
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

PTSBench: A Comprehensive Post-Training Sparsity Benchmark
Towards Algorithms and Models

Anonymous Authors

ABSTRACT
With the increased attention to model efficiency, model sparsity
technologies have developed rapidly in recent years, among which
post-training sparsity (PTS) has become more and more prevalent
because of its effectiveness and efficiency. However, there remain
questions on better fine-grained PTS algorithms and the sparsifica-
tion ability of models, which hinders the further development of
this area. Therefore, a benchmark to comprehensively investigate
the issues above is urgently needed. In this paper, we propose the
first comprehensive post-training sparsity benchmark called PTS-
Bench towards PTS algorithms and models. We benchmark 10+ PTS
general-pluggable fine-grained algorithms on 3 typical computer vi-
sion tasks using over 40 off-the-shelf model architectures. Through
extensive experiments and analyses, we obtain valuable conclusions
and provide several insights from both PTS fine-grained algorithms
and model aspects, which can comprehensively address the afore-
mentioned questions. Our PTSBench can provide (1) in-depth and
comprehensive evaluations for the sparsification abilities of models,
(2) new observations for a better understanding of the PTS method
toward algorithms andmodels, and (3) an upcoming well-structured
and easy-integrate open-source framework for model sparsification
ability evaluation. We hope this work will provide illuminating
conclusions and advice for future studies of post-training sparsity
methods and sparsification-friendly model design.

CCS CONCEPTS
• Computing methodologies → Neural networks; Object detec-
tion; Object identification; • General and reference → Evalua-
tion; Computing standards, RFCs and guidelines.

KEYWORDS
Computer Vision, Model Compression, Post-Training Sparsification,
Benchmark

1 INTRODUCTION
Although deep learning has been widely used in various fields, it re-
quires a considerable amount of memory and computational power.
To address this issue, many strategies have emerged to compress the
model, including model quantization [10, 23–25, 39], model sparsifi-
cation [8, 14, 16, 28, 29, 48], network distillation [12, 19], lightweight
network design [45] and weight matrix decomposition [4]. One of

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Model

StructureSize

PTS Algorithms

Reconstruction

PTSBench
Benchmarking

Model
 Architectures

Tasks

PTSBench

Benchmarking
PTS Fine-grained

techniques

Benchmarking
Model

 Sparsity Ability

Sparsity Allocation

Figure 1: The placement of PTSBench, which connects the
models and PTS algorithms.

the most representative methods is model sparsification, which
involves removing unimportant weights from the model. Among
all the sparsification methods, post-training sparsity (PTS) has re-
ceived much attention in recent years because of its small training
cost.

In the scenario of post-training sparsity (PTS), we are given a
pre-trained dense model along with a small amount of unlabeled
calibration data. We aim to generate an accurate sparse model with-
out an end-to-end retraining process. Under these settings, several
representative methods have been proposed, including POT [28],
AdaPrune [22], and OBC [8]. These state-of-the-art (SOTA) meth-
ods have achieved almost no performance loss after sparsification.
However, even though the high-performance PTS methods have
reached, there are still two problems remain:

Problem-1: Post-training sparsity algorithm exploration
is incomplete. Current PTS methods [8, 22, 28] share the same
sparsification paradigm: they first allocate sparsity rate to each
layer to sparsify the model and then reconstruct the activation to
recover the performance further. However, while current research
follows this pipeline, it still lacks a fine-grained exploration of PTS
techniques. For example, most PTS methods adopt layer-wise re-
construction granularity in the reconstruction process. However,
block-wise reconstruction granularity has been proven effective in
quantization approaches [30, 49] but is not explored in PTS algo-
rithms. The absence of in-depth analysis of fine-grained techniques
hinders further development of PTS approaches. Thus, benchmark-
ing toward fine-grained techniques in PTS algorithms is urgently
required.

Problem-2: Relationship between model and sparsity re-
mains unexplored. Current PTS research heuristically chooses
commonly used models (e.g., ResNet and RegNetX) or datasets
to validate their methods. However, it still lacks a comprehensive
evaluation of the relationship between models and sparsity. In real-
world applications, we often face the scenario that multiple network
architectures with similar sizes can be used as the backbone, and
we need to sparsify them before deployment for efficient inference.
It is still an open question about which network architecture is

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

sparsity-friendly for better performance. Moreover, as the deploy-
ment platform varies, we also need to use different model sizes (e.g.,
different layer numbers). It is unclear whether a network architec-
ture with different sizes is robust for the sparsity algorithms. In
addition, model structures typically require various designs and
modifications tailored to each task under different tasks. The ex-
tent to which these task-oriented designs and modifications are
conducive to sparsity is also unknown. Therefore, conducting a
comprehensive evaluation from an architectural perspective is also
necessary from both theoretical and practical aspects.

To address the problems mentioned above, in this paper, we
present PTSBench, a Post-Training Sparsification Benchmark to
evaluate the PTS technique from both algorithm and model aspects
comprehensively. Starting from the real-world model production
requirements, we carefully design 5 tracks for comparison. With
over 8000 A800 GPU hours consumption, we benchmark 40+ clas-
sical off-the-shelf models, 3 typical computer vision tasks, and 10+
easy-pluggable fine-grained techniques in post-training sparsity.
Based on the evaluation, we provide in-depth analyses of PTS meth-
ods from both algorithm and model perspectives and offer useful
insights and guidance on PTS method design and validation.

Overall, our contributions can be summarized as follows:
(1) Comprehensive benchmark. We construct Post-Training

Sparsification Benchmark (PTSBench), which is the first
systematic benchmark to conduct a comprehensive evalu-
ation of PTS methods. It provides a brand new perspective
to benchmark both post-training sparsity fine-grained tech-
niques and sparsified models.

(2) In-depth analysis. Based on extensive experiments, we
uncover and summarize several useful insights and take-
away conclusions, which can serve as a guidance for future
PTS method design.

(3) Upcoming open-source framework. We will release our
open-source benchmark codes repository. Research com-
munities can easily use our platform to evaluate sparsity
approaches. It can also serve as a well-organized codebase
for future research of PTS algorithms.

