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PTSBench: A Comprehensive Post-Training Sparsity Benchmark
Towards Algorithms and Models

Anonymous Authors

ABSTRACT
With the increased attention to model efficiency, model sparsity
technologies have developed rapidly in recent years, among which
post-training sparsity (PTS) has become more and more prevalent
because of its effectiveness and efficiency. However, there remain
questions on better fine-grained PTS algorithms and the sparsifica-
tion ability of models, which hinders the further development of
this area. Therefore, a benchmark to comprehensively investigate
the issues above is urgently needed. In this paper, we propose the
first comprehensive post-training sparsity benchmark called PTS-
Bench towards PTS algorithms and models. We benchmark 10+ PTS
general-pluggable fine-grained algorithms on 3 typical computer vi-
sion tasks using over 40 off-the-shelf model architectures. Through
extensive experiments and analyses, we obtain valuable conclusions
and provide several insights from both PTS fine-grained algorithms
and model aspects, which can comprehensively address the afore-
mentioned questions. Our PTSBench can provide (1) in-depth and
comprehensive evaluations for the sparsification abilities of models,
(2) new observations for a better understanding of the PTS method
toward algorithms andmodels, and (3) an upcoming well-structured
and easy-integrate open-source framework for model sparsification
ability evaluation. We hope this work will provide illuminating
conclusions and advice for future studies of post-training sparsity
methods and sparsification-friendly model design.

CCS CONCEPTS
• Computing methodologies → Neural networks; Object detec-
tion; Object identification; • General and reference → Evalua-
tion; Computing standards, RFCs and guidelines.

KEYWORDS
Computer Vision, Model Compression, Post-Training Sparsification,
Benchmark

1 INTRODUCTION
Although deep learning has been widely used in various fields, it re-
quires a considerable amount of memory and computational power.
To address this issue, many strategies have emerged to compress the
model, including model quantization [10, 23–25, 39], model sparsifi-
cation [8, 14, 16, 28, 29, 48], network distillation [12, 19], lightweight
network design [45] and weight matrix decomposition [4]. One of
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Figure 1: The placement of PTSBench, which connects the
models and PTS algorithms.

the most representative methods is model sparsification, which
involves removing unimportant weights from the model. Among
all the sparsification methods, post-training sparsity (PTS) has re-
ceived much attention in recent years because of its small training
cost.

In the scenario of post-training sparsity (PTS), we are given a
pre-trained dense model along with a small amount of unlabeled
calibration data. We aim to generate an accurate sparse model with-
out an end-to-end retraining process. Under these settings, several
representative methods have been proposed, including POT [28],
AdaPrune [22], and OBC [8]. These state-of-the-art (SOTA) meth-
ods have achieved almost no performance loss after sparsification.
However, even though the high-performance PTS methods have
reached, there are still two problems remain:

Problem-1: Post-training sparsity algorithm exploration
is incomplete. Current PTS methods [8, 22, 28] share the same
sparsification paradigm: they first allocate sparsity rate to each
layer to sparsify the model and then reconstruct the activation to
recover the performance further. However, while current research
follows this pipeline, it still lacks a fine-grained exploration of PTS
techniques. For example, most PTS methods adopt layer-wise re-
construction granularity in the reconstruction process. However,
block-wise reconstruction granularity has been proven effective in
quantization approaches [30, 49] but is not explored in PTS algo-
rithms. The absence of in-depth analysis of fine-grained techniques
hinders further development of PTS approaches. Thus, benchmark-
ing toward fine-grained techniques in PTS algorithms is urgently
required.

Problem-2: Relationship between model and sparsity re-
mains unexplored. Current PTS research heuristically chooses
commonly used models (e.g., ResNet and RegNetX) or datasets
to validate their methods. However, it still lacks a comprehensive
evaluation of the relationship between models and sparsity. In real-
world applications, we often face the scenario that multiple network
architectures with similar sizes can be used as the backbone, and
we need to sparsify them before deployment for efficient inference.
It is still an open question about which network architecture is

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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sparsity-friendly for better performance. Moreover, as the deploy-
ment platform varies, we also need to use different model sizes (e.g.,
different layer numbers). It is unclear whether a network architec-
ture with different sizes is robust for the sparsity algorithms. In
addition, model structures typically require various designs and
modifications tailored to each task under different tasks. The ex-
tent to which these task-oriented designs and modifications are
conducive to sparsity is also unknown. Therefore, conducting a
comprehensive evaluation from an architectural perspective is also
necessary from both theoretical and practical aspects.

To address the problems mentioned above, in this paper, we
present PTSBench, a Post-Training Sparsification Benchmark to
evaluate the PTS technique from both algorithm and model aspects
comprehensively. Starting from the real-world model production
requirements, we carefully design 5 tracks for comparison. With
over 8000 A800 GPU hours consumption, we benchmark 40+ clas-
sical off-the-shelf models, 3 typical computer vision tasks, and 10+
easy-pluggable fine-grained techniques in post-training sparsity.
Based on the evaluation, we provide in-depth analyses of PTS meth-
ods from both algorithm and model perspectives and offer useful
insights and guidance on PTS method design and validation.

