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1 DETAILS OF POST-TRAINING SPARSITY
ALGORITHMS

Model compression methods, including quantization[16, 21, 23, 29,
38, 46], distillation[13, 17], and sparsification[6, 7, 12, 14, 25-28, 32,
47], have been widely used in various deep learning tasks, especially
in computer vision task[10, 11]. Model sparsification allows for
efficient acceleration while maintaining model accuracy by simply
pruning the weights. Consequently, it has increasingly garnered
attention in recent years. Among all sparsification techniques, post-
training sparsity (PTS) stands out for its less demand for data and
no need for re-training, while other types often require training on
a huge datasets[4, 7, 49].

1.1 Post-Training Sparsity

Most state-of-the-art PTS methods work by adopting a layer-wise
reconstruction [8, 12, 20, 26]. In this setting, we can define the
problem as follows. Mathematically, we model a layer ¢ as a function
fe(x¢, we) acting on inputs xp with weights wy.

argmin L (M (f¢ (x¢, we)) , M (fe (xe,We))) ,
K ey
subject to  ||we||o < k.
In practice, the expectation of the output activations is often used
as the metric for assessment. Therefore, we can get the formula as
follows.

arg min B, L(fr(xe, we). fo(xe. ),
e @
subject to  ||we]|o < k.

The expectation over the layer inputs x, is typically approxi-
mated by calculating the mean over a small set of N input samples.
Furthermore, most previous work targets the sparsification of lin-
ear and convolutional layers, which can be represented as linear
layers by unfolding them, as these types of layers are commonly
utilized. In practice, the squared loss metric is employed to evaluate
the error in approximation since it can be analyzed by a series of
approximations, such as second-order information [37] and hessian
matrix [29]. Moreover, the effectiveness of this approach has been
demonstrated in many applications [9, 22, 29, 37].

By following these conventions, we can formally state the layer-
rowXdcol and

X, € R%orXN are weights and activations matrices respectively.

wise reconstruction problem as below, where W, € R4

argfnin [[WeXp — W{’ang,
W (©)
subjectto  ||Wyl|o < k.

In current studies, most of them followed this layer-wise para-
digm, such as POT[26] and OBC [8]. Each of these methods designs

its own criteria for reconstruction based on the layer-wise recon-
struction paradigm. For example, the POT is based on magnitude,
while OBC relies on the Hessian matrix. However, most of these
methods lack a more fine-grained exploration of the layer-wise
paradigm itself. In practical application scenarios, we have iden-
tified three types of fine-grained pluggable components that can
influence the effectiveness of sparsity.

1.2 Comparison with Other Model Compression
Techniques

Current model compression studies mainly focus on reducing orig-
inal models’ size and computation complexity. Model quantzation
reduces the size of a model and enhances computational efficiency
by lowering the precision of weights and activations within the
network [3, 29, 46]. Common quantization approaches involve
converting from 32-bit floating-point numbers to 8-bit integers
or even lower bit depths. Model distillation involves using a pre-
trained larger model (the teacher model) to guide the training of a
smaller model (the student model)[13, 17]. This method leverages
the knowledge from the large model to enhance the performance
of the smaller model. Lightweight model design involves creating
or modifying existing neural network architectures from scratch
to reduce computational complexity and model size while main-
taining performance[34? ]. Low-rank decomposition reduces model
parameters by decomposing weight matrices in neural networks
into products of matrices with lower ranks[48]. Model pruning
reduces the complexity of neural networks by removing some of
the less important connections (weights)[12, 49].

1.3 Fine-grained PTS Algorithms

The main paper investigates several fine-grained PTS algorithms
without a thorough introduction. In this section, we introduce each
algorithm we benchmark in detail.

1.3.1  Sparsity Allocation. We choose 4 commonly used sparsity
allocation strategies: Uniform, L2Norm, ERK, and FCPTS.

(1) Uniform [36]: The sparsity s; of each independent layer is
equal to the global sparsity constraint S.

(2) L2Norm[26]: First, calculate the number of weights to be
removed, ng, based on the global sparsity rate S and the total
number of parameters n.

ns=S-n 4

Sort all weights according to their L2 norm size. Mark the
smallest ns weights for removal. This process results in the
specific sparsity rate for each layer of the network.

(3) ERK (Erdos-Rényi-Kernel) [4]:This method is an improve-
ment of origin Erdds-Rényi (ER) algorithm[35]. Origin ER
algorithm modifies the sparsity s, of each layer obtained by
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L2Norm as the following formula.

ne—1+nyg
ne—1xng)’

Sp=s¢- (1 (5)
where ny denotes the number of neurons at layer ¢. Scaling
the sparsity enables the number of weights in a sparse layer
to scale with the sum of the number of input and output
channels.

ERK enhances ER by including the kernel dimensions in the
scaling factors.

ne—1+ng+wy +h[

(©)

’

Se=se{l- ng_1%ngxwpshe )’
where w; and h; are the width and height of ¢ th convolu-
tional layer. The sparsity of the fully connected layers is the
same as in the ER. In a word, ERK allocates larger sparsity
for layers that possess more parameters.

(4) FCPTS[12]: This method allows us to learn the sparsity
allocation accurately and rapidly by incorporating a differen-
tiable bridge function and a controllable optimization object.

L=Lyec+Le, (7)

Lyec = DKL(Yd“YS)s (8)
D.pSene

Le = |=—=——— — 59|, 9

c | an 0| ( )

where rp denotes the sparsity rate and ny is element number
of weights of the th layer. rj is the global sparsity rate target.
Dk (+) represents the Kullback-Leibler divergence function.
Y; and Y; are the output of the dense and sparse models.

1.3.2  Reconstruction. After sparsifying the model according to
the allocated sparsity rates, reconstruction techniques are usually
necessary to restore the accuracy of the sparse model. We utilize a
small set of unlabeled samples to reconstruct the sparse model’s
outputs with those of the original model. This process can be viewed
as distilling the sparse model using the dense model as a teacher. In
our implementation, we utilize the standard Mean Squared Error
(MSE) as the loss function, as shown in 10:

L= > (Y)- f(Ws 0 M, X]) = by)?,
iebatch (10)
where Yl; = f(Wd,Xé).