2 BACKGROUND
2.1 Post-training Sparsity
Post-Training Sparsity (PTS) aims to sparsify a pre-trained neural
network while preserving its accuracy on a specific task. All of the
current PTS researches [8, 11, 22, 28] adopt two-step sparsity para-
digm including sparsity allocation and reconstruction, as shown
in Figure 2. In the sparsity allocation procedure, a specific sparsity
rate is allocated to each layer following a predetermined metric, and
weights at corresponding positions are zeroed based on sparsity
criteria. The reconstruction process involves employing a series of
techniques to recover model accuracy drop from sparsification. We
will give a detailed introduction to these two parts.

2.2 Sparsity Allocation
Many previous works have shown that allocating a more reasonable
sparsity for each layer can lead to a more effective sparsification
outcome [5, 11, 13, 16, 36]. Currently, sparsity allocation methods
can be categorized into the following three types.

(1) Heuristic based strategy. In this type, the sparsity ratio
for each layer is predetermined manually, such as uniform
sparsity[9, 38].

(2) Criterion based strategy. Weights across all layers are
ranked according to a specific metric, and a certain percent-
age of the weights with lower scores are set as zero. The
corresponding sparsity rates for each layer can be naturally
obtained[5, 7, 13, 43].

(3) Learning based strategy. This strategy learns sparsity rates
for each layer by optimizing a loss function to achieve opti-
mal sparsity allocation [11, 27].

Although current work proposed multiple sparsity rate alloca-
tion strategies, theseworks lack evaluation on broader architectures,
sizes, and tasks. Moreover, while there is a strong focus on the ef-
fectiveness of the methods, it still lacks in-depth analysis, such
as why allocating a sparsity rate in a certain way can reach high
performance. These two limitations in current research pose the
question of better practice for PTS algorithms.

2.3 Reconstruction
After sparsity allocation, PTS methods will apply reconstruction
to reconstruct the sparse activation for compensating the accu-
racy loss caused by sparsity. In this paper, we benchmark three
fine-grained pluggable techniques that are often identified as influ-
encing the effectiveness of sparsity in this process: error correction,
reconstruction input, and reconstruction granularity.

2.3.1 Error Correction. Error correction is widely used in many
post-training quantization (PTQ) [17, 39, 40] methods. It aims to
align the weight distribution after compression with the original
weight distribution. However, current PTS methods do not compre-
hensively and systematically evaluate this procedure. Specifically,
the error correction procedure can be written as follows:

Ŵ𝑠 = 𝜆W𝑠 + 𝐸 (W𝑑 ) − 𝐸 (𝜆W𝑠 ),

and 𝑏𝑠 = 𝑏𝑑 + 𝐸 (𝑓 (W𝑑 ,X𝑑 )) − 𝐸 (𝑓 (Ŵ𝑠 ,X𝑑 )),

where 𝜆 =
𝜎 (W𝑑 )

𝜎 (W𝑠 ) + 𝜖
.

(1)

Ŵ𝑠 and 𝑏𝑠 are the weights and biases after the error correction
operation, andW𝑠 denote the weights of the sparse model before
correction. 𝑏𝑑 ,W𝑑 , andX𝑑 are biases, weights, and input activation
in the dense model, respectively. 𝑓 (W, X) represents the convolu-
tional operation performed by the layer on inputs X with weights
W. 𝐸 and 𝜎 are the mean and standard deviation operators, 𝜖 is a
small constant. In this way, we can correct the error caused by the
distribution shift of weights and biases.

2.3.2 Reconstruction Input. During the reconstruction procedure,
we can either use the output of the previous reconstruction unit
from the dense model as the input or opt for the output after the
previous sparsified units. In current research, the choice of recon-
struction inputs is not aligned, but we find that it greatly impacts
the results. Since the absence of systematic investigation in previous
work, we also benchmark this technique in our PTSBench.

2.3.3 Reconstruction Granularity. In addition to error correction
and reconstruction input, we also benchmark the reconstruction



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Datasets Dense model Sparsity Allocation Final modelReconstruction

Training

Figure 2: The illustration of the overall Post-Training Sparsity pipeline, which is employed by most PTS methods.

granularity in our PTSBench. Specifically, the reconstruction pro-
cess can be conducted at different granularities. Many post-training
quantization methods [30, 34, 49] prove that the reconstruction
granularity has a large impact on quantization performance. How-
ever, the detailed impact of reconstruction granularities on a broad
range of models is still unclear. Besides, the effectiveness of dif-
ferent reconstruction granularities still needs to be validated in
PTS area. Therefore, inspired by [30], we mainly benchmark three
reconstruction granularities:

(1) Single reconstruction. Reconstruct the weights based on
each individual layer, which represents the smallest recon-
struction granularity.

(2) Layer-wise reconstruction. Reconstruct the weights at the
layer level. For instance, in a CNN, reconstruct in a CONV-
BN-ReLU combination pattern.

(3) Block-wise reconstruction. Reconstruct the weights based
on the block level (e.g., residual block).

In addition to the three aforementioned reconstruction granular-
ities, some quantization methods also propose to use a net-wise
reconstruction. However, although it is useful for quantization, we
found this granularity will lead to poor performance because of
overfitting. Hence, we do not include its performance for bench-
marking in our PTSBench.

3 PTSBENCH: TRACKS AND METRICS
This section presents PTSBench, a benchmark for PTS methods
from both algorithm andmodel aspects. Our evaluation consists of 5
tracks and corresponding metrics, as shown in Fig. 3, which provide
comprehensive evaluation to address the limitations of current
studies. All the metrics except 𝑂𝑀𝑟𝑜𝑏𝑢𝑠𝑡 are positive indicators.
The model architectures we included are shown in Tab. 1.

3.1 Towards Fine-grained Algorithm
In our PTSBench, we benchmark "Sparsity Allocation" and "Recon-
struction", which are two main procedures of PTS progress. To have
a comprehensive evaluation, we conduct our experiments on 3 typi-
cal tasks: classification, detection, and image generation. For classi-
fication tasks, we test ResNet-18/50[15], RegNetX-200M/400M[42],
MobileNetV2[45], ViT[3] (transformer-based model) under datasets
ImageNet-1K [2]and ResNet32/56, VGG-19 [46] under datasets
CIFAR-10/100 [26]. For detection task, we test RetinaNet-r18/50 [32]

on datasetsMSCOCO-2017 [33] andMobileNetV1-SSD,MobileNetV2-
SSDLite [35] on datesets PASCAL VOC07 [6]. For image gener-
ation task, we evaluate Stable Diffusion [44] on datasets LSUN-
Churches/Bedroom [50].