Overall, our contributions can be summarized as follows:
(1) Comprehensive benchmark. We construct Post-Training

Sparsification Benchmark (PTSBench), which is the first
systematic benchmark to conduct a comprehensive evalu-
ation of PTS methods. It provides a brand new perspective
to benchmark both post-training sparsity fine-grained tech-
niques and sparsified models.

(2) In-depth analysis. Based on extensive experiments, we
uncover and summarize several useful insights and take-
away conclusions, which can serve as a guidance for future
PTS method design.

(3) Upcoming open-source framework. We will release our
open-source benchmark codes repository. Research com-
munities can easily use our platform to evaluate sparsity
approaches. It can also serve as a well-organized codebase
for future research of PTS algorithms.

2 BACKGROUND
2.1 Post-training Sparsity
Post-Training Sparsity (PTS) aims to sparsify a pre-trained neural
network while preserving its accuracy on a specific task. All of the
current PTS researches [8, 11, 22, 28] adopt two-step sparsity para-
digm including sparsity allocation and reconstruction, as shown
in Figure 2. In the sparsity allocation procedure, a specific sparsity
rate is allocated to each layer following a predetermined metric, and
weights at corresponding positions are zeroed based on sparsity
criteria. The reconstruction process involves employing a series of
techniques to recover model accuracy drop from sparsification. We
will give a detailed introduction to these two parts.

2.2 Sparsity Allocation
Many previous works have shown that allocating a more reasonable
sparsity for each layer can lead to a more effective sparsification
outcome [5, 11, 13, 16, 36]. Currently, sparsity allocation methods
can be categorized into the following three types.

(1) Heuristic based strategy. In this type, the sparsity ratio
for each layer is predetermined manually, such as uniform
sparsity[9, 38].

(2) Criterion based strategy. Weights across all layers are
ranked according to a specific metric, and a certain percent-
age of the weights with lower scores are set as zero. The
corresponding sparsity rates for each layer can be naturally
obtained[5, 7, 13, 43].

(3) Learning based strategy. This strategy learns sparsity rates
for each layer by optimizing a loss function to achieve opti-
mal sparsity allocation [11, 27].

Although current work proposed multiple sparsity rate alloca-
tion strategies, theseworks lack evaluation on broader architectures,
sizes, and tasks. Moreover, while there is a strong focus on the ef-
fectiveness of the methods, it still lacks in-depth analysis, such
as why allocating a sparsity rate in a certain way can reach high
performance. These two limitations in current research pose the
question of better practice for PTS algorithms.

2.3 Reconstruction
After sparsity allocation, PTS methods will apply reconstruction
to reconstruct the sparse activation for compensating the accu-
racy loss caused by sparsity. In this paper, we benchmark three
fine-grained pluggable techniques that are often identified as influ-
encing the effectiveness of sparsity in this process: error correction,
reconstruction input, and reconstruction granularity.

2.3.1 Error Correction. Error correction is widely used in many
post-training quantization (PTQ) [17, 39, 40] methods. It aims to
align the weight distribution after compression with the original
weight distribution. However, current PTS methods do not compre-
hensively and systematically evaluate this procedure. Specifically,
the error correction procedure can be written as follows:

Ŵ𝑠 = 𝜆W𝑠 + 𝐸 (W𝑑 ) − 𝐸 (𝜆W𝑠 ),

and 𝑏𝑠 = 𝑏𝑑 + 𝐸 (𝑓 (W𝑑 ,X𝑑 )) − 𝐸 (𝑓 (Ŵ𝑠 ,X𝑑 )),

where 𝜆 =
𝜎 (W𝑑 )

𝜎 (W𝑠 ) + 𝜖
.

(1)

Ŵ𝑠 and 𝑏𝑠 are the weights and biases after the error correction
operation, andW𝑠 denote the weights of the sparse model before
correction. 𝑏𝑑 ,W𝑑 , andX𝑑 are biases, weights, and input activation
in the dense model, respectively. 𝑓 (W, X) represents the convolu-
tional operation performed by the layer on inputs X with weights
W. 𝐸 and 𝜎 are the mean and standard deviation operators, 𝜖 is a
small constant. In this way, we can correct the error caused by the
distribution shift of weights and biases.

2.3.2 Reconstruction Input. During the reconstruction procedure,
we can either use the output of the previous reconstruction unit
from the dense model as the input or opt for the output after the
previous sparsified units. In current research, the choice of recon-
struction inputs is not aligned, but we find that it greatly impacts
the results. Since the absence of systematic investigation in previous
work, we also benchmark this technique in our PTSBench.