Here, f(X, W) is the convolutional or matrix-multiplication op-
eration conducted by the layer with weight W acting upon input
X. X is the input of this layer from the dense model. M; is the
binary mask corresponding to the sparsity pattern, which is set to
zero if the weight is removed. The sparse binary mask is kept fixed,
and gradient descent based on the loss function defined above is
used for each layer independently to update the parameters and
determine the optimal sparse weights and biases W, bs.

Based on a summary of previous work and practical experimen-
tal observations, we have identified three fine-grained algorithms
crucial to the reconstruction’s effectiveness. In this section, we will
provide a detailed introduction to these three algorithms.

Error correction. After establishing the layer-wise sparsity
rates, the weights are set to zero based on their specific criterion
within each layer. This sparsification operation distorts the weight
distribution, introducing biases and scale shifts. Error correction

Anonymous Authors

is widely used in post-training quantization (PTQ) [16, 38, 39] to
restore the distortion. However, current PTS methods [26] do not
comprehensively and systematically evaluate this procedure. There-
fore, we borrow this concept and validate whether this component
can be effective for PTS.

To transfer error correction to PTS, we first perform weight
correction according to 11:

Wy = AWs + E(Wy) — E(AW;),
o(Wy) (11)
o(Ws) +e€

W is the weights after the weight correction operation, and W
and W, denote the weights of sparse and dense models, respectively.
E and o are the mean and standard deviation operators, € is a small
constant.

Then we conduct bias correction as 12:

bs = bg + E(f(Wg, Xg)) — E(f (W, Xg)). (12)

where f (W, X) represents the convolutional or matrix-multiplication
operation performed by the layer on inputs X with weights W. by
and X are bias and input activation in the dense model. After the
weight and bias correction, we can partially correct the error caused
by the distribution shift of weights and biases.

The input of reconstruction. During the reconstruction, we
can either use the output of the previous reconstruction unit from
the dense model as the input (i.e., X;; in 10) or opt for the output after
the previous layers, which are sparsified. We find that the choice
of reconstruction inputs also greatly impacts the final results. This
issue has not been systematically investigated in previous work.
Hence, we also explore this factor in our PTSBench.

Reconstruction granularity.

In the main paper, we provide descriptions of various reconstruc-
tion granularities. To have a better explanation, we offer a more
intuitive visual illustration, as shown in Figure 1.

where A =

2 DETAILS OF EXPERIMENTAL SETTINGS
2.1 Details of Datasets

In this section, we give a detailed introduction to the datasets we
include.

CIFAR-10/100[24]: The CIFAR-10 and CIFAR-100 are two widely
used computer vision datasets created by the Canadian Institute for
Advanced Research. The CIFAR-10 dataset consists of 60,000 color
images, each sized at 32x32 pixels, divided into 10 classes with 6,000
images per class. In contrast, the CIFAR-100 dataset also comprises
60,000 images but is categorized into 100 classes, with each class
containing 600 images. These datasets are commonly utilized for
training machine learning and computer vision algorithms, partic-
ularly in image recognition and classification tasks. The evaluation
metric of CIFAR-10/100 is accuracy, defined as :

TP+TN
Accuracy = ,
TP+TN +FP+FN
where TP (True Positive) means cases correctly identified as posi-
tive, TN (True Negative) means cases correctly identified as nega-

tive, FP (False positive) means cases incorrectly identified as posi-
tive, and FN(False Negative) means cases incorrectly identified as

(13)
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Figure 1: Visualization of different reconstruction granularities. We take a typical CNN structure model [40] as an example.
A network consists of a stem layer (usually the first convolutional layer on the input), a body, and a head (usually a fully
connected layer). A body is composed of several blocks, and a block contains several layers.

negative. We should calculate the proportion of TP and TN in all
evaluated cases to estimate the accuracy.

ImageNet-1k:[1] ImageNet is a substantial dataset extensively
used for visual object recognition, consisting of over 14 million im-
ages organized into roughly 20,000 categories based on the WordNet
hierarchy. Specifically, it includes about 1.2 million images in the
training set, 50,000 images in the validation set, and 150,000 images
in the test set. These images are annotated and used to train, vali-
date, and test machine learning models. ImageNet is well-known for
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
a competition that has significantly contributed to advancements
in deep learning and computer vision by benchmarking algorithms
across 1,000 different categories.

PASCAL VOCO07[5]: The PASCAL VOC07 (PASCAL Visual
Object Classes 2007) dataset is a key computer vision resource
consisting of 9,963 images annotated across 20 specific categories.
These categories are: Person, Bird, Cat, Cow, Dog, Horse, Sheep,
Aeroplane, Bicycle, Boat, Bus, Car, Motorbike, Train, Bottle, Chair,
Dining table, Potted plant, Sofa, and TV/Monitor. The dataset is
divided into training, validation, and testing sets and is used for a
variety of tasks such as object classification, detection, and segmen-
tation, serving as a benchmark for evaluating the performance of
advanced object detection algorithms. The PASCAL VOCO07 uses
mean average precision (mAP) to evaluate results, which is defined
as:

1 n
mAP = = » AP, (14)
n
k=1
where AP). denotes the average precision of the kth category, which
calculates that area under the precision-recall curve:

1
APy = A pk(r)dr. (15)

MSCOCO0-2017[31]: The MS COCO (Microsoft Common Ob-
jects in Context) dataset is a large-scale object detection, segmen-
tation, key-point detection, and captioning dataset. The dataset
consists of 328K images. According to community feedback, in
the 2017 release, the training/validation split was changed from

83K/41K to 118K/5K. And the images and annotations are the same.
The 2017 test set is a subset of 41K images from the 2015 test set.
Additionally, 123K images are included in the unannotated dataset.
The COCO17 dataset also uses mean average precision (mAP ) as
defined above PASCAL VOCO07 uses, which is defined as above.
LSUN-Churches/Bedroom: The LSUN (Large-scale Scene UN-
derstanding) dataset is a specialized collection aimed at scene un-
derstanding and includes specific categories of images such as bed-
rooms and churches. The LSUN dataset includes specific subsets
like LSUN-bedroom and LSUN-churches, aimed at advancing scene
understanding in computer vision. The LSUN-bedroom category
provides a vast collection of bedroom images, extensively used for
training algorithms in image generation and interior scene analysis
tasks. The LSUN-churches subset contains a variety of church exte-
rior images utilized primarily for architectural style classification
and generative modeling. These subsets help in refining algorithms’
capabilities in recognizing and generating images of complex in-
door and architectural scenes, forming a crucial part of the larger
LSUN initiative designed to improve machine understanding of di-
verse real-world environments. LSUN uses FID (Fréchet Inception
Distance) as the evaluation metric, which is defined as follows:

FID = || = gl l® + Tr(Sy + 39 = 2(3,39) /%), (16)

where (1, %) and (pg, %) denote the mean and covariance of the
feature vector, which are extracted by a pre-trained Inception V3
model[44], of the real images and generated images, Tr(+) calculates
the trace.