1○ Sparsity Allocation. In order to evaluate the performance
of different sparsity allocation methods and deeply investigate
the characteristics and essence of a decent sparsity allocation, we
choose 4 sparsity allocation approaches. Uniform sparsity allocation
is a widely adopted human heuristic based method that allocates
the same sparsity for each layer. L2Norm [13] and ERK [5]are both
mask criterion based methods, while the latter is more meticulously
designed. We choose these two methods for their effectiveness and
high citations. We also include FCPTS [11] as a typical method that
stands for methods based on learning, for it is the only one.

To better quantify the performance, we use the accuracy of dense
models as a baseline and calculate the mean relative accuracy for
all architectures and datasets on each task. Inspired by previous
work [1], we define our overall metric (OM) by calculating the
quadratic mean of the relative accuracies across 3 tasks as follows:

𝑂𝑀𝑎𝑙𝑙𝑜𝑐 =

√√√
1
3

(
E2

(A𝑠
𝐶𝐿𝑆

A𝐶𝐿𝑆

)
+ E2

(A𝑠
𝐷𝐸𝑇

A𝐷𝐸𝑇

)
+ E2

(
A𝐺𝐸𝑁

A𝑠
𝐺𝐸𝑁

))
, (2)

where A∗ and A𝑠
∗ denotes the results obtained by calculating the

metric of different tasks (i.e., accuracy for CLS, mAP for DET and
FID [18] for GEN) of the dense and sparse models under different
sparsity rate on a specific task (i.e., classification, detection and
image generation), and E(·) is the mean operator. Note that the
Frechet Inception Distance (FID) is an indicator where lower values
are better with a [1, +∞] value domain. We take the reciprocal
to ensure the overall metric is in [0, 1] interval. We sparsify the
models we choose under different sparsity allocation algorithms
and calculate the 𝑂𝑀𝑎𝑙𝑙𝑜𝑐 for each algorithm.

To directly observe the impact of different sparsity allocation
strategies, in this track, we measure the accuracy of the model im-
mediately after sparsification without performing reconstruction.

The quadratic mean form is consistently employed across PTS-
Bench to unify different tracks’ overall metrics. This approach miti-
gates the undue influence of particularly poor performers on the
metric, enabling a more precise evaluation of the comprehensive
performance on each track.

2○ Reconstruction. In Section 2.3, we introduce 3 fine-grained
reconstruction techniques that may have a considerable impact on



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Techniques

Sparsity Allocation

Reconstruction

Models

Architectures

Tasks

Size Robustness

Heuristic based
Criterion based
Learning based
Correction
Input
Granularity

CNN
Transformer
CNN + Transformer
Classification
Detection
Image generation

L2Norm

Uniform

FCPTS (ERK)

FCPTS (L2Norm)

ERK

Alloc

w/o correction

w/ correction

block-wise
layer-wise

single

dense input

sparse input

Recon

RegNetX

ResNet

DeiT
ViT

SfV2

MbV3

MbV2

Arch Robust CLS

DET

GEN

Task

RegNetX

ResNet

DeiT
ViT

SfV2

MbV3

MbV2

Figure 3: Evaluation tracks of PTSBench. We benchmark the performance of PTS fine-grained algorithms and model sparsi-
fication abilities on a range of comprehensive evaluation tracks, including: "Sparsity Allocation", "Reconstruction", "Neural
Architectures", "Model Size Robustness", and "Different Tasks". We illustrate an overview of the results of each track respectively
on the right of the figure.

Table 1: Architecture repository.

Task Arch. Family Archs

CLS

ResNet [15] ResNet-18, ResNet-32, ResNet-34, ResNet-50, ResNet-56, ResNet-101, ResNet-152

RegNetX [42] RegNetX-200M, RegNetX-400M, RegNetX-600M, RegNetX-800M, RegNetX-1600M, RegNetX-3200M,
RegNetX-4000M, RegNetX-6400M

MobileNetV2 [45] MobileNetV2-x0.5, MobileNetV2-x0.75, MobileNetV2-x1.0, MobileNetV2-x1.4
MobileNetV3 [20] MobileNetV3-x0.35, MobileNetV3-x0.5, MobileNetV3-x0.75, MobileNetV3-x1.0, MobileNetV3-x1.4
ShuffleNetV2 [37] ShuffleNetV2-x0.5, ShuffleNetV2-x1.0, ShuffleNetV2-x1.5, ShuffleNetV2-x2.0
VGG [46] VGG-19
ViT [3] ViT-B/16, ViT-B/32, ViT-L/16
DeiT [47] DeiT-Ti, DeiT-S, DeiT-B

DET RetinaNet [32] RetinaNet-R18, RetinaNet-R50
SSD [35] MobileNetV1 SSD, MobileNetV2 SSD-Lite

GEN Stable Diffusion [44] Stable Diffusion V2

the effect while attracting little in-depth research. Therefore, we
investigate them for detailed analyses in this track.

In this track, we compare the performance of the reconstruc-
tion procedure equipped with different proposed fine-grained tech-
niques to the one without reconstruction:

R𝑠
∗ = A𝑠,𝑟

∗ − A𝑠
∗, (3)

where A𝑠,𝑟
∗ denotes the results under different sparsity rates on all

architectures and datasets of a task with decorated reconstruction.
As the FID score for the generation task has a different scale com-
pared with the other two tasks, we take the exponential for the
results of generation tasks. For each fine-grained algorithms we
benchmark, we compute an overall metric. The overall metric of
this track can be calculated by:

𝑂𝑀𝑟𝑒𝑐𝑜𝑛 =

√√√
1
3

(
E2

(R𝑠
𝐶𝐿𝑆

A𝐶𝐿𝑆

)
+ E2

(R𝑠
𝐷𝐸𝑇

A𝐷𝐸𝑇

)
+ E2

(
𝑒𝑥𝑝

(A𝐺𝐸𝑁

R𝑠
𝐺𝐸𝑁

)))
,

(4)

3.2 Towards Model Sparsification Ability
We also benchmark the sparsification ability of models in our
benchmark. Our evaluation includes 3 tracks: "Neural Architec-
ture", "Model Size Robustness", and "Different Tasks".