2.3.3 Reconstruction Granularity. In addition to error correction
and reconstruction input, we also benchmark the reconstruction
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Figure 2: The illustration of the overall Post-Training Sparsity pipeline, which is employed by most PTS methods.

granularity in our PTSBench. Specifically, the reconstruction pro-
cess can be conducted at different granularities. Many post-training
quantization methods [30, 34, 49] prove that the reconstruction
granularity has a large impact on quantization performance. How-
ever, the detailed impact of reconstruction granularities on a broad
range of models is still unclear. Besides, the effectiveness of dif-
ferent reconstruction granularities still needs to be validated in
PTS area. Therefore, inspired by [30], we mainly benchmark three
reconstruction granularities:

(1) Single reconstruction. Reconstruct the weights based on
each individual layer, which represents the smallest recon-
struction granularity.

(2) Layer-wise reconstruction. Reconstruct the weights at the
layer level. For instance, in a CNN, reconstruct in a CONV-
BN-ReLU combination pattern.

(3) Block-wise reconstruction. Reconstruct the weights based
on the block level (e.g., residual block).

In addition to the three aforementioned reconstruction granular-
ities, some quantization methods also propose to use a net-wise
reconstruction. However, although it is useful for quantization, we
found this granularity will lead to poor performance because of
overfitting. Hence, we do not include its performance for bench-
marking in our PTSBench.

3 PTSBENCH: TRACKS AND METRICS
This section presents PTSBench, a benchmark for PTS methods
from both algorithm andmodel aspects. Our evaluation consists of 5
tracks and corresponding metrics, as shown in Fig. 3, which provide
comprehensive evaluation to address the limitations of current
studies. All the metrics except 𝑂𝑀𝑟𝑜𝑏𝑢𝑠𝑡 are positive indicators.
The model architectures we included are shown in Tab. 1.

3.1 Towards Fine-grained Algorithm
In our PTSBench, we benchmark "Sparsity Allocation" and "Recon-
struction", which are two main procedures of PTS progress. To have
a comprehensive evaluation, we conduct our experiments on 3 typi-
cal tasks: classification, detection, and image generation. For classi-
fication tasks, we test ResNet-18/50[15], RegNetX-200M/400M[42],
MobileNetV2[45], ViT[3] (transformer-based model) under datasets
ImageNet-1K [2]and ResNet32/56, VGG-19 [46] under datasets
CIFAR-10/100 [26]. For detection task, we test RetinaNet-r18/50 [32]

on datasetsMSCOCO-2017 [33] andMobileNetV1-SSD,MobileNetV2-
SSDLite [35] on datesets PASCAL VOC07 [6]. For image gener-
ation task, we evaluate Stable Diffusion [44] on datasets LSUN-
Churches/Bedroom [50].

1○ Sparsity Allocation. In order to evaluate the performance
of different sparsity allocation methods and deeply investigate
the characteristics and essence of a decent sparsity allocation, we
choose 4 sparsity allocation approaches. Uniform sparsity allocation
is a widely adopted human heuristic based method that allocates
the same sparsity for each layer. L2Norm [13] and ERK [5]are both
mask criterion based methods, while the latter is more meticulously
designed. We choose these two methods for their effectiveness and
high citations. We also include FCPTS [11] as a typical method that
stands for methods based on learning, for it is the only one.

To better quantify the performance, we use the accuracy of dense
models as a baseline and calculate the mean relative accuracy for
all architectures and datasets on each task. Inspired by previous
work [1], we define our overall metric (OM) by calculating the
quadratic mean of the relative accuracies across 3 tasks as follows:

𝑂𝑀𝑎𝑙𝑙𝑜𝑐 =

√√√
1
3

(
E2

(A𝑠
𝐶𝐿𝑆

A𝐶𝐿𝑆

)
+ E2

(A𝑠
𝐷𝐸𝑇

A𝐷𝐸𝑇

)
+ E2

(
A𝐺𝐸𝑁

A𝑠
𝐺𝐸𝑁

))
, (2)

where A∗ and A𝑠
∗ denotes the results obtained by calculating the

metric of different tasks (i.e., accuracy for CLS, mAP for DET and
FID [18] for GEN) of the dense and sparse models under different
sparsity rate on a specific task (i.e., classification, detection and
image generation), and E(·) is the mean operator. Note that the
Frechet Inception Distance (FID) is an indicator where lower values
are better with a [1, +∞] value domain. We take the reciprocal
to ensure the overall metric is in [0, 1] interval. We sparsify the
models we choose under different sparsity allocation algorithms
and calculate the 𝑂𝑀𝑎𝑙𝑙𝑜𝑐 for each algorithm.

To directly observe the impact of different sparsity allocation
strategies, in this track, we measure the accuracy of the model im-
mediately after sparsification without performing reconstruction.

The quadratic mean form is consistently employed across PTS-
Bench to unify different tracks’ overall metrics. This approach miti-
gates the undue influence of particularly poor performers on the
metric, enabling a more precise evaluation of the comprehensive
performance on each track.