2.2 Details of Neural Architecture

This section provides a brief introduction to the benchmarked model
architectures, especially the specific structure.

ResNet[15]: ResNet, or Residual Network, is a revolutionary
convolutional neural network architecture introduced in 2015 that
effectively addresses the vanishing gradient problem in deep net-
works. It features residual blocks with skip connections, allowing
the training of much deeper networks by enabling layers to learn
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identity functions, preventing performance degradation. This struc-
ture has led to significant improvements in various computer vision
tasks, making ResNet a cornerstone in deep learning advancements.

RegNetX[40]: RegNetX is a family of network architectures
that emerged from research on designing network architectures
systematically to achieve optimal trade-offs between speed, accu-
racy, and model complexity. Introduced by Facebook AI, RegNetX
models use a simple, regularized design that scales depth, width,
and resolution in a predictable manner. They are built using blocks
of convolutions with a consistent structure, which simplifies the
scaling process across different computational budgets and per-
formance needs. This approach allows for efficient and effective
scaling of models, making RegNetX suitable for a range of applica-
tions, from mobile devices to high-end servers, while maintaining
competitive performance in tasks like image classification.

MobileNet[18, 19, 42]: MobileNet is a class of efficient models
for mobile and edge devices, introduced by Google. It is designed
to provide lightweight, deep neural networks by using depth-wise
separable convolutions, significantly reducing the number of pa-
rameters and computational cost compared to standard convolu-
tions. MobileNetV2 and MobileNetV3 are both advancements of the
original MobileNet model, optimized for mobile and edge devices.
MobileNetV2 introduces the inverted residual structure and linear
bottlenecks to improve efficiency, while MobileNetV3, developed
using techniques like network architecture search, enhances the
model further with features like optimized squeeze-and-excitation
blocks and the hard-swish activation function.

ShuffleNet[34]: ShuffleNetV2 is an advanced neural network
architecture designed to be highly efficient for mobile devices, im-
proving upon its predecessor, ShuffleNet. It features an optimized
structure that reduces computational complexity while maintain-
ing high accuracy. Key improvements include the use of channel
split and shuffle operations to facilitate better feature mixing and a
streamlined architecture that minimizes memory access cost and
power consumption. These design choices make ShuffleNetV2 par-
ticularly effective for applications in resource-constrained environ-
ments where processing power and memory are limited.

VGG[43]: VGG is a classical convolutional neural network ar-
chitecture. It is proposed by an analysis of how to increase the
depth of such networks. It is characterized b its simplicity: the net-
work utilizes small 3 X 3 filters, and the only other components are
pooling layers and a fully connected layer.

ViT[2]: ViT, or Vision Transformer, is a pioneering model that
applies the transformer architecture, typically used in natural lan-
guage processing, to computer vision tasks. Introduced by Google in
2020, ViT segments an image into fixed-size patches, processes these
through multiple transformer layers, and uses self-attention mech-
anisms to capture complex image features at various scales. This
approach allows ViT to achieve impressive results on image classifi-
cation tasks, challenging traditional convolutional neural networks,
particularly in scenarios where large-scale training datasets are
available. ViT’s performance demonstrates the potential of trans-
formers to generalize across different domains beyond text process-
ing.

DeiT[45]: DeiT, or Data-efficient Image Transformers, is a model
that adapts the Vision Transformer (ViT) for more data-efficient
performance in image classification tasks. Developed by Facebook

Anonymous Authors

Al DeiT incorporates distillation techniques, where the transformer
learns from a pre-trained convolutional neural network acting as
a teacher. This approach improves DeiT’s training efficiency and
effectiveness, making it suitable for scenarios with limited data or
computational resources.

RetinaNet[30]: RetinaNet is a popular deep learning framework
for object detection that effectively addresses the challenge of de-
tecting objects across a range of scales and object sizes. Introduced
by Facebook Al in 2017, RetinaNet is notable for its use of the Focal
Loss function, which helps to solve the problem of class imbalance
by focusing training on hard-to-classify examples. This model com-
bines a feature pyramid network (FPN) with a ResNet backbone,
allowing it to efficiently detect objects at multiple resolutions. The
architecture is designed to be both fast and accurate, making it
highly effective for real-time object detection applications.

SSD[33]: SSD, or Single Shot MultiBox Detector, is an efficient
and powerful algorithm for object detection that performs detection
tasks in a single pass through the network, making it faster than
methods that require separate proposals and detection stages. Intro-
duced in 2016, SSD divides the image into a grid and uses a series
of convolutional layers to predict the presence of objects and their
bounding boxes at multiple scales directly from the feature maps.
This approach eliminates the need for a separate region proposal
network, streamlining the detection process and enhancing speed.
SSD is widely used for real-time applications due to its balance of
speed and accuracy.

Stable Diffusion[41]: Stable Diffusion is a state-of-the-art text-
to-image generation model developed by Stability Al and other
collaborators. Released in 2022, it utilizes a latent diffusion model
architecture to generate high-quality images based on textual de-
scriptions. The model works by gradually refining an initial random
noise image through a series of steps, using a deep learning net-
work to guide the transformation toward an image that matches
the textual input. Stable Diffusion is notable for its efficiency and
the ability to produce detailed, creative images quickly, even on
consumer-grade hardware. It has gained popularity for its open-
source availability, allowing widespread use and customization in
various applications ranging from art creation to educational tools.

