In 2016, Hsu et al. [16] proposed a
variational autoencoder-based VC approach that utilizes a display
attribute vector to represent speaker information. In 2017, Kaneko
et al. [20] proposed CycleGAN-VC, a GAN-based VC approach. In
2019, Kaneko et al. [21] proposed CycleGAN-VC2, which optimizes
the adversarial loss and discriminator based on CycleGAN-VC.

2.2 AI-Synthesized Voice Detection
AI-synthesized voice detection approaches can be divided into four
types: traditional features-based approaches, computer vision (CV)-
based approaches, End-to-End (E2E)-based approaches, and other
approaches.

Traditional features-based approaches transform the input voice
to traditional voice feature representation, such as MFCC, and
utilize the ML or DNN model to detect the AI-synthesized voice.
In 2016, Tian et al. [37] compared the performance of six high-
dimensional features by using a simple DNNmodel. In 2018, TODISCO
et al. [38] transformed the voice to Linear Frequency Cepstral Coef-
ficients (LFCC) andMFCC. Subsequently, they employed a Gaussian
Mixture Model (GMM) for detection. Alzantot et al. [3] integrated
several traditional features and proposed a detection scheme based
on ResNet.

CV-based approaches are inspired by image recognition tech-
niques. They first convert voice to image and then use deep-learning
models designed for images to detect AI-synthesized voice. In 2019,
Farid et al. [2] proposed the first CV-based approach which uses bis-
pectral analysis to determine whether a sample is an AI-synthesized
speech by Support Vector Machine (SVM). In 2021, Ballesteros et al.
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proposed Deep4SNet [6]. It converts voice data into a histogram and
uses a back-end model based on a Convolutional Neural Network
(CNN) for classification.

E2E-based approaches have become themost popular approaches
in AI-synthesized voice detection in recent years. They take raw
voice data as input of the detection model and have no additional
feature extraction. In 2020, Tak et al. proposed RawNet2 [35], which
employs a sinc convolution layer to extract voice features and
several residual blocks for further feature processing. In 2021, Tak
et al. [34] proposed RawGAT which is based on a graph attention
network. In 2023, Ding et al. [11] introduced a speaker attractor
multi-center one-class learning approach to detect AI-synthesized
voice. Guo et al. [14] employed a speech representation model
WavLM for detection.

Some AI-synthesized voice detection approaches employ rela-
tively rare technologies. In 2020, Wang et al. [42] proposed Deep-
Sonar, which uses neuronal activity in an AI-based implementation
of a speaker recognition system as a feature. In 2022, Blue et al.
[7] used techniques from the field of articulatory phonetics for
AI-synthesized voice detection.

3 METHODOLOGY
3.1 Motivation
Existing studies on AI-synthesized voice detection have reported
ideal performance in their experiments, suggesting that accurate
detection is achievable. However, recent researches [22, 25, 27]
argues that existing fake voice detectors tend to overfit the SiFs,
such as background noise, silence segments before and after hu-
man voice, etc. Researchers [15, 22, 25] have presented several
novel SiF-based attacks to help AI-synthesized voices bypass de-
tection, further emphasizing the limitations of existing detectors.
These findings indicate that current fake voice detectors struggle
to capture the essential differences between synthetic and human
voices. Therefore, the challenge of AI-synthesized voice detection
remains significant and far from resolved. The ultimate objective
of AI-synthesized voice detection is to accurately distinguish all
synthetic speech, regardless of the specific synthetic system used
to generate it. However, there are two core difficulties in achieving
this goal:

(1) SiFs overfitting: Since there is a significant distinction be-
tween data collection and processing, certain SiFs between
synthetic and human voices can have noticeable differences.
Fake voice detectors are prone to overfit SiFs, which may
seriously affect the usability and robustness of the detection
in the real world.

(2) Dataset limitation: Voice synthesis technology encom-
passes various methods and solutions. Synthetic voices gen-
erated by different voice synthesis systems may exhibit dis-
tinct feature distributions. Consequently, it is challenging
for the datasets used in detection model training to encom-
pass all types of synthetic voices. Fake voice detectors pay
more attention to the difference between human voices and
several specific types of synthetic voices, leading to dimin-
ished performance when encountering unfamiliar types of
synthetic voices.