2○ Reconstruction. In Section 2.3, we introduce 3 fine-grained
reconstruction techniques that may have a considerable impact on
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Figure 3: Evaluation tracks of PTSBench. We benchmark the performance of PTS fine-grained algorithms and model sparsi-
fication abilities on a range of comprehensive evaluation tracks, including: "Sparsity Allocation", "Reconstruction", "Neural
Architectures", "Model Size Robustness", and "Different Tasks". We illustrate an overview of the results of each track respectively
on the right of the figure.

Table 1: Architecture repository.

Task Arch. Family Archs

CLS

ResNet [15] ResNet-18, ResNet-32, ResNet-34, ResNet-50, ResNet-56, ResNet-101, ResNet-152

RegNetX [42] RegNetX-200M, RegNetX-400M, RegNetX-600M, RegNetX-800M, RegNetX-1600M, RegNetX-3200M,
RegNetX-4000M, RegNetX-6400M

MobileNetV2 [45] MobileNetV2-x0.5, MobileNetV2-x0.75, MobileNetV2-x1.0, MobileNetV2-x1.4
MobileNetV3 [20] MobileNetV3-x0.35, MobileNetV3-x0.5, MobileNetV3-x0.75, MobileNetV3-x1.0, MobileNetV3-x1.4
ShuffleNetV2 [37] ShuffleNetV2-x0.5, ShuffleNetV2-x1.0, ShuffleNetV2-x1.5, ShuffleNetV2-x2.0
VGG [46] VGG-19
ViT [3] ViT-B/16, ViT-B/32, ViT-L/16
DeiT [47] DeiT-Ti, DeiT-S, DeiT-B

DET RetinaNet [32] RetinaNet-R18, RetinaNet-R50
SSD [35] MobileNetV1 SSD, MobileNetV2 SSD-Lite

GEN Stable Diffusion [44] Stable Diffusion V2

the effect while attracting little in-depth research. Therefore, we
investigate them for detailed analyses in this track.

In this track, we compare the performance of the reconstruc-
tion procedure equipped with different proposed fine-grained tech-
niques to the one without reconstruction:

R𝑠
∗ = A𝑠,𝑟

∗ − A𝑠
∗, (3)

where A𝑠,𝑟
∗ denotes the results under different sparsity rates on all

architectures and datasets of a task with decorated reconstruction.
As the FID score for the generation task has a different scale com-
pared with the other two tasks, we take the exponential for the
results of generation tasks. For each fine-grained algorithms we
benchmark, we compute an overall metric. The overall metric of
this track can be calculated by:

𝑂𝑀𝑟𝑒𝑐𝑜𝑛 =

√√√
1
3

(
E2

(R𝑠
𝐶𝐿𝑆

A𝐶𝐿𝑆

)
+ E2

(R𝑠
𝐷𝐸𝑇

A𝐷𝐸𝑇

)
+ E2

(
𝑒𝑥𝑝

(A𝐺𝐸𝑁

R𝑠
𝐺𝐸𝑁

)))
,

(4)

3.2 Towards Model Sparsification Ability
We also benchmark the sparsification ability of models in our
benchmark. Our evaluation includes 3 tracks: "Neural Architec-
ture", "Model Size Robustness", and "Different Tasks".

3○ Neural Architecture. Although existing PTS methods eval-
uated the effectiveness on a wide range of models, the sparsity
ability of the model itself remains uncovered. Therefore, We evalu-
ate various neural architectures, including mainstream CNN-based
and Transformer-based, to assess the model architecture from the
perspective of sparsification ability. Specifically, for CNN mod-
els, we test ResNet, RegNetX, MobileNetV2, MobileNetV3 [20],
ShuffleNetV2 [37]. For Transformer models, PTSBench includes
DeiT [47] and ViT. Detailed information can be seen in Table 1. All
accuracies of models are measured on ImageNet-1K datasets.

We use the following metric to describe the sparsification poten-
tial of a specific neural architecture:

𝑂𝑀𝑎𝑟𝑐ℎ =

√√√
1
𝐶

𝐶∑︁
𝑖=1
E2

(
A𝑠
𝑎𝑟𝑐ℎ𝑖

A𝑎𝑟𝑐ℎ𝑖

)
, (5)

whereA𝑠𝑖𝑧𝑒𝑖 denotes the accuracies of a specific architecture under
the same sparsity rate of different sizes, and 𝐶 denotes the number
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of sparsity rates. In simple terms, this metric evaluates the mean
performance of models across different sparsity rates and model
sizes within the same architectural framework.