3 MORE EVALUATION RESULTS

We provide more detailed experimental results in this section.

3.1 Results on More Sparsity Rates

In the main paper, we mainly choose 4 sparsity rates (50%, 60%, 70%,
and 80%) for evaluation. We report results under more sparsity rate
in Table 1. We can observe almost all models have no performance
decrease at a sparsity rate under 50%. In contrast, nearly all models
face a collapse of precision at a sparsity rate higher than 80%. There-
fore, to make the results more meaningful, we excluded sparsity
rates below 40% and above 90% from the benchmark evaluation.

3.2 Results on Sparsity Allocation

In addition to the sparsity allocation of ResNet-32 that we visualize
in the main paper, we provide more visualization results in this
section, as shown in Figure 2, Figure 3, and Figure 4. From these
figures, we can find similar observations as the main paper: 1)
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Table 1: The Top@1/Top@5 results under more sparsity rate. Sparsity 0 represents the results of the dense model without

sparsification.
Model Sparsity (%)
0 40 50 60 70 80 90
ResNet-18 70.88/90.44 70.69/90.35 70.10/90.11 68.40/89.10 63.72/86.51 44.94/71.50  6.03/15.70
RegNetX-200M 68.41/89.11 66.84/88.22 64.68/87.07 59.98/84.39 48.36/75.85 24.47/49.90  2.02/7.41
MobileNetV2-x0.5 64.95/86.47 63.38/85.36 62.32/84.82 62.21/83.28 54.29/78.92 24.41/48.14 0.18/0.76
ShuffleNetV2-x0.5 61.25/83.34 60.63/83.16 59.75/82.79 58.59/82.22 56.42/80.59 48.00/75.94 24.03/52.61
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black line denotes the average remaining ratio of the three algorithms.

the fully connected layer is preserved well, especially in good-
performance sparsity allocation algorithms, and 2) the downsample

layers usually have a high remaining ratio, while good-performance

algorithms tend to sparsify them more. Besides, we can draw a new
interesting observation: the deeper the layers are, the more weights
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% Figure 4: Visualization of the sparsity allocation of ResNet-56 on CIFAR-100. The name of each layer is listed at the bottom. 65

The black line denotes the average remaining ratio of the three algorithms. 657
600 658

599

oo Table 2: Comparison of the time consumption of error correction. The best results of each model are marked bolder. The h o
602 . D) PENETE I8 ) 3 P ] 660
denotes hours, and the m denotes minutes. ’'w/’ denotes *with’, and w/o’ denotes *without’.

603 661
604 662
605 Model Error Correction Sparsity Rate 663
606 50 60 70 80 ood
v w/o 35m56s 35mb53s 38m48s 41mb53s 665
- ResNet-18 w/ th2ém  1h38m  1h32m  1h32m -
610 ResNet-50 w/o 1h32m 1h35m 1h25m  1h27m 668
611 w/ 2h6m 2h7m 2h7m 2h4m 669
o RegNet-200M w/o 31lmdds 38m15s 33mdds 31m59s o
o w/ 45m19s  45ml15s  41m35s  41m3ls o
615 w/o 46m50s 46m29s 47m19s 47m9s 673
o6 RegNet-400M w/ 1h8m  1hsm  1h8m  1h8m o7t
o . w/o 32ml1s 35m0s 44m5s  44mds o
o MobileNetV2-x10 o, th4m  1h4m  59m53s  59m5ls o
619 677
620 678
621 it would be sparsified in L2Norm and ERK, while FCPTS does not Figure 3 presents the results of time consumption of different 679
622 obey this manner. reconstruction granularities. The block-wise reconstruction con- 680
623 sistently outperforms the time perspective, while reconstructing 681
624 layer-wisely is better than performing it singlely. This is due to the 682
625 fact that using coarser granularity for reconstruction significantly 083
626 . reduces the need for loss calculations, which are often very time- 684
627 3.3 Results on Time Speed consuming. Therefore, reconstruction in the block-wise pattern is 685
628 We also evaluate the time consumption. Since it is obvious that spar- always the preferred choice, considering both time and precision 636
629 sity allocation and the input of reconstruction will not introduce factors. 687
630 extra time consumption, we only provide the time consumption re- 688
631 sults of error correction and different reconstruction granularities, 689
632 as shown in Figure 2 and Figure 3. 690
633 From Figure 2, we can discover that although error correction 691
634 may have positive effects on the performance of the sparse model 692
635 in specific settings, it will bring un-negligible time costs. So, there 4 RAW RESULTS 693
636 is a trade-off between precision and time when adopting error This section provides the raw results of each track we benchmark 694
637 correction. in the main paper. 695

638 696
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Table 3: Comparison of the time consumption of different reconstruction granularities. The best results of each model are
marked bolder. The h denotes hours, and the m denotes minutes.

Model Granularity Sparsity Rate (%)
50 60 70 80
Single 3h32m 3h34 3h31 3h28
ResNet-18 Layer-wise 2h2m 1h58m 2h1lm 2h5m
Block-wise 1h37m 1h40m 1h47m 1h41m
Single 4h44m 4h40m 4h38m 4h31m
ResNet-50 Layer-wise ~ 3h30m  3h21m 3h8m 3h22m
Block-wise 2h7m 2h12m 2h12m 2h10m
Single 5h24m 5h30m 5h16m 5h22m
RegNet-200M Layer-wise ~ 1h10m 1h4m 1h8m 1h15m
Block-wise  31m55s 38m15s 40m22s 42m19s
Single 6h3m 6h2m 6hOm 6hOm
RegNet-400M Layer-wise 1h33m 1h33m 1h48m 1h48m
Block-wise 1h1m 1h9m 1h19m 1h19m
Single 5h42m 5h33m 5h29m 5h39m
MobileNetV2-x1.0 Layer-wise  42m43s 35m0s 59m42s  45m22s
Block-wise 32mls 27m43s 44m5s  44mds

Table 4: The raw results of L2Norm sparsity allocation strategy on different models, datasets, and tasks. The sparsity 0 denotes
the origin model without sparsification. Each dataset and model architecture is introduced in the previous. The CLS task uses
accuracy as a metric, the DET task uses mAP as a metric, and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)