3○ Neural Architecture. Although existing PTS methods eval-
uated the effectiveness on a wide range of models, the sparsity
ability of the model itself remains uncovered. Therefore, We evalu-
ate various neural architectures, including mainstream CNN-based
and Transformer-based, to assess the model architecture from the
perspective of sparsification ability. Specifically, for CNN mod-
els, we test ResNet, RegNetX, MobileNetV2, MobileNetV3 [20],
ShuffleNetV2 [37]. For Transformer models, PTSBench includes
DeiT [47] and ViT. Detailed information can be seen in Table 1. All
accuracies of models are measured on ImageNet-1K datasets.

We use the following metric to describe the sparsification poten-
tial of a specific neural architecture:

𝑂𝑀𝑎𝑟𝑐ℎ =

√√√
1
𝐶

𝐶∑︁
𝑖=1
E2

(
A𝑠
𝑎𝑟𝑐ℎ𝑖

A𝑎𝑟𝑐ℎ𝑖

)
, (5)

whereA𝑠𝑖𝑧𝑒𝑖 denotes the accuracies of a specific architecture under
the same sparsity rate of different sizes, and 𝐶 denotes the number



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

of sparsity rates. In simple terms, this metric evaluates the mean
performance of models across different sparsity rates and model
sizes within the same architectural framework.

4○Model Size Robustness. In real-world application scenar-
ios, the requirements and resources differ, resulting in the scale of
deployed models varying. We hope that the method will exhibit
consistent effectiveness across models of the same architecture
but with varying depths and widths. In other words, if a model
demonstrates superior sparsity performance only in versions with
a specific amount of parameters but shows great instability in per-
formance across other parameter sizes, we do not recognize it as
a sparsification-friendly architecture design. So, we benchmark
model size robustness in this track and design our metric to quan-
tify it. We first compute the quadratic mean relative accuracy for a
model architecture of a specific size as follows:

𝐺𝑠𝑖𝑧𝑒 =

√√√
1
𝐶

𝐶∑︁
𝑖=1
E2

(
𝐴𝑠
𝑠𝑖𝑧𝑒𝑖

𝐴𝑠𝑖𝑧𝑒𝑖

)
, (6)

where 𝐴𝑠𝑖𝑧𝑒𝑖 denotes the accuracy of a specific neural architecture
with a specific size under a sparsity rate. Then, we calculate the
standard deviation value among different sizes of one architecture.

𝑂𝑀𝑟𝑜𝑏𝑢𝑠𝑡 = 𝑠𝑡𝑑 (G𝑠𝑖𝑧𝑒 ) , (7)
where 𝑠𝑡𝑑 (·) denotes the standard deviation operator. To avoid the
reconstruction process being affected by different model sizes, the
experiments in this track are conducted without the reconstruction.

5○ Application tasks. In various computer vision tasks, models
are often combined and augmented before being deployed in appli-
cations. For example, ResNet is used as the backbone in detection
tasks, with a neck and head connected afterward. In image genera-
tion tasks, CNNs and Transformers are combined for use. Therefore,
there is a need to test sparsification ability from the aspect of tasks.

To this end, we evaluate 3 typical tasks which are commonly used
in our PTSBench: classification, detection, and image generation.
Similar to the overall metric for the neural architecture track, we
build the overall metric for this track:

𝑂𝑀𝑡𝑎𝑠𝑘 =

√√√
1
𝑁

𝑁∑︁
𝑖=1
E2

(
A𝑠
𝑡𝑎𝑠𝑘𝑖

A𝑡𝑎𝑠𝑘𝑖

)
, (8)

where A𝑡𝑎𝑠𝑘𝑖 denotes the accuracies set of a task under different
sparsity rates using different models.

4 IMPLEMENTATION DETAILS
PTSBench is implemented using PyTorch framework [41]. We fol-
low the pipeline introduced in Section 2.1 to sparsify the dense
model. In the reconstruction process, we use the SGD optimizer for
optimization. The momentum is set as 0.9, and the learning rate is
set as 1𝑒 − 4. We randomly select 1,024 images from the training
datasets as our calibration datasets and calibrate for 20,000 epochs.
The batch size is set as 64. In our implementation, we observe that
when the sparsity rate is lower than 50%, the performance drop
after sparsification is negligible for almost all experiments. On the
other hand, when the sparsity rate is higher than 80%, almost all
setups undergo a collapse in accuracy. Therefore, we mainly present

the results under the {0.5, 0.6, 0.7, 0.8} sparsity rate. Results under
more sparsity rates can be found in supplementary material.

5 PTSBENCH EVALUATION AND ANALYSIS
This section presents and analyzes the experimental results and
evaluation conclusions in PTSBench. The results are shown in Tab.
2, Tab. 3, and Tab. 6. More details can be seen in the supplementary
details.

5.1 Fine-grained Algorithm Tracks
As introduced in Sec. 2 and shown in Fig. 2, we benchmark the two
significant procedures of PTS. The accuracy results of these tracks
are shown in Tab. 2 and 3. The defined metric in Sec. 3.1 calculates
the results.

5.1.1 Sparsity Allocation: A Well-allocated Sparsity Results In High
Performance. We first present the evaluation results of different
sparsity allocation strategies. To facilitate a more detailed analy-
sis, we additionally report the root mean square components of
the 𝑂𝑀𝑎𝑙𝑙𝑜𝑐 for each task, denoted as MS, as well as its specific
performance at each sparsity rate.

The impact of sparsity allocation is crucial and signifi-
cant. Different sparsity allocation strategies vary greatly in results.
Across various metrics, the Uniform strategy consistently shows
the poorest performance, whereas learning-based methods uni-
formly exhibit good results. The gap between the two can reach up
to 20%. ERK and L2Norm behave similarly, while FCPTS initiated
with two strategies have an obvious difference, which implies that
initialization matters a lot for learning-based methods and ERK
possesses better potential for fine-tuning than L2norm (i.e., ERK
sparsity allocation is closer to an optimal distribution).