4○Model Size Robustness. In real-world application scenar-
ios, the requirements and resources differ, resulting in the scale of
deployed models varying. We hope that the method will exhibit
consistent effectiveness across models of the same architecture
but with varying depths and widths. In other words, if a model
demonstrates superior sparsity performance only in versions with
a specific amount of parameters but shows great instability in per-
formance across other parameter sizes, we do not recognize it as
a sparsification-friendly architecture design. So, we benchmark
model size robustness in this track and design our metric to quan-
tify it. We first compute the quadratic mean relative accuracy for a
model architecture of a specific size as follows:

𝐺𝑠𝑖𝑧𝑒 =

√√√
1
𝐶

𝐶∑︁
𝑖=1
E2

(
𝐴𝑠
𝑠𝑖𝑧𝑒𝑖

𝐴𝑠𝑖𝑧𝑒𝑖

)
, (6)

where 𝐴𝑠𝑖𝑧𝑒𝑖 denotes the accuracy of a specific neural architecture
with a specific size under a sparsity rate. Then, we calculate the
standard deviation value among different sizes of one architecture.

𝑂𝑀𝑟𝑜𝑏𝑢𝑠𝑡 = 𝑠𝑡𝑑 (G𝑠𝑖𝑧𝑒 ) , (7)
where 𝑠𝑡𝑑 (·) denotes the standard deviation operator. To avoid the
reconstruction process being affected by different model sizes, the
experiments in this track are conducted without the reconstruction.

5○ Application tasks. In various computer vision tasks, models
are often combined and augmented before being deployed in appli-
cations. For example, ResNet is used as the backbone in detection
tasks, with a neck and head connected afterward. In image genera-
tion tasks, CNNs and Transformers are combined for use. Therefore,
there is a need to test sparsification ability from the aspect of tasks.

To this end, we evaluate 3 typical tasks which are commonly used
in our PTSBench: classification, detection, and image generation.
Similar to the overall metric for the neural architecture track, we
build the overall metric for this track:

𝑂𝑀𝑡𝑎𝑠𝑘 =

√√√
1
𝑁

𝑁∑︁
𝑖=1
E2

(
A𝑠
𝑡𝑎𝑠𝑘𝑖

A𝑡𝑎𝑠𝑘𝑖

)
, (8)

where A𝑡𝑎𝑠𝑘𝑖 denotes the accuracies set of a task under different
sparsity rates using different models.

4 IMPLEMENTATION DETAILS
PTSBench is implemented using PyTorch framework [41]. We fol-
low the pipeline introduced in Section 2.1 to sparsify the dense
model. In the reconstruction process, we use the SGD optimizer for
optimization. The momentum is set as 0.9, and the learning rate is
set as 1𝑒 − 4. We randomly select 1,024 images from the training
datasets as our calibration datasets and calibrate for 20,000 epochs.
The batch size is set as 64. In our implementation, we observe that
when the sparsity rate is lower than 50%, the performance drop
after sparsification is negligible for almost all experiments. On the
other hand, when the sparsity rate is higher than 80%, almost all
setups undergo a collapse in accuracy. Therefore, we mainly present

the results under the {0.5, 0.6, 0.7, 0.8} sparsity rate. Results under
more sparsity rates can be found in supplementary material.

5 PTSBENCH EVALUATION AND ANALYSIS
This section presents and analyzes the experimental results and
evaluation conclusions in PTSBench. The results are shown in Tab.
2, Tab. 3, and Tab. 6. More details can be seen in the supplementary
details.

5.1 Fine-grained Algorithm Tracks
As introduced in Sec. 2 and shown in Fig. 2, we benchmark the two
significant procedures of PTS. The accuracy results of these tracks
are shown in Tab. 2 and 3. The defined metric in Sec. 3.1 calculates
the results.

5.1.1 Sparsity Allocation: A Well-allocated Sparsity Results In High
Performance. We first present the evaluation results of different
sparsity allocation strategies. To facilitate a more detailed analy-
sis, we additionally report the root mean square components of
the 𝑂𝑀𝑎𝑙𝑙𝑜𝑐 for each task, denoted as MS, as well as its specific
performance at each sparsity rate.

The impact of sparsity allocation is crucial and signifi-
cant. Different sparsity allocation strategies vary greatly in results.
Across various metrics, the Uniform strategy consistently shows
the poorest performance, whereas learning-based methods uni-
formly exhibit good results. The gap between the two can reach up
to 20%. ERK and L2Norm behave similarly, while FCPTS initiated
with two strategies have an obvious difference, which implies that
initialization matters a lot for learning-based methods and ERK
possesses better potential for fine-tuning than L2norm (i.e., ERK
sparsity allocation is closer to an optimal distribution).

Effective sparsity rate allocation benefits from assigning
lower sparsity rates to more sensitive layers.We hope to fur-
ther investigate the underlying reasons for the success of effective
methods to better determine the sparsity rates for each layer. There-
fore, we visualize the sparsity allocation using different methods.
Fig. 4 shows the sparsity allocation of ResNet-32 on CIFAR-100
datasets. We can observe that effective methods unanimously allo-
cate a lower sparsity rate to the final layer. This is because the last
layer is directly related to the network’s output features, making the
output highly sensitive to changes in the weights of the last layer.
Thus, the last layer is unsuitable for a large-scale sparsification.