The design of existing detectors concentrates on capturing the
disparity between synthetic and human voices. It leads the detection
model to explore prominently distinct features, making it prone to
overfitting SiFs or excessively emphasizing specific spoof features.
To address the challenges above, we introduce a new philosophy
for designing AI-synthesized voice detectors in this paper. Our core
idea is to encourage the detection model to prioritize learning the
feature distribution of human voice. We aim to identify synthetic
voices by assessing whether the input data feature distribution
aligns with human voices. This paper presents an AI-synthesized
voice detection framework named SiFSafer based on this philosophy.
SiFSafer utilizes a self-supervised learning speech representation
model to reinforce understanding of human voice feature distribu-
tion. Additionally, we employ a BiLSTM-based network to identify
outlier points in the distribution that deviate from human voice
patterns.

3.2 Overview of SiFSafer Framework
We present the overview of the SiFSafer Framework in Figure 2.
SiFSafer accepts raw voice data as input. Initially, we employ two
self-supervised speech representation models: the original model
released by the authors and a fine-tuning model, in which the latter
is adapted based on the original model during our training phase.
These models serve as the upstream feature extractors to generate
the representation map of the input. The output of the upstream
feature extractor consists of the outputs from each transformer
encoder layer.

To enhance the feature representation capabilities of the repre-
sentation map, we utilize a layer selection and fusion operation,
which selects the output from specific layers and merges them into
a unified representation. Following the fusion of the output using a
linear layer to adjust dimensions, our approach employs a BiLSTM-
based architecture to capture feature representations across frame
levels comprehensively. Subsequently, SiFSafer integrates the out-
puts from the corresponding BiLSTM layer and maps it to the final
output through a final linear layer.

3.3 Data Pre-Processing
The dataset is the basis of deep learning model training. Several
studies [29, 46] have explored a notable duration disparity in silence
segments before and after human voice between spoof and gen-
uine samples within the ASVspoof datasets, which are extensively
utilized in AI-synthesized voice detection.

As depicted in Figure 3, bonafide samples and spoof samples gen-
erated via voice conversion-based algorithms exhibit pronounced
silence segments before and after human voice. Conversely, spoof
samples generated by TTS algorithms lack such silence segments. It
will mislead detection models to utilize the difference to distinguish
the spoof samples and fail to learn other essential information. This
work [15] demonstrates that existing fake voice detectors can be
readily deceived by introducing silence segments to spoof sam-
ples. To enhance the robustness of SiFSafer, we remove the silence
segments at the input stage to prevent potential overfitting.
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Figure 2: Pipeline of SiFSafer.

3.4 Upstream Selection and Fine-Tuning
The primary objective of SiFSafer is to comprehensively capture the
human voice’s feature distribution and identify synthetic speech by
detecting anomalies that deviate from this distribution. However,
the limited size of existing datasets in fake voice detection poses
a challenge in achieving this goal. To address this limitation, we
leverage one of the most widely adopted pre-trained speech repre-
sentation models, wav2vec2.0 XLS-R [5], as the upstream feature
extractor. This model comprises a convolutional neural network
(CNN)-based feature extractor followed by a transformer-based
[10, 40] feature encoder, trained on a massive dataset spanning
436k hours of speech data across 128 languages. The extensive
training data enables the model to grasp genuine speech features
effectively.

To further optimize the performance of this upstream model, we
insert the LoRA adapter [17] into the transformer encoder layers
shown in Figure 2 to fine-tune the model in the training stage. To
avoid overfitting, we just insert the adapter into the initial layers,
which mainly focus on the shallow features of voices, and freeze the
parameter weights after several epochs of training. Simultaneously,
to preserve the genuine speech information learned during pre-
training to the fullest extent possible, SiFSafer utilizes an original
model without additional fine-tuning to extract features parallel
with the fine-tuned model.

3.5 Layer Selection and Fusion
The upstream feature extractor comprises multiple transformer en-
coder layers. In this architecture, the initial layers of the transformer
encoder are responsible for extracting shallow feature information,
while the subsequent layers delve deeper into the feature extrac-
tion process. Each layer takes the output of the preceding layer as
input, enabling the model to progressively capture more abstract
and intricate features of the input voice data.

The difference in feature distribution between synthetic and
human voices may appear in feature information at all levels. So,
paying reasonable attention to different levels of feature informa-
tion is essential. The wav2vec2.0 model employed in this study
encompasses a 24-layer transformer encoder. For the fine-tuned
model, we select the output of the first 12 layers of transformer
encoders, where the adapters are inserted, to extract fine-tuned
shallow features. For the original layers, we select the output of
the last 12 layers. This selection includes the information from
the initial layers of the original model as well, as each layer takes
the output of the preceding layer as input. This design choice en-
ables SiFSafer to obtain a more comprehensive range of feature
information spanning from shallow to deeper levels.