Effective sparsity rate allocation benefits from assigning
lower sparsity rates to more sensitive layers.We hope to fur-
ther investigate the underlying reasons for the success of effective
methods to better determine the sparsity rates for each layer. There-
fore, we visualize the sparsity allocation using different methods.
Fig. 4 shows the sparsity allocation of ResNet-32 on CIFAR-100
datasets. We can observe that effective methods unanimously allo-
cate a lower sparsity rate to the final layer. This is because the last
layer is directly related to the network’s output features, making the
output highly sensitive to changes in the weights of the last layer.
Thus, the last layer is unsuitable for a large-scale sparsification.

We also observe that ERK and L2Norm commonly allocate a rel-
atively low sparsity rate for the downsample layers, which implies
that these methods consider downsample layers as sensitive layers.
On the other hand, FCPTS tends to remove more weights from these
layers while achieving better performance. This indicates that the
poor performance is caused by mistakenly preserving more weights
for sparsification-friendly layers.

5.1.2 Reconstruction: ByMaking Simple Adjustments To The Pipeline,
The Sparsity Effect Can Be Significantly Enhanced. We report de-
tailed results similar to track 1 in Tab. 3. Note that since the baselines
vary, comparing the results of different techniques is not meaning-
ful. We only compare technologies in the same aspect.

Error Correction behaves differently in different tasks. For
classification tasks, we observe that error correction consistently



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Benchmarking the sparsity allocation strategy of PTS methods. Blue: best in a column. Light blue: second best in a
column. Red: worst in a column. Light red: second worst in a column.

Algorithms CLS DET GEN
𝑂𝑀𝑎𝑙𝑙𝑜𝑐

50 60 70 80 𝑀𝑆 50 60 70 80 𝑀𝑆 50 60 70 80 𝑀𝑆

Uniform 96.94 84.52 65.67 32.55 72.88 98.31 93.75 80.89 47.77 80.94 16.40 - - - 16.40 63.59
L2Norm 98.22 95.68 86.17 52.53 84.05 98.66 96.92 94.08 65.86 88.97 78.47 - - - 78.47 83.94
ERK 97.67 94.34 83.62 56.13 84.00 99.23 98.08 95.14 76.40 92.30 62.61 - - - 62.61 80.61
FCPTS (L2Norm) 98.35 96.64 90.16 79.62 91.20 99.00 98.25 96.99 88.74 95.89 87.80 - - - 87.80 91.69
FCPTS (ERK) 97.51 97.85 93.79 88.57 94.55 99.19 98.58 97.16 91.95 96.76 91.71 - - - 91.71 94.36

co
nv

1

la
ye

r1
.0

.c
on

v1

la
ye

r1
.0

.c
on

v2

la
ye

r1
.1

.c
on

v1

la
ye

r1
.1

.c
on

v2

la
ye

r1
.2

.c
on

v1

la
ye

r1
.2

.c
on

v2

la
ye

r1
.3

.c
on

v1

la
ye

r1
.3

.c
on

v2

la
ye

r1
.4

.c
on

v1

la
ye

r1
.4

.c
on

v2

la
ye

r2
.0

.c
on

v1

la
ye

r2
.0

.c
on

v2

la
ye

r2
.0

.d
ow

ns
am

pl
e

la
ye

r2
.1

.c
on

v1

la
ye

r2
.1

.c
on

v2

la
ye

r2
.2

.c
on

v1

la
ye

r2
.2

.c
on

v2

la
ye

r2
.3

.c
on

v1

la
ye

r2
.3

.c
on

v2

la
ye

r2
.4

.c
on

v1

la
ye

r2
.4

.c
on

v2

la
ye

r3
.0

.c
on

v1

la
ye

r3
.0

.c
on

v2

la
ye

r3
.0

.d
ow

ns
am

pl
e

la
ye

r3
.1

.c
on

v1

la
ye

r3
.1

.c
on

v2

la
ye

r3
1.

2.
co

nv
1

la
ye

r3
.2

.c
on

v2

la
ye

r3
.3

.c
on

v1

la
ye

r3
.3

.c
on

v2

la
ye

r3
.4

.c
on

v1

la
ye

r3
.4

.c
on

v2 fc

10
2

10
1

10
0

R
em

ai
ni

ng
 R

at
io

 (%
)

Sparsity Allocation Across Different Algorithms

Trend Line
L2Norm
ERK
FCPTS

Figure 4: Visualization of different sparsity allocation of ResNet-32 at a sparsity rate of 90% on CIFAR-100. The name of each
layer is listed at the bottom. The black line denotes the average remaining ratio of the three algorithms. More visualization
results can be seen in supplementary materials.

Table 3: Benchmarking the reconstruction techniques of PTS methods. Blue: best in a column. Red: worst in a column.

Algorithms CLS DET GEN
𝑂𝑀𝑟𝑒𝑐𝑜𝑛

50 60 70 80 MS 50 60 70 80 MS 50 60 70 80 MS

w/ Correction 11.87 35.06 59.32 32.90 36.68 0 8.71 1.83 0 3.73 88.32 - - - 88.32 55.26
w/o Correction 11.87 32.11 51.20 26.15 31.81 9.43 48.84 94.95 92.33 61.39 88.32 - - - 88.32 64.76

Sparse Input 11.85 34.71 59.07 33.86 35.87 9.28 48.69 94.79 92.02 61.20 88.32 - - - 88.32 65.40
Dense Input 11.30 33.91 56.44 23.40 32.84 8.73 47.46 92.40 88.40 59.25 88.06 - - - 88.06 64.14

Singe 9.40 33.26 59.73 42.75 38.01 3.83 41.72 83.46 71.89 50.24 88.11 - - - 88.11 62.54
Layer-wise 10.35 34.29 64.30 61.85 43.40 4.53 43.30 88.85 82.29 54.75 88.18 - - - 88.18 64.95
Block-wise 10.68 35.77 67.14 69.21 46.32 8.73 47.26 92.15 85.54 58.43 88.32 - - - 88.32 66.76

results in high performance under different sparsity rates, which
is in alignment with experience in previous work[28]. However,
the technique is performed diversely for detection and generation
tasks. There is a significant collapse after applying error correction
in detection tasks, while generation tasks seem to be insensitive
toward the distortion of weights distribution. In object detection
tasks, preserving the integrity of spatial information is crucial be-
cause detection involves not just "what" (identifying the object

categories) but also "where" (locating the positions of objects). Spar-
sification and subsequent adjustments to the weight distribution
may disrupt the spatial features learned by the model, which is
particularly critical for detection tasks. This could compromise the
model’s ability to accurately localize objects, affecting its overall
detection performance.