We also observe that ERK and L2Norm commonly allocate a rel-
atively low sparsity rate for the downsample layers, which implies
that these methods consider downsample layers as sensitive layers.
On the other hand, FCPTS tends to remove more weights from these
layers while achieving better performance. This indicates that the
poor performance is caused by mistakenly preserving more weights
for sparsification-friendly layers.

5.1.2 Reconstruction: ByMaking Simple Adjustments To The Pipeline,
The Sparsity Effect Can Be Significantly Enhanced. We report de-
tailed results similar to track 1 in Tab. 3. Note that since the baselines
vary, comparing the results of different techniques is not meaning-
ful. We only compare technologies in the same aspect.

Error Correction behaves differently in different tasks. For
classification tasks, we observe that error correction consistently
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Table 2: Benchmarking the sparsity allocation strategy of PTS methods. Blue: best in a column. Light blue: second best in a
column. Red: worst in a column. Light red: second worst in a column.

Algorithms CLS DET GEN
𝑂𝑀𝑎𝑙𝑙𝑜𝑐

50 60 70 80 𝑀𝑆 50 60 70 80 𝑀𝑆 50 60 70 80 𝑀𝑆

Uniform 96.94 84.52 65.67 32.55 72.88 98.31 93.75 80.89 47.77 80.94 16.40 - - - 16.40 63.59
L2Norm 98.22 95.68 86.17 52.53 84.05 98.66 96.92 94.08 65.86 88.97 78.47 - - - 78.47 83.94
ERK 97.67 94.34 83.62 56.13 84.00 99.23 98.08 95.14 76.40 92.30 62.61 - - - 62.61 80.61
FCPTS (L2Norm) 98.35 96.64 90.16 79.62 91.20 99.00 98.25 96.99 88.74 95.89 87.80 - - - 87.80 91.69
FCPTS (ERK) 97.51 97.85 93.79 88.57 94.55 99.19 98.58 97.16 91.95 96.76 91.71 - - - 91.71 94.36
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Figure 4: Visualization of different sparsity allocation of ResNet-32 at a sparsity rate of 90% on CIFAR-100. The name of each
layer is listed at the bottom. The black line denotes the average remaining ratio of the three algorithms. More visualization
results can be seen in supplementary materials.

Table 3: Benchmarking the reconstruction techniques of PTS methods. Blue: best in a column. Red: worst in a column.

Algorithms CLS DET GEN
𝑂𝑀𝑟𝑒𝑐𝑜𝑛

50 60 70 80 MS 50 60 70 80 MS 50 60 70 80 MS

w/ Correction 11.87 35.06 59.32 32.90 36.68 0 8.71 1.83 0 3.73 88.32 - - - 88.32 55.26
w/o Correction 11.87 32.11 51.20 26.15 31.81 9.43 48.84 94.95 92.33 61.39 88.32 - - - 88.32 64.76

Sparse Input 11.85 34.71 59.07 33.86 35.87 9.28 48.69 94.79 92.02 61.20 88.32 - - - 88.32 65.40
Dense Input 11.30 33.91 56.44 23.40 32.84 8.73 47.46 92.40 88.40 59.25 88.06 - - - 88.06 64.14

Singe 9.40 33.26 59.73 42.75 38.01 3.83 41.72 83.46 71.89 50.24 88.11 - - - 88.11 62.54
Layer-wise 10.35 34.29 64.30 61.85 43.40 4.53 43.30 88.85 82.29 54.75 88.18 - - - 88.18 64.95
Block-wise 10.68 35.77 67.14 69.21 46.32 8.73 47.26 92.15 85.54 58.43 88.32 - - - 88.32 66.76

results in high performance under different sparsity rates, which
is in alignment with experience in previous work[28]. However,
the technique is performed diversely for detection and generation
tasks. There is a significant collapse after applying error correction
in detection tasks, while generation tasks seem to be insensitive
toward the distortion of weights distribution. In object detection
tasks, preserving the integrity of spatial information is crucial be-
cause detection involves not just "what" (identifying the object

categories) but also "where" (locating the positions of objects). Spar-
sification and subsequent adjustments to the weight distribution
may disrupt the spatial features learned by the model, which is
particularly critical for detection tasks. This could compromise the
model’s ability to accurately localize objects, affecting its overall
detection performance.

Use the output of sparse models as the input of recon-
struction is beneficial. From Tab. 3, we find that in most settings,
sparse input can reach a higher performance increase than dense
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Table 4: Benchmarking sparsification potential of different
tasks. Blue: best in a column. Red: worst in a column.