0 60 70 80

ResNet-18 70.88 69.83 68.25 62.85 35.08

ResNet-50 77.67 77.30 7597 68.86 2.17

ImageNet RegNetX-200M 68.41 64.68 59.68 48.36 24.47

& RegNetX-400M 70.05 67.53 65.67 56.62 28.55
MobileNet-x1.0 72.84 70.58 66.19 46.10 0.39

CLS ViT 77.28 77.1 7532 7042 5041
ResNet-32 93.53 93.12 9251 90.29 70.16

CIFAR-10 ResNet-56 9437 9393 93.61 92.84 87.03
VGG-19 9391 93.86 93.90 93.8 93.78
ResNet-32 70.16 67.95 64.09 4850 11.59
CIFAR-100 ResNet-56 72.63 7235 71.02 64.63 39.10
VGG-19 73.87 73.84 73.85 73.88 7347

MobileNetV2-SSDLite 68.70 68.54 67.85 64.45 33.56

DET PASCAL VOC07 MobileNetV1-SSD 67.50 67.41 6685 6629 57.78
RetinaNet-ResNet18 32.70 31.70 30.60 30.50 19.90
MSCOCO17 RetinaNet-ResNet50 37.90 37.20 3650 3440 25.80

GEN LSUN-Bedroom  Stable Diffusion 297 425 - - -
LSUN-Churches Stable Diffusion 4.55 5.29 - - -
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Table 5: The raw results of ERK sparsity allocation strategy on different models, datasets, and tasks. The sparsity 0 denotes
the origin model without sparsification. Each dataset and model architecture is introduced in the previous. The CLS task uses

accuracy as a metric, the DET task uses mAP as a metric, and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)

0 50 60 70 80

ResNet-18 70.88 69.28 66.71 59.60 32.26

ResNet-50 77.67 74.27 69.31 4999 3.80

ImageNet RegNetX-200M 68.41 64.53 60.71 5296 31.55
& RegNetX-400M 70.05 69.96 67.07 60.39 37.10
MobileNet-x1.0 72.84 69.14 63.00 41.84 3.07

CLS ViT 77.28 77.19 7598 71.09 59.82
ResNet-32 93.53 9271 92.03 89.61 76.83

CIFAR-10 ResNet-56 9437 9393 9361 92.84 87.03
VGG-19 9391 93.87 93.83 93.70 93.42

ResNet-32 70.16 66.75 61.74 45.51 15.05

CIFAR-100 ResNet-56 72.63 71.73 70.22 62.65 36.96
VGG-19 73.87 73.89 73.88 73.40 72.23
MobileNetV2-SSDLite 68.70 68.55 67.84 64.63 33.60
DET PASCAL VOC07 MobileNetV1-SSD 67.50 67.36 6686 6631 57.79
RetinaNet-ResNet18 32.70 32.10 31.60 30.50 27.30
MSCOCO17 RetinaNet-ResNet50 37.90 37.60 37.10 36.00 33.20

GEN LSUN-Bedroom  Stable Diffusion 297 849 - - -
LSUN-Churches Stable Diffusion 455  5.60 - - -

Table 6: The raw results of Uniform sparsity allocation strategy on different models, datasets, and tasks. The sparsity 0 denotes
the origin model without sparsification. Each dataset and model architecture is introduced in the previous. The CLS task uses

accuracy as a metric, the DET task uses mAP as a metric, and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)
0 50 60 70 80
ResNet-18 70.88 69.54 68.15 63.01 24.71
ResNet-50 77.67 77.02 7299 56.22 0.98
ImageNet RegNetX-200M 68.41 63.92 5423 2938 8.82
& RegNetX-400M 70.05 66.98 61.67 39.25 1.24
MobileNet-x1.0 72.84 69.70 49.44 5.56 0.54
CLS ViT 77.28 73.81 18.73 0.17 0.11
ResNet-32 93,53 92.19 90.24 85.23 44.00
CIFAR-10 ResNet-56 9437 93.11 91.22 87.22 71.09
VGG-19 93.91 93.23 9355 9291 92.01
ResNet-32 70.16 65.34 59.01 41.09 1.25
CIFAR-100 ResNet-56 72.63 7193 66.23 59.22 15.09
VGG-19 73.87 73.29 73.09 73.01 71.02
MobileNetV2-SSDLite 68.70 68.31 64.22 59.22 21.09
DET PASCAL VOC07 MobileNetV1-SSD 67.50 66.09 6490 62.21 41.29
RetinaNet-ResNet18 32.70 31.50 2930 19.20 9.10
MSCOCO17 RetinaNet-ResNet50 37.90 36.90 33.20 27.50 10.90
GEN LSUN-Bedroom  Stable Diffusion 2.97  49.03 - - -
LSUN-Churches Stable Diffusion 4.55 20.34 - - -
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Table 7: The raw results of FCPTS initiated with ERK sparsity allocation strategy on different models, datasets, and tasks. The
sparsity 0 denotes the origin model without sparsification. Each dataset and model architecture is introduced in the previous.
The CLS task uses accuracy as a metric, the DET task uses mAP as a metric, and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)
0 50 60 70 80
ResNet-18 70.88 69.44 68.86 67.62 64.90
ResNet-50 77.67 76.53 7540 73.81 70.41
ImageNet RegNetX-200M 68.41 64.98 63.52 60.87 55.41
& RegNetX-400M 70.05 70.15 69.11 67.07 61.89
MobileNet-x1.0 72.84 68.92 6589 62.12 49.65
CLS ViT 77.28 77.10 7532 7042 50.41
ResNet-32 93.53 86.23 89.14 81.07 89.48
CIFAR-10 ResNet-56 9437 91.29 92.13 89.18 89.16
VGG-19 9391 93.81 93.79 93.82 93.78
ResNet-32 70.16 69.70 78.82 69.02 67.28
CIFAR-100 ResNet-56 72.63 71.62 7113 7038 68.67
VGG-19 73.87 73.84 73.86 73.85 73.61
MobileNetV2-SSDLite 68.70 68.15 68.01 67.20 64.29
DET PASCAL VOC07 MobileNetV1-SSD 67.50 67.41 67.12 66.64 66.01
RetinaNet-ResNet18 32.70 3230 32.10 31.50 28.80
MSCOCO17 RetinaNet-ResNet50 37.90 3750 37.20 36.30 33.50
GEN LSUN-Bedroom  Stable Diffusion 297  3.23 - - -
LSUN-Churches Stable Diffusion 455 499 - - -

Table 8: The raw results of the sparse model without reconstruction on different tasks, datasets, and model architectures.
Sparsity 0% denotes the origin model without sparsification.