Use the output of sparse models as the input of recon-
struction is beneficial. From Tab. 3, we find that in most settings,
sparse input can reach a higher performance increase than dense



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Benchmarking sparsification potential of different
tasks. Blue: best in a column. Red: worst in a column.

Tasks Sparsity Rate (%) OMtask
50 60 70 80

CLS 98.24 95.68 86.17 52.53 84.05
DET 98.66 96.92 94.08 65.86 88.97
GEN 78.06 5.44 0.18 0 21.02

input, especially under a higher sparsity rate (e.g., for CLS tasks,
33.86 versus 23.40 under 80% sparsity rate). This may be because
using the output from the sparse model can make the PTS algo-
rithm aware of the reconstruction error from the previous layer,
which avoids error accumulation across the network. Therefore, it
is beneficial to use the output from the sparse model as the input
for the reconstruction of the current unit.

Block-wise reconstruction is always the best. Blcok-wise
reconstruction achieves the best results under most configurations,
and layer-wise reconstruction outperforms the single reconstruc-
tion. For example, when sparsifying classification models at an 80%
sparsity rate, block-wise reconstruction can outperform layer-wise
by up to 3% and surpass single reconstruction by 16%. It is more
important to carefully design the reconstruction granularity for
classification tasks under a high sparsity rate. For instance, there
are no significant differences at a 50% sparsity rate. However, at 80%
sparsity rate, these differences become evident. However, this gap
becomes apparent for detection tasks even at low sparsity rates.

Reconstructing on block-wise has the main advantage of poten-
tially preserving the interactions between weights better. If the
sparsity of a model is more concentrated at the block level, then
reconstructing on a block basis might more effectively restore this
sparsity. Moreover, block-level reconstruction could help reduce
noise in the reconstruction process and provide more stable out-
comes. On the other hand, reconstructing on layer-wise might lead
to the loss of some crucial connections between weights across lay-
ers. This could limit the model’s expressive ability and encounter
difficulties in restoring sparsity. We also point out that reconstruct-
ing on a block-by-block basis can better preserve the locality of
information and gradient flow compared to individual layers. This
helps to maintain or restore the performance.

Reconstruction using a block-wise approach also has efficiency
and resource consumption advantages. Given the large scale of fea-
ture maps, calculating loss can require significant time and memory
resources. Reconstructing on a block basis can reduce the number
of times loss calculations are needed. More details can be seen in
the supplementary materials.

5.2 Model Tracks
We present the evaluation results of track 3 and track 4 in Tab. 6,
and track 5 in Tab. 4. These results are calculated based on the
metric defined in Sec. 3.2.

5.2.1 Neural Architecture: Sparsity Potential Varies Across Differ-
ent Architectures. We report the evaluation results under different
sparsity rates and overall metrics in Tab. 6.

20 60 100
Model Size (M)

0.05

0.10

0.15

0.20

0.25

M
ea

n 
R

el
at

iv
e A

cc
ur

ac
y 

Lo
ss ResNet

5 15 25
Model Size (M)

0.08

0.12

0.16

0.20

0.24

M
ea

n 
R

el
at

iv
e A

cc
ur

ac
y 

Lo
ss ShuffleNet-V2

4 8 12
Model Size (M)

0.10

0.15

0.20

0.25

0.30

M
ea

n 
R

el
at

iv
e A

cc
ur

ac
y 

Lo
ss MobileNet-V2

15 45 75
Model Size (M)

0.08

0.16

0.24

0.32

0.40

M
ea

n 
R

el
at

iv
e A

cc
ur

ac
y 

Lo
ss DeiT

200 600 1000
Model Size (M)

0.060

0.075

0.090

0.105

0.120

0.135

M
ea

n 
R

el
at

iv
e A

cc
ur

ac
y 

Lo
ss ViT

Top@1
Top@5

Figure 5: The mean relative accuracy loss under different
model sizes.

Models based on attention mechanisms possess greater
sparsity potential. FromTab. 6, we can find that ViT, MobileNetV3,
and DeiT have their Overall Metrics (OM) positioned among the top
across all models evaluated (top 1, 2, and 4, respectively). Compared
to MobileNetV2, which possesses the worst 𝑂𝑀𝑎𝑟𝑐ℎ , MobileNetV3
significantly has its sparsity potential enhanced. The main differ-
ence between these two similar architectures is that MobileNetV3
introduced a Squeeze-and-Excitation Block (SE Block) [20], which
is considered a lightweight attention mechanism[21]. The attention
mechanism allows the network to focus more on features that are
crucial for the final task, reducing dependency on less important
features. Naturally, in scenarios of sparsification, it enables more
effective preservation of information critical to performance.

Training strategy can impact its sparsity potential. DeiT
has nearly the same architecture compared to ViT, while has ob-
viously poorer performance. This is due to significant differences
in their training strategies. ViT is pre-trained on extremely large
datasets, such as JFT-300M, which likely enables it to learn more
general feature representations. This makes it more robust against
sparsification. While DeiT employs knowledge distillation as one
of its core strategies, which aids in training efficient models with
less data. However, if the sparsification method interferes with the
features learned through knowledge distillation during the sparsifi-
cation process, it could adversely affect DeiT’s performance.

5.2.2 Model Size Robustness: Different Model Architectures Tends
To Vary In Model Size Robustness. The results of evaluated models
are shown in Tab. 6.