Tasks Sparsity Rate (%) OMtask
50 60 70 80

CLS 98.24 95.68 86.17 52.53 84.05
DET 98.66 96.92 94.08 65.86 88.97
GEN 78.06 5.44 0.18 0 21.02

input, especially under a higher sparsity rate (e.g., for CLS tasks,
33.86 versus 23.40 under 80% sparsity rate). This may be because
using the output from the sparse model can make the PTS algo-
rithm aware of the reconstruction error from the previous layer,
which avoids error accumulation across the network. Therefore, it
is beneficial to use the output from the sparse model as the input
for the reconstruction of the current unit.

Block-wise reconstruction is always the best. Blcok-wise
reconstruction achieves the best results under most configurations,
and layer-wise reconstruction outperforms the single reconstruc-
tion. For example, when sparsifying classification models at an 80%
sparsity rate, block-wise reconstruction can outperform layer-wise
by up to 3% and surpass single reconstruction by 16%. It is more
important to carefully design the reconstruction granularity for
classification tasks under a high sparsity rate. For instance, there
are no significant differences at a 50% sparsity rate. However, at 80%
sparsity rate, these differences become evident. However, this gap
becomes apparent for detection tasks even at low sparsity rates.

Reconstructing on block-wise has the main advantage of poten-
tially preserving the interactions between weights better. If the
sparsity of a model is more concentrated at the block level, then
reconstructing on a block basis might more effectively restore this
sparsity. Moreover, block-level reconstruction could help reduce
noise in the reconstruction process and provide more stable out-
comes. On the other hand, reconstructing on layer-wise might lead
to the loss of some crucial connections between weights across lay-
ers. This could limit the model’s expressive ability and encounter
difficulties in restoring sparsity. We also point out that reconstruct-
ing on a block-by-block basis can better preserve the locality of
information and gradient flow compared to individual layers. This
helps to maintain or restore the performance.

Reconstruction using a block-wise approach also has efficiency
and resource consumption advantages. Given the large scale of fea-
ture maps, calculating loss can require significant time and memory
resources. Reconstructing on a block basis can reduce the number
of times loss calculations are needed. More details can be seen in
the supplementary materials.

5.2 Model Tracks
We present the evaluation results of track 3 and track 4 in Tab. 6,
and track 5 in Tab. 4. These results are calculated based on the
metric defined in Sec. 3.2.

5.2.1 Neural Architecture: Sparsity Potential Varies Across Differ-
ent Architectures. We report the evaluation results under different
sparsity rates and overall metrics in Tab. 6.
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Figure 5: The mean relative accuracy loss under different
model sizes.

Models based on attention mechanisms possess greater
sparsity potential. FromTab. 6, we can find that ViT, MobileNetV3,
and DeiT have their Overall Metrics (OM) positioned among the top
across all models evaluated (top 1, 2, and 4, respectively). Compared
to MobileNetV2, which possesses the worst 𝑂𝑀𝑎𝑟𝑐ℎ , MobileNetV3
significantly has its sparsity potential enhanced. The main differ-
ence between these two similar architectures is that MobileNetV3
introduced a Squeeze-and-Excitation Block (SE Block) [20], which
is considered a lightweight attention mechanism[21]. The attention
mechanism allows the network to focus more on features that are
crucial for the final task, reducing dependency on less important
features. Naturally, in scenarios of sparsification, it enables more
effective preservation of information critical to performance.

Training strategy can impact its sparsity potential. DeiT
has nearly the same architecture compared to ViT, while has ob-
viously poorer performance. This is due to significant differences
in their training strategies. ViT is pre-trained on extremely large
datasets, such as JFT-300M, which likely enables it to learn more
general feature representations. This makes it more robust against
sparsification. While DeiT employs knowledge distillation as one
of its core strategies, which aids in training efficient models with
less data. However, if the sparsification method interferes with the
features learned through knowledge distillation during the sparsifi-
cation process, it could adversely affect DeiT’s performance.

5.2.2 Model Size Robustness: Different Model Architectures Tends
To Vary In Model Size Robustness. The results of evaluated models
are shown in Tab. 6.

A high sparsity potential for a model of a certain size ≠ a
high sparsity potential for amodel of all sizes. Interestingly, we
observe that DeiT and ResNet, which perform well on the 𝑂𝑀𝑎𝑟𝑐ℎ ,
exhibit poor performance on𝑂𝑀𝑟𝑜𝑏𝑢𝑠𝑡 , while ViT andMobileNetV3
behave consistently on both metrics. This suggests that the sparsity
potential of a model and its size robustness don’t exhibit a strict
positive correlation. However, models with high sparsity potential
are considered more likely to possess good model size robustness.

A larger model size does not necessarily mean better spar-
sity ability.We present the results of the mean relative accuracy
loss (i.e., 𝐺𝑠𝑖𝑧𝑒 of Equation 6) of different model sizes in Fig. 5 to
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Table 5: The overall evaluation results of PTSBench. The results are listed from best to worst.