Task Datasets Model Sparsity (%)
0 50 60 70 80
ResNet-18 70.88 65.92 56.89 34.02 3.76
ResNet-50 77.67 73.48 65.03 28.66 0.28
CLS ImageNet RegNetX-200M 68.41 53.88 30.46 6.06 0.32
RegNetX-400M 71.84 59.24 33.10 3.83 0.17
MobileNet-x1.0 72.84 5698 28.74 1.72 0.11
RetinaNet-ResNet18 32.70 30.90 15.70 0 0
DET ~ MSCOCO17 RetinaNet-ResNet50 37.90 32.50 19.70 1.50 0
GEN LSUN-Bedroom Stable Diffusion 297 49.03 - - -
LSUN-Churches Stable Diffusion 455 29.34 - - -

4.2 Reconstruction

4.1 Sparsity Allocation

Table 4, 5, 6, and 7 shows the results of the sparsity allocation track.
From Table 4 and Table 5, we can find that L2Norm and ERK can
maintain model performance at a relatively low sparsity rate but
face challenges at a high sparsity rate. Table 6 shows that uniform
sparsity allocation strategy may have difficulty even in a sparsity
at 60%. Table 7 represents the raw results of FCPTS(ERK), which
can reach high performance in a sparsity rate at 80%. From these
tables, we can intuitively recognize the well-behaved algorithms.

Table 8 shows the raw results of the sparse model without per-
forming any reconstruction procedure. Table 9, Table 10, Table 11,
Table 12, Table 13, Table 14, and Table 15 represents the detailed
raw results of the reconstruction track. Note that FID is a negative
indicator, so the smaller the REL, the better the performance. While
it is the opposite for CLS and DET tasks.
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Table 9: The raw results without error correction. Sparsity 0% denotes the origin model without sparsification. ABS denotes the
absolute precision, and REL denotes the relative precision against the one without reconstruction.

Sparsity (%)

Task Datasets Model . 50 60 70 30
ABS REL  ABS REL  ABS REL ABD REL
ResNet-18 70.88 70.28 +4.35 69.02 +12.12 64.61 +30.58 46.66 +42.90
ResNet-50 77.67 7692 +343 74.65 +9.61 61.80 +33.13 1.21 +0.93
CLS ImageNet RegNetX-200M 68.41 64.94 +11.05 58.73 +28.27 4380 +37.73 20.26 +19.93
RegNetX-400M 71.84 69.95 +10.71 6636 +33.25 57.47 +53.64 28.08 +27.90
MobileNet-x1.0 72.84 6990 +1291 60.42 +31.68 31.16 +29.44 0.87 +0.76
RetinaNet-ResNet18 32.70 3250 +1.60 32.20 +16.50 31.90 +31.90 30.10 +30.10
DET ~ MSCOCO17 RetinaNet-ResNet50 3790 37.80 +5.30 37.60 +17.90 36.50 +35.00 35.10 +35.10
GEN LSUN-Bedroom  Stable Diffusion 297 425 -44.78 - - - - - -
LSUN-Churches Stable Diffusion 455 529 -24.05 - - - - - -

Table 10: The raw results with error correction. Sparsity 0% denotes the origin model without sparsification. ABS denotes the
absolute precision, and REL denotes the relative precision against the one without reconstruction.

Sparsity (%)
Task Datasets Model . 50 60 70 30

ABS REL ABS REL ABS REL ABD REL
ResNet-18 70.88 70.27 +434 69.10 +12.20 64.64 +30.61 47.70 +43.94

ResNet-50 77.67 7692 +3.43 75.22 +10.18 62.80 +34.13 1.53 +1.23

CLS ImageNet RegNetX-200M 68.41 65.00 +11.05 61.28 +30.82 5242 +46.35 29.98 +29.65
RegNetX-400M 71.84 6994 +10.70 67.92 +34.81 6155 +57.71 41.02 +40.84

MobileNet-x1.0 72.84 6990 +12.92 66.23 +37.49 46.45 +44.73 0.63 +0.52

RetinaNet-ResNet18 32.70 26.90 0 21.40 +5.70 1.20 +1.20 0 0

DET  MSCOCO17 RetinaNet-ResNet50 37.90 10.20 0 0 0 0 0 0 0
GEN LSUN-Bedroom Stable Diffusion 297 433  -44.70 - - - - - -
LSUN-Churches Stable Diffusion 4.55 5.27  -24.07 - - - - - -

Table 11: The raw results using the output of the sparse model as input. Sparsity 0% denotes the origin model without
sparsification. ABS denotes the absolute precision, and REL denotes the relative precision against the one without reconstruction.

Sparsity (%)