In the fusion process, the features selected from the output of the
fine-tuned and original models are merged into two-dimensional
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feature maps respectively. For each one, let [𝑂1,𝑂2, ...,𝑂𝑛] repre-
sent the feature information of n layers selected. We define a set
of learnable weight values [𝑤1,𝑤2, ...𝑤𝑛]. The fusion process is as
follows:

𝐹𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑝 = 𝑤1𝑂1 +𝑤2𝑂2 + ... +𝑤𝑛𝑂𝑛 (1)

(a) Bonafide samples

(b) TTS based spoof samples

(c) Voice conversion-based spoof samples

Figure 3: Silence segments difference in ASVspoof2019.

3.6 Downstream Model
The downstream model captures the abnormal feature distribution
from the fusion map, which is not similar to human voices. The
fusion map can be viewed as a frame feature sequence. Initially, we
utilize a linear layer to adjust the dimensions of features within
each frame. Additionally, we apply the SeLU activation function to
introduce non-linearity, thereby facilitating further fine-tuning of
the upstream model. Subsequently, SiFSafer employs a two-layer
BiLSTM network. This network architecture is adept at capturing
cross-frame level feature clues by analyzing the sequential depen-
dencies within the frame feature sequence.

To ensure the ability to capture feature clues at different levels,
the fine-tuned and original models are equipped with independent
downstream models, each possessing the same structure. This de-
sign choice enables SiFSafer to maximize the extraction of valuable
insights from both the fine-tuned shallow features and the deeper
features of the original model. Both the two outputs of BiLSTM lay-
ers are combined through a weighted sum using a learnable weight
factor 𝛼 . Finally, a linear layer is applied to map the combined result
to the final output.

4 EVALUATION
Our evaluation aims to answer the following research questions:

• RQ1: Can existing fake voice detectors work properly with-
out silence segments before and after human voice?

• RQ2: Whether SiFSafer can get better performance than
existing fake voice detectors?

• RQ3:Whether retraining the existing fake voice detectors
without silence segments changes the result of the perfor-
mance comparison in RQ2?

• RQ4: Whether SiFSafer is robust to the attacks based on
SiFs?

4.1 Implementations and Datasets
This section will briefly introduce the implementation details of
SiFSafer, baseline detector selection, and dataset selection in the
experiments. Specific information is as follows:

1) SiFSafer: The technical details of SiFSafer are shown in the
Section 3. The optimizer utilized during training is "Adam," with an
initial learning rate set to 0.000001. For the fine-tuned model, we
integrate the LoRA adapter into the initial 12 layers. To mitigate
overfitting, we freeze the parameters of all LoRA adapters after 10
epochs.

2) Baseline detectors: We selected six recent fake voice detec-
tors published in top conferences or related challenges: RawNet2
[35], RawGAT-ST [34], AASIST [19], MTLISSD [28], SAMO [11],
FastAudio [12], and two pre-train model-based approaches by Piotr
et al. [23], which serves as our baseline systems. RawNet2 serves as
one of the baseline systems in ASVSpoof2021 [1], and other systems
have also demonstrated ideal performance on ASVspoof datasets.
We acquired their implementations from open-source repositories
provided by the respective authors. Initially, we intended to include
DeepSonar, a neural network feature-based approach, as one of the
baseline systems. However, due to the unavailability of open-source
code from the authors and our unsuccessful attempts to reproduce
their results, which significantly differed from their claims, we
decided not to include it in our final selection.

Table 1: Statistics of ASVspoof datasets. The ASVspoof2021
dataset contains only evaluation subsets.