A high sparsity potential for a model of a certain size ≠ a
high sparsity potential for amodel of all sizes. Interestingly, we
observe that DeiT and ResNet, which perform well on the 𝑂𝑀𝑎𝑟𝑐ℎ ,
exhibit poor performance on𝑂𝑀𝑟𝑜𝑏𝑢𝑠𝑡 , while ViT andMobileNetV3
behave consistently on both metrics. This suggests that the sparsity
potential of a model and its size robustness don’t exhibit a strict
positive correlation. However, models with high sparsity potential
are considered more likely to possess good model size robustness.

A larger model size does not necessarily mean better spar-
sity ability.We present the results of the mean relative accuracy
loss (i.e., 𝐺𝑠𝑖𝑧𝑒 of Equation 6) of different model sizes in Fig. 5 to



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: The overall evaluation results of PTSBench. The results are listed from best to worst.

Track Results

Sparsity allocation FCPTS(ERK), FCPTS(L2Norm), L2Norm, ERK, Uniform

Reconstruction
Error correction w/o correction, w/ correction
Reconstruction Input sparse input, dense input
Reconstruction Granularity block-wise, layer-wise, single

Neural architecture ViT, MobileNetV3, ResNet, DeiT, ShuffleNetV2, RegNetX, MobileNetV2

Model size robustness ViT, MobileNetV3, MobileNetV2, ShuffleNetV2, RegNetX, RegNet, DeiT

Different tasks DET, CLS, GEN

Table 6: Benchmarking model sparsity potential and model
size robustness. Blue and red: best and worst in a column.
Light blue and light red: second best and secondworst in a col-
umn. Note that𝑂𝑀𝑎𝑟𝑐ℎ is a positive indicator while𝑂𝑀𝑟𝑜𝑏𝑢𝑠𝑡

is a negative indicator.

Models Sparsity Rate (%) OMarch OMrobust
50 60 70 80

ResNet 99.38 97.86 91.38 48.36 86.81 0.286
RegNetX 97.98 94.57 83.65 45.17 83.04 0.270
MobileNetV2 97.32 93.48 79.80 29.51 79.77 0.219
MobileNetV3 97.93 95.54 89.14 65.32 87.94 0.172
ShuffleNetV2 96.50 92.77 82.96 54.04 83.25 0.258

ViT 99.50 97.52 89.99 62.41 88.61 0.014
DeiT 98.08 95.53 85.81 58.25 85.88 1.485

deliver a further detailed analysis. From the figure, we can draw the
following discoveries. (1) For CNNs, the mean relative accuracy loss
first increases and then decreases as the model size increases. So, a
middle-sized network is the sweet point for CNN-based network
architectures. (2) For DeiT and ViT, the mean relative accuracy loss
decreases as the model size increases, which shows Transformer is
more amenable to sparsification under a larger model size.

One possible explanation for the divergence between CNNs and
Transformers goes to the fundamental differences in architecture
between them. The self-attention mechanism of Transformers pro-
vides a way to optimize and adapt to the effects of sparsification
on a global scale. In contrast, the localized feature extraction and
hierarchical dependencies of CNNs make them more sensitive to
reductions in parameters, especially in larger models. Thus, Trans-
formermodels are better able to be sparsified asmodel size increases,
whereas large CNN models may face performance challenges due
to sparsification.

5.2.3 Different Tasks: The PTS Method Needs Further Development
In Generation Tasks. In Tab. 4, we present the benchmark results of
different tasks calculated by the metric designed in Sec. 3.2.

In detection models, the PTS method demonstrates better
performance compared to classification models. From Tab.
4, we find that 𝑂𝑀𝑡𝑎𝑠𝑘 can reach up to 88.97 in detection tasks,
whereas classification task scores 84.05. This implies that attach-
ing subsequent structures (such as the neck [31] and head parts in

detection models) to a backbone does not reduce sparsity poten-
tial; it can even make the model more sparsity-friendly due to the
introduction of additional parameters.

ThePTSmethod still urgently requires further exploration
in the field of image generation.Generation tasks can only main-
tain precision at 50% sparsity rate, with a collapsing performance on
higher sparsity rates. Sparsification methods used for other types of
models may be unsuitable for Diffusion models, or at least they may
perform poorly without proper adjustments. This could be because
these methods do not consider the unique operating mechanisms
of Diffusion models and the distribution of their parameters.

5.3 Overall Results
The overall evaluation results are shown in Tab. 5. Note that the
algorithms or models that perform best in the table do not neces-
sarily perform best under all experimental setups, but exhibit the
best performance on multiple aspects.

6 CONCLUSION
In this paper, we systematically propose aPost-Training Sparsification
Benchmark called PTSBench, which is the first comprehensive
benchmark towards the post-training sparsity (PTS). From an al-
gorithm perspective, we benchmark 10+ PTS components on 3
computer vision tasks. From a model perspective, we benchmark
40+ network architectures. PTSBench aims to establish a compre-
hensive and in-depth analysis of PTS algorithms, providing useful
technical guidance for future research. Our benchmark is high-
lighted by fertilizing the community by providing the following:
(a) comprehensively evaluate models from the perspective of PTS.
(b) new observations towards a better understanding of the PTS
fine-grained algorithms. (c) an upcoming open-source platform
for systematically evaluating the model sparsification ability and
pluggable sparsification algorithms. We plan to explore a broader
range of model architectures and tasks in future work. We hope
our PTSBench can provide useful advice for future studies.

Our PTSBench also has limitations: (1) We benchmark PTS meth-
ods on three vision tasks, and it is better to include more tasks like
natural language processing in our PTSBench. (2) The number of
PTS algorithms available for study is relatively small in the cur-
rent research. As the PTS community becomes more fertilized, it
is desirable also to include more PTS algorithms in our PTSBench.
Considering the aforementioned limitations, we will continue to
include more methods and tasks in our PTSBench platform.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Robert O Curtis and David D Marshall. 2000. Why quadratic mean diameter?

Western Journal of Applied Forestry 15, 3 (2000), 137–139.
[2] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[4] Gintare Karolina Dziugaite and Daniel M Roy. 2015. Neural network matrix
factorization. arXiv preprint arXiv:1511.06443 (2015).