Task Datasets Model . 50 60 70 80
ABS REL ABS REL ABS REL ABD REL
ResNet-18 70.88 69.83 +3.90 68.52 +11.62 63.28 +29.25 4598 +42.22
ResNet-50 77.67 77.03 +3.54 75.64 +10.60 65.09 +36.42 1092 +10.64
CLS ImageNet RegNetX-200M 68.41 6490 +10.92 61.28 +30.82 5242 +46.35 2998 +29.65
RegNetX-400M 71.84 70.03 +10.79 66.86 +33.76 59.90 +56.07 37.54 +37.36
MobileNet-x1.0 72.84 70.25 +13.26 66.22 +37.48 46.40 +44.69 0.63 +0.52
RetinaNet-ResNet18 32.70 32.40 +1.50 32.10 +16.40 31.80 +31.80 29.90 +29.90
DET ~ MSCOCO17 RetinaNet-ResNet50 37.90 37.80 +5.30 37.60 +17.90 36.50 +35.00 35.10 +35.10
GEN LSUN-Bedroom Stable Diffusion 297 425 -44.78 - - - - - -
LSUN-Churches Stable Diffusion 4.55 5.29  -24.05 - - - - - -
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1161 Table 12: The raw results using the output of the sparse model as input. Sparsity 0% denotes the origin model without 1219
1162  sparsification. ABS denotes the absolute precision, and REL denotes the relative precision against the one without reconstruction. 1220
1163 1221
1164 sparsity (%) 1222
1165 1223
Task Datasets Model 50 60 70 30 ,
1166 0 1224
1167 ABS REL ABS REL ABS REL ABD REL 1225
e ResNet-18 70.88 69.81 +388 68.16 +11.26 6257 +2854 3415 +30.39 e
e ResNet-50 77.67 77.02 +354 7522 +10.18 62.80 +34.13 153  +1.25 e
e CLS  ImageNet RegNetX-200M 6841 6392 +10.04 60.11 +29.65 4897 +42.90 18.63 +18.30 1
w RegNetX-400M 7184 69.96 +10.72 66.60 +3350 5830 +54.47 32.75 +32.57 e
e MobileNet-x1.0 72.84 69.28 +1230 6559 +36.85 4505 +4333 042  +0.31 e
1173 1231
1174 DET MSCOCO17 Ret%naNet—ResNetlS 32.70 3230 +1.40 3190 +16.20 31.10 +31.10 29.00 +29.00 1232
1175 RetinaNet-ResNet50 37.90 37.50 +5.00 3690 +17.20 3550 +34.00 33.40 +33.40 -
176 GEN LSUN-Bedroom  Stable Diffusion 297 477 -44.26 - - - - - - 1234
n7 LSUN-Churches  Stable Diffusion 455  6.01 -23.33 - - - - - - 1235
1178 1236
1179 Table 13: The raw results using single reconstruction. Sparsity 0% denotes the origin model without sparsification. ABS denotes 1237
180 the absolute precision, and REL denotes the relative precision against the one without reconstruction. 1238
1181 1239
1182 S - 1240
1183 T k d 1 parSIty (%) 1241
1184 as Datasets Mode 0 50 60 70 80 1242
e ABS REL ABS REL ABS REL ABD REL 124
1186 1244
1187 ResNet-18 70.88 70.31 +4.38 69.61 +12.71 67.59 +33.56 61.50 +57.74 1245
s ResNet-50 77.67 7344 -004 7132 +628 59.20 +30.53 1441 +14.14 i
s CLS ImageNet RegNetX-200M 6841 6401 +10.12 6191 +3145 5495 +48.88 3638 +36.05 s
1100 RegNetX-400M 71.84 6920 +9.95 67.85 +3474 61.11 +57.27 3537 +35.19 s
Lo MobileNet-x1.0 72.84 6590 +8.91 6222 +3348 4604 +4432 918  +9.07 o
192 RetinaNet-ResNet18 3270 3030 -0.60 29.70 +1400 28.10 +28.10 2260 +22.60 1250
DET MSCOCO1

1193 7 RetinaNet-ResNet50 37.90 36.10 +3.60 35.10 +15.40 32.20 +30.70 28.30 +28.30 1251
1194 1252

LSUN-Bedroom Stable Diffusion 297 551 -4352 - - - - - - N
1195 GEN i . 1253
110 LSUN-Churches Stable Diffusion 455 566 -23.68 - - - - - - .
EZ; Table 14: The raw results using layer-wise reconstruction. Sparsity 0% denotes the origin model without sparsification. ABS i:

denotes the absolute precision, and REL denotes the relative precision against the one without reconstruction.

1199 1257

1200 1258
1201 Sparsity (%) 1259
1202 Task Datasets Model 50 60 70 80 1260
1203 0 1261
s ABS REL ABS REL ABS REL ABD REL o
1205 ResNet-18 7088 7041 +448 6976 +12.86 67.84 +33.81 6325 +59.49 1263
1206 ResNet-50 7767 7491 +142 7324 +820 6801 +3934 5240 +52.12 1264
1207 CLS  ImageNet RegNetX-200M 68.41 6487 +10.98 6240 +31.94 5620 +50.13 41.40 +41.07 1265
1208 RegNetX-400M 7184 7022 +10.97 6857 +3536 6373 +59.89 4933 +49.15 1266
1209 MobileNet-x1.0 7284 6594 +8.94 6276 +3402 50.16 +48.44 21.80 +21.69 1267
1210 1268
RetinaNet-ResNet18 3270 3050 -0.40 30.30 +14.60 29.90 +29.90 2630 +26.30
:i; DET  MSCOCO17 RetinaNet-ResNet50 37.90 3640 +3.90 35.60 +15.90 3420 +3270 31.90 +31.90 E;;
1213 GEN LSUN-Bedroom Stable Diffusion 2.97 5.43  -43.60 - - - - - - 1271
1214 LSUN-Churches Stable Diffusion 4.55 545 -23.89 - - - - - - 1272
1215 1273
1216 1274
1217 1275

1218 1276
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Table 15: The raw results using block-wise reconstruction. Sparsity 0% denotes the origin model without sparsification. ABS
denotes the absolute precision, and REL denotes the relative precision against the one without reconstruction

Sparsity (%)
Task Datasets Model . 50 60 70 30
ABS REL  ABS REL  ABS REL ABD REL
ResNet-18 70.88 70.44 +4.51 69.70 +12.80 68.11 +34.08 64.08 +60.32
ResNet-50 77.67 75.08 +1.59 74.21 +9.17 7144 +42.77 63.78 +63.50
CLS ImageNet RegNetX-200M 68.41 65.02 +11.13 6391 +33.45 57.89 +51.82 44.49 +44.16
RegNetX-400M 71.84 7098 +11.73 69.11 +36.00 65.53 +61.69 55.83 +55.65
MobileNet-x1.0 72.84 66.01 +9.02 65.14 +36.40 53.39 +51.67 27.21 +27.10
RetinaNet-ResNet18 32.70 3230 +1.40 31.60 +15.90 30.50 +30.50 37.30 +27.30
DET ~ MSCOCO17 RetinaNet-ResNet50 37.90 37.50 +5.00 37.10 +17.40 36.00 +34.50 33.20 +33.20
GEN LSUN-Bedroom  Stable Diffusion 297 425 -44.78 - - - - - -
LSUN-Churches Stable Diffusion 455 529 -24.05 - - - - - -

Table 16: Network architectures used in our PTSBench.