Dataset Speakers Spoofing
Algorithms Conditions

Samples
Spoof Bonafide

19 LA train 20 6 1 22,800 2,580
19 LA dev 20 6 1 22,296 2,548
19 LA eval 67 13 1 63,882 7,335
21 LA eval 67 13 7 163,114 18,452
21 DF eval 93 110 9 589,212 22,617

3) Datasets: In this paper, we chose the ASVspoof2019 LA
dataset as the training dataset for SiFSafer and all the baseline
detectors. We selected three datasets for evaluation: ASVspoof2019
LA, ASVspoof2021 LA, and ASVspoof2021 DF. The specifics of these
datasets are detailed in Table 1.
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4.2 Existing Fake Voice Detectors Evaluation
(RQ1)

In this evaluation, we mainly answer RQ1, i.e., whether existing
fake voice detectors work properly without silence segments before
and after human voice. To evaluate the performance, we remove
the silence segments before and after the human voice in all evalu-
ation datasets using Sound eXchange (SoX), a cross-platform audio
editing software. For baseline detectors, we use the respective au-
thors’ default parameters of training to retrain the models with
the ASVspoof2019 LA dataset without any pre-processing because
some of them do not provide pre-train parameters’ weight.

Table 2: The performance of baseline detectors in
ASVspoof2019 LA evaluation set. The raw set is the
original set and the silence set is the set after removing
silence segemets.

Detector Raw Set Silence Set
EER min-tDCF EER min-tDCF

RawNet2 5.49% 0.1453 28.96% 0.6764
RawGAT-ST 1.51% 0.0431 32.28% 0.8411
AASIST 1.77% 0.0510 30.96% 0.7651
Fastaudio 1.79% 0.0481 32.56% 0.7879
SAMO 1.21% 0.0307 23.03% 0.5216

MTLISSD 2.58% 0.0633 37.65% 0.8247
Whisper-lcnn 20.84% 0.6239 22.84% 0.6733

Whisper-specrnet 23.03% 0.6521 24.34% 0.6832

The evaluation results are shown in Table 2. For the two pre-train
model-based approaches by Piotr et al., we encountered unexpected
performance results. Despite using the default parameters provided
by the authors to retrain the models, we observed severe overfitting
issues. Evidently, the performance significantly deteriorates in the
dataset after removing silence segments, with all systems exhibiting
a surprising degradation in performance. They all achieve EERs
higher than 20%, indicating that they are unsuitable for real-world
applications. It demonstrates that the silence segments are crucial
in distinguishing fake voices for these systems. These systems are
highly vulnerable to synthetic voice with no silence segments.

Table 3: The performance of baseline detectors in
ASVspoof2019 LA development set.

Detector Raw Set Silence Set
EER min-tDCF EER min-tDCF

RawNet2 1.02% 0.0343 10.28% 0.2837
RawGAT-ST 0.87% 0.0273 17.39% 0.4849
AASIST 1.18% 0.0389 14.40% 0.3765
Fastaudio 0.00% 0.0000 12.76% 0.3246
SAMO 2.20% 0.0660 7.69% 0.2355

MTLISSD 0.16% 0.0048 27.31% 0.5754
Whisper-lcnn 11.46% 0.3624 14.36% 0.4409

Whisper-specrnet 14.59% 0.4408 16.01% 0.4555

To further analyze the factors contributing to the performance
degradation of the baseline systems, we evaluate their performance

on the ASVspoof2019 LA development set. The results are presented
in Table 3. The trend of performance change after removing silence
segments is consistent with that observed on the evaluation set,
but the performance degradation is relatively minor. We speculate
that the better performance is because the spoofing algorithms
present in the development set are consistent with those encoun-
tered during training. This further corroborates our hypothesis that
the features specific to certain synthetic methods in the training
set may contribute to overfitting.

4.3 SiFSafer Evaluation (RQ2)
In this evaluation, we mainly answer RQ2, i.e., whether SiFSafer
can perform better than existing fake voice detectors. We evaluate
the SiFSafer and all the baseline detectors in ASVspoof2019 LA,
ASVspoof2021 LA, and ASVspoof2021 DF datasets. All of the sam-
ples of the datasets are processed to remove the silence segments
because detection based on silence segments has significant risks
in real-world scenarios. To further analyze the performance of SiF-
Safer, we also add a comparative detector comprising a wav2vec2.0
model identical to SiFSafer without fine-tuning and a downstream
model proposed in this paper.

Figure 4: The detail of performance of SiFSafer on
ASVspoof2021 LA evaluation set. The data in each cell repre-
sents the corresponding EER.

The comparison result is shown in Table 4. It is obvious that
the performance of SiFSafer significantly outperforms that of the
baselines. The average EER of most baseline detectors exceeds
20%, rendering them entirely unsuitable for real-world scenarios.
In contrast, SiFSafer achieves an average EER of 7.41%. While the
performance may not be optimal, it indicates that SiFSafer is suit-
able for real-world scenarios. The performance of the comparative
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Table 4: The performance comparison between SiFSafer and baseline detectors.