[5] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen.
2020. Rigging the lottery: Making all tickets winners. In International Conference
on Machine Learning. PMLR, 2943–2952.

[6] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. 2010. The pascal visual object classes (voc) challenge. Inter-
national journal of computer vision 88 (2010), 303–338.

[7] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin.
2019. Stabilizing the lottery ticket hypothesis. arXiv preprint arXiv:1903.01611
(2019).

[8] Elias Frantar andDanAlistarh. 2022. Optimal brain compression: A framework for
accurate post-training quantization and pruning. Advances in Neural Information
Processing Systems 35 (2022), 4475–4488.

[9] Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The state of sparsity in deep
neural networks. arXiv preprint arXiv:1902.09574 (2019).

[10] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and
Kurt Keutzer. 2022. A survey of quantization methods for efficient neural network
inference. In Low-Power Computer Vision. Chapman and Hall/CRC, 291–326.

[11] Ruihao Gong, Yang Yong, Zining Wang, Jinyang Guo, Xiuying Wei, Yuqing Ma,
and Xianglong Liu. 2024. Fast and Controllable Post-training Sparsity: Learning
Optimal Sparsity Allocation with Global Constraint in Minutes. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 38. 12190–12198.

[12] Jinyang Guo, Jiaheng Liu, Zining Wang, Yuqing Ma, Ruihao Gong, Ke Xu, and
Xianglong Liu. 2023. Adaptive Contrastive Knowledge Distillation for BERT
Compression. In Findings of the Association for Computational Linguistics: ACL
2023. 8941–8953.

[13] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. Advances in neural information
processing systems 28 (2015).

[14] Babak Hassibi and David Stork. 1992. Second order derivatives for network
pruning: Optimal brain surgeon. Advances in neural information processing
systems 5 (1992).

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[16] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. 2018. Amc:
Automl for model compression and acceleration on mobile devices. In Proceedings
of the European conference on computer vision (ECCV). 784–800.

[17] Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. 2023.
PTQD: Accurate Post-Training Quantization for Diffusion Models. arXiv preprint
arXiv:2305.10657 (2023).

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to
a local nash equilibrium. Advances in neural information processing systems 30
(2017).

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[20] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference
on computer vision. 1314–1324.

[21] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 7132–7141.

[22] Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel
Soudry. 2021. Accelerated sparse neural training: A provable and efficient method
to find n: m transposable masks. Advances in neural information processing systems
34 (2021), 21099–21111.

[23] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized neural networks: Training neural networks with low
precision weights and activations. The Journal of Machine Learning Research 18,
1 (2017), 6869–6898.

[24] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and2
training of neural networks for efficient integer-arithmetic-only inference. In
IEEE Conf. Comput. Vis. Pattern Recog. 2704–2713.

[25] Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342 (2018).

[26] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[27] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek
Jain, Sham Kakade, and Ali Farhadi. 2020. Soft threshold weight reparameter-
ization for learnable sparsity. In International Conference on Machine Learning.
PMLR, 5544–5555.

[28] Ivan Lazarevich, Alexander Kozlov, and Nikita Malinin. 2021. Post-training deep
neural network pruning via layer-wise calibration. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 798–805.

[29] Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, and Luc
Van Gool. 2022. Revisiting random channel pruning for neural network compres-
sion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 191–201.

[30] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, PengHu, Qi Zhang, Fengwei Yu,Wei
Wang, and Shi Gu. 2021. Brecq: Pushing the limit of post-training quantization
by block reconstruction. arXiv preprint arXiv:2102.05426 (2021).

[31] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. 2017. Feature pyramid networks for object detection. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2117–2125.

[32] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[33] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 740–
755.

[34] Jiawei Liu, Lin Niu, Zhihang Yuan, Dawei Yang, Xinggang Wang, and Wenyu
Liu. 2023. Pd-quant: Post-training quantization based on prediction difference
metric. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 24427–24437.

[35] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detec-
tor. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer, 21–37.

[36] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Chang-
shui Zhang. 2017. Learning efficient convolutional networks through network
slimming. In Proceedings of the IEEE international conference on computer vision.
2736–2744.

[37] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. Shufflenet
v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the
European conference on computer vision (ECCV). 116–131.

[38] HeshamMostafa and Xin Wang. 2019. Parameter efficient training of deep convo-
lutional neural networks by dynamic sparse reparameterization. In International
Conference on Machine Learning. PMLR, 4646–4655.

[39] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. 2019.
Data-free quantization through weight equalization and bias correction. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision. 1325–1334.

[40] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart
Van Baalen, and Tijmen Blankevoort. 2021. A white paper on neural network
quantization. arXiv preprint arXiv:2106.08295 (2021).

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[42] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr
Dollár. 2020. Designing network design spaces. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 10428–10436.

[43] Alex Renda, Jonathan Frankle, and Michael Carbin. 2020. Comparing rewinding
and fine-tuning in neural network pruning. arXiv preprint arXiv:2003.02389
(2020).

[44] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
10684–10695.

[45] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[46] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[47] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. 2021. Training data-efficient image transformers
& distillation through attention. In International conference on machine learning.
PMLR, 10347–10357.



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[48] Chaoqi Wang, Guodong Zhang, and Roger Grosse. 2020. Picking winning tickets
before training by preserving gradient flow. arXiv preprint arXiv:2002.07376
(2020).

[49] Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. 2022.
Qdrop: Randomly dropping quantization for extremely low-bit post-training

quantization. arXiv preprint arXiv:2203.05740 (2022).
[50] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong

Xiao. 2015. Lsun: Construction of a large-scale image dataset using deep learning
with humans in the loop. arXiv preprint arXiv:1506.03365 (2015).


	Abstract
	1 Introduction
	2 background
	2.1 Post-training Sparsity
	2.2 Sparsity Allocation
	2.3 Reconstruction

	3 PTSBench: tracks and metrics
	3.1 Towards Fine-grained Algorithm
	3.2 Towards Model Sparsification Ability

	4 Implementation Details
	5 PTSBench evaluation and analysis
	5.1 Fine-grained Algorithm Tracks
	5.2 Model Tracks
	5.3 Overall Results

	6 Conclusion
	References