Track Results

Sparsity allocation FCPTS(ERK), FCPTS(L2Norm), L2Norm, ERK, Uniform

Reconstruction
Error correction w/o correction, w/ correction
Reconstruction Input sparse input, dense input
Reconstruction Granularity block-wise, layer-wise, single

Neural architecture ViT, MobileNetV3, ResNet, DeiT, ShuffleNetV2, RegNetX, MobileNetV2

Model size robustness ViT, MobileNetV3, MobileNetV2, ShuffleNetV2, RegNetX, RegNet, DeiT

Different tasks DET, CLS, GEN

Table 6: Benchmarking model sparsity potential and model
size robustness. Blue and red: best and worst in a column.
Light blue and light red: second best and secondworst in a col-
umn. Note that𝑂𝑀𝑎𝑟𝑐ℎ is a positive indicator while𝑂𝑀𝑟𝑜𝑏𝑢𝑠𝑡

is a negative indicator.

Models Sparsity Rate (%) OMarch OMrobust
50 60 70 80

ResNet 99.38 97.86 91.38 48.36 86.81 0.286
RegNetX 97.98 94.57 83.65 45.17 83.04 0.270
MobileNetV2 97.32 93.48 79.80 29.51 79.77 0.219
MobileNetV3 97.93 95.54 89.14 65.32 87.94 0.172
ShuffleNetV2 96.50 92.77 82.96 54.04 83.25 0.258

ViT 99.50 97.52 89.99 62.41 88.61 0.014
DeiT 98.08 95.53 85.81 58.25 85.88 1.485

deliver a further detailed analysis. From the figure, we can draw the
following discoveries. (1) For CNNs, the mean relative accuracy loss
first increases and then decreases as the model size increases. So, a
middle-sized network is the sweet point for CNN-based network
architectures. (2) For DeiT and ViT, the mean relative accuracy loss
decreases as the model size increases, which shows Transformer is
more amenable to sparsification under a larger model size.

One possible explanation for the divergence between CNNs and
Transformers goes to the fundamental differences in architecture
between them. The self-attention mechanism of Transformers pro-
vides a way to optimize and adapt to the effects of sparsification
on a global scale. In contrast, the localized feature extraction and
hierarchical dependencies of CNNs make them more sensitive to
reductions in parameters, especially in larger models. Thus, Trans-
formermodels are better able to be sparsified asmodel size increases,
whereas large CNN models may face performance challenges due
to sparsification.

5.2.3 Different Tasks: The PTS Method Needs Further Development
In Generation Tasks. In Tab. 4, we present the benchmark results of
different tasks calculated by the metric designed in Sec. 3.2.

In detection models, the PTS method demonstrates better
performance compared to classification models. From Tab.
4, we find that 𝑂𝑀𝑡𝑎𝑠𝑘 can reach up to 88.97 in detection tasks,
whereas classification task scores 84.05. This implies that attach-
ing subsequent structures (such as the neck [31] and head parts in

detection models) to a backbone does not reduce sparsity poten-
tial; it can even make the model more sparsity-friendly due to the
introduction of additional parameters.

ThePTSmethod still urgently requires further exploration
in the field of image generation.Generation tasks can only main-
tain precision at 50% sparsity rate, with a collapsing performance on
higher sparsity rates. Sparsification methods used for other types of
models may be unsuitable for Diffusion models, or at least they may
perform poorly without proper adjustments. This could be because
these methods do not consider the unique operating mechanisms
of Diffusion models and the distribution of their parameters.

5.3 Overall Results
The overall evaluation results are shown in Tab. 5. Note that the
algorithms or models that perform best in the table do not neces-
sarily perform best under all experimental setups, but exhibit the
best performance on multiple aspects.

6 CONCLUSION
In this paper, we systematically propose aPost-Training Sparsification
Benchmark called PTSBench, which is the first comprehensive
benchmark towards the post-training sparsity (PTS). From an al-
gorithm perspective, we benchmark 10+ PTS components on 3
computer vision tasks. From a model perspective, we benchmark
40+ network architectures. PTSBench aims to establish a compre-
hensive and in-depth analysis of PTS algorithms, providing useful
technical guidance for future research. Our benchmark is high-
lighted by fertilizing the community by providing the following:
(a) comprehensively evaluate models from the perspective of PTS.
(b) new observations towards a better understanding of the PTS
fine-grained algorithms. (c) an upcoming open-source platform
for systematically evaluating the model sparsification ability and
pluggable sparsification algorithms. We plan to explore a broader
range of model architectures and tasks in future work. We hope
our PTSBench can provide useful advice for future studies.

Our PTSBench also has limitations: (1) We benchmark PTS meth-
ods on three vision tasks, and it is better to include more tasks like
natural language processing in our PTSBench. (2) The number of
PTS algorithms available for study is relatively small in the cur-
rent research. As the PTS community becomes more fertilized, it
is desirable also to include more PTS algorithms in our PTSBench.
Considering the aforementioned limitations, we will continue to
include more methods and tasks in our PTSBench platform.
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