Group Detector 19 LA Set 21 LA Set 21 DF Set Average EEREER min-tDCF EER min-tDCF EER

Baseline
Detector

RawNet2 28.96% 0.6764 34.39% 0.8863 32.23% 31.83%
RawGAT-ST 32.28% 0.8411 49.64% 0.9988 46.72% 48.95%
AASIST 30.96% 0.7651 32.15% 0.8839 26.63% 28.94%
Fastaudio 32.56% 0.7879 28.93% 0.7943 28.13% 29.87%
SAMO 23.03% 0.5216 36.48% 0.9917 34.78% 31.43%

MTLISSD 37.65% 0.8247 43.75% 0.9999 47.91% 43.10%
Whisper-lcnn 22.84% 0.6733 23.30% 0.7539 11.07% 19.07%

Whisper-specrnet 24.34% 0.6832 24.41% 0.7507 12.23% 20.33%

Ours Wav2vec2.0+downstream 13.19% 0.3282 15.03% 0.5132 9.58% 12.6%
SiFSafer 4.85% 0.1228 12.69% 0.5023 4.70% 7.41%

detector is also better than all of the baselines, suggesting that our
design approach of utilizing a speech representation model to en-
hance the learning of genuine speech is effective. The performance
gap between the comparative detector and SiFSafer highlights that
fine-tuning one of two identical upstream models can significantly
enhance the detection performance of the detector.

It should be noted that the performance of SiFSafer in the 2021
LA dataset is noticeably inferior compared to other datasets. To
identify the reason, we conducted further analysis on the evaluation
data of SiFSafer in the ASVspoof2021 LA dataset, as depicted in
Figure 4. The performance in synthetic voices generated by A10
appears to be the poorest across all conditions. We hypothesize
that this could be attributed to the high quality of this method, as
similar performance is observed in other systems as well. Another
clear trend is that the performance in C3 and C6 is worse than other
conditions.

Condition C3 entails transmission over a PSTN system in Spain,
where codec conditions are uncontrollable and unknown [26]. Con-
dition C6, on the other hand, features the lowest bitrate among all
conditions, with both conditions utilizing an 8kHz sampling rate.
We speculate that the complex transmission environment and poor
voice quality may result in the loss of detailed features, thereby
making the overall distribution of synthetic voice closer to genuine
human voice. The result also means that SiFSafer performs better in
most conditions than the average on the ASVspoof2021 LA dataset.

4.4 The Baseline Detectors Evaluation after
Retraining (RQ3)

In this evaluation, we mainly answer RQ3, i.e., whether retraining
the existing fake voice detectors without silence segments changes
the result of the performance comparison in RQ2. We removed the
silence segments of the ASVspoof2019 LA dataset and proceeded
to retrain all baseline detectors using this modified dataset and the
same training parameters as Section 4.2. This step was taken to
mitigate the risk of the model overfitting to the silence segments.
Performance evaluation was conducted using the same datasets
described in Section 4.3.

The evaluation results in ASVspoof2019 are shown in Table 5.
The performance of the majority of baseline detectors has demon-
strated significant improvement. This suggests that by removing
the silence segments from the training dataset, the model is directed

to pay more attention to the distinctions between synthetic and
human speech, which might not have been effectively learned when
utilizing the unprocessed dataset. However, it should be noted that
the model’s performance remains unsatisfactory despite the retrain-
ing efforts. The SiFSafer still has a very significant performance
advantage.

Table 5: The performance of re-trained baseline detectors in
ASVspoof2019 LA evaluation set. The raw model represents
the models trained in Section 4.2 and The silence model rep-
resents the models trained in this evaluation.

Detector Raw Model Silence Model EER
diffEER min-tDCF EER min-tDCF

RawNet2 28.86% 0.7236 23.64% 0.5608 ↓ 18.09%
RawGAT-ST 32.28% 0.8411 22.50% 0.4671 ↓ 30.30%
AASIST 28.06% 0.7748 24.50% 0.5119 ↓ 12.69%
Fastaudio 32.56% 0.7879 19.69% 0.4497 ↓ 39.53%
SAMO 23.03% 0.5216 18.49% 0.3926 ↓ 19.71%

MTLISSD 37.65% 0.8247 23.43% 0.5916 ↓ 37.69%
Whisper-lcnn 22.84% 0.6733 22.52% 0.6642 ↓ 1.40%

Whisper-specrnet 24.34% 0.6832 23.94% 0.6735 ↓ 1.64%
SiFSafer - - 4.85% 0.1228 -

The performance evaluation of the baseline detectors after re-
training using the ASVspoof2021 dataset is shown in Table 6. The
baseline detectors continue to exhibit poor performance, with SiF-
Safer maintaining a clear lead in terms of performance. It is worth
noting that Whisper-lcnn and Whisper-specrnet perform relatively
well in the ASVspoof2021 DF dataset compared to those in other
datasets. We infer the reason is that the pre-trained model Whisper
has promising human voice modeling capabilities to help the de-
tectors capture the features that do not belong to human speech
in multiple spoof algorithms. The ASVspoof2021 DF dataset con-
tains a more significant number of samples and spoof algorithms
compared to the ASVspoof2019 LA dataset. The learning capability
of Whisper regarding human voice features enables the detectors
to perform better on the ASVspoof2021 DF dataset, even though
it is overfitted on the ASVspoof 2019 LA dataset. Once again, the
results indicate that solely focusing on the differences disparities
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between human and synthetic voice within a specific dataset will
significantly constrain the capabilities of fake voice detectors.

Table 6: The performance of re-trained models in
ASVspoof2021 dataset.

Detector LA Set DF Set Average
EEREER min-tDCF EER

RawNet2 29.38% 0.7941 33.95% 31.66%
RawGAT-ST 27.96% 0.8057 27.84% 27.90%
AASIST 30.90% 0.8262 28.49% 29.70%
Fastaudio 20.73% 0.5289 21.31% 21.02%
SAMO 29.83% 0.7979 42.43% 36.13%

MTLISSD 32.29% 0.9128 35.37% 33.83%
Whisper-lcnn 21.22% 0.7202 6.82% 14.02%

Whisper-specrnet 22.66% 0.7224 10.02% 16.34%
SiFSafer 12.69% 0.5023 4.70% 8.70%

4.5 Adversarial Attack Resistance Capability
Evaluation (RQ4)

In this evaluation, we mainly answer RQ4, i.e., whether SiFSafer is
robust to the attacks based on SiFs. We selected SiFDetectCracker
[15], the state-of-the-art attack approach against fake voice detec-
tors that utilize SiFs, to evaluate the robustness of SiFSafer. We use
the open-source code provided by the authors and default initial
attack parameters for the implementation. The same method for
sample selection, as described in their paper, is employed to ob-
tain the test samples. Detectors of varying types exhibit different
sensitivities to different SiFs. Therefore, we selected detectors em-
ploying diverse technical approaches to compare with SiFSafer. In
this experiment, we selected a CV-based detector, Deep4SNet [6],
along with two end-to-end based detectors, RawNet2 and AASIST,
as comparison detectors. RawNet2 is one of the baselines used in
the ASVspoof2019 challenge, and AASIST exhibits the best perfor-
mance in the experiments reported in the papers, corresponding to
all baseline detectors.

Table 7: The result of robust evaluation.

Detector Success Rate Average Number
of Iteration

Deep4SNet 88.50% 14.6
RawNet2 80.40% 13.9
AASIST 57.28% 57.8
SiFSafer 0% 100

The evaluation result is shown in Table 7. The attack success
rate against all comparison detectors is higher than 50%, whereas
it is 0% against SiFSafer. The average number of iterations for the
comparison detectors is lower than 50, indicating that the attack can
be completed with a small number of queries. The results indicate
that SiFSafer exhibits excellent robustness against SiFs and can
effectively defend against the most existing advanced attacks.

5 CONCLUSION
In this paper, we analyze the limitations of existing fake voice de-
tection designs and propose a new design philosophy aimed at
directing the detection to focus more on learning the feature distri-
bution of human speech. Based on this philosophy, we introduce a
new fake voice detection framework named SiFSafer, which utilizes
a pre-trained speech representation model to enhance the learning
of human speech feature distribution. The evaluation demonstrates
that existing fake voice detectors perform poorly when SiFs like
silence segments are removed, while SiFSafer outperforms these
existing detectors. The adversarial attack resistance capability eval-
uation also shows that SiFSafer exhibits excellent robustness against
SiFs. SiFSafer’s absolute performance still has significant room for
improvement, particularly in handling low-quality speech. In future
work, we aim to optimize the performance of SiFSafer further to
address these limitations.
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