Model

ResNet [15]
RegNetX [40]
MobileNet-V2 [42]
MobileNet-V3 [18]

Architecture

residual
residual + group conv
depth-wise conv
squeeze-and-excitation block

ShuffleNet-V2 [34] group conv
DeiT [45] transformer
ViT [2] transformer

4.3 Neural Architecture and Model Size
Robustness

Table 17 shows different models’ raw results under different sparsity
rates. We also provide the intermediate mean relative accuracy loss
for each model architecture. The results of neural architecture and
model size robustness tracks are both calculated from it. We list
these networks’ unique structures in Table 16 to better demonstrate
these networks’ differences.

4.4 Different Tasks

Table 18 presents the raw results of different tasks track. The results
of the GEN task collapse when the sparsity rate is higher than 50%,
thus we do not take them into account in many tracks in the main

paper.

5 MORE DISCUSSION

5.1 Discussion of Novelty and Significance

We emphasize that our PTSBench includes the following significant
contributions: (1) the first systematic benchmark that enables a
new view to quantitatively evaluate fine-grained PTS algorithms
and the sparsification ability of models, (2) uncovering several
useful insights and take-away conclusions, and (3) a well-organized
open-source evaluation framework and codebase.

(1) PTSBench is the first effort to facilitate comprehensive and
systematic evaluation and comparisons between PTS algo-
rithms and models. PTSBench deconstructs the common
pipeline used by existing methods and, based on summariz-
ing a universal paradigm for PTS, explores the fine-grained
algorithms of PTS in detail. It also, for the first time, decou-
ples the model’s sparsity effects from the sparsity algorithms,
linking and exploring sparsity abilities as an inherent aspect
of the model itself. In existing works, the sparsity algorithms
and model architectures are often asynchronously consid-
ered, which may result in misleading experiments and con-
clusions. Our PTSBench enables a new approach towards a
fair comparison of different models by building a unified eval-
uation track for each model on neural architecture, model
size robustness, and different tasks.

(2) PTSBench reveals several valuable and useful insights and
conclusions. Based on the systematic and quantitative evalu-
ation, superior guidance can emerge, which is essential for
pushing PTS algorithms to be accurate and efficient. For in-
stance, we recommend using block-wise reconstruction for
its superior accuracy and efficiency. We also provide several
interesting hypotheses and valuable observations, such as
the attention-based models, which are usually more suitable
for sparsification for their unique mechanism. These unprece-
dented quantitative insights identify which techniques are
effective and which models tend to be sparsification-friendly,
which may provide convenience for further research and
practical deployment.

(3) PTSBench is an upcoming well-coded open-source frame-
work. It will enable every individual to easily evaluate a
model’s sparsity ability. It also outperforms for its coding. We
provide a comparison of PTSBench and POT[26], as shown
in Table19. Our PTSBench outperforms in both accuracy and
efficiency. In future work, we will also include more state-of-
the-art methods. We hope our PTSBench can provide useful
advice for future studies.
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Table 17: The Top@ 1/Top@5 results of different models under different sparsity rates. MRAL denotes the mean relative accuracy

loss, which is introduced in the main paper.

5.2

a model’s sparsity ability primarily involves two considerations:

(1) Efficiency evaluation: Using non-PTS methods typically

(2) Avoiding the impact of training: The PTS method does

Sparsity Rate (%)

Model Family Model Architecture Dense MRAL
50 60 70 80
ResNet-18 70.88/90.44  69.94/89.62 69.09/89.07 66.22/87.56 54.57/79.85 0.334/0.173
ResNet-34 74.74/92.94 74.31/92.13 73.66/91.83 71.05/90.53 59.5183.67  0.273/0.146
ResNet [15] ResNet-50 77.67/94.16  77.49/93.98 76.44/93.15 73.13/91.65 48.22/73.43 0.453/0.257
ResNet-101 79.29/94.93  78.90/94.33 77.36/93.72 69.61/90.32 11.07/25.16 1.011/0.802
ResNet-152 79.91/95.27  79.54/94.66 77.75/94.05 69.09/90.52  7.30/13.51  1.075/0.927
RegNetX-200M 68.41/89.11 65.34/86.79  62.02/84.88 53.22/79.80 31.45/60.70  0.900/0.496
RegNetX-400M 72.05/91.27  69.96/89.63 66.60/88.01 58.30/83.24 32.75/63.07 0.841/0.450
RegNetX-600M 73.43/92.10 72.13/90.90  69.90/89.92  63.19/86.67 42.01/71.91 0.633/0.314
RegNetX [40] RegNetX-800M 74.83/92.89  73.49/91.80 71.44/90.79 65.69/87.80 42.11/71.90 0.622/0.315
RegNetX-1600M 76.78/93.85 75.35/92.86 72.35/91.63 61.49/86.49 24.55/48.66 0.955/0.594
RegNetX-3200M 78.21/94.60  76.72/93.55 73.77/92.29 60.58/86.26  8.74/20.47  1.189/0.907
RegNetX-4000M 78.86/94.69  77.93/93.98 75.44/93.11 66.01/89.23 23.12/41.45 0.925/0.644
RegNetX-6400M 78.94/95.03 78.75/94.44 77.82/94.18 75.33/93.24 66.31/88.93  0.222/0.097
ShuffleNetV2-x0.5 61.25/83.34 59.31/81.44 58.06/80.73 55.55/79.35 47.94/74.38 0.393/0.209
ShuffleNetV2 [34] ShuffleNetV2-x1.0 69.75/89.46  67.22/87.56 64.20/86.28 56.44/82.09 32.78/61.59 0.836/0.450
ShuffleNetV2-x1.5 72.78/91.19  69.68/89.27 65.97/87.42 55.56/81.37 27.58/55.02 0.993/0.566
ShuffleNetV2-x2.0 74.33/92.06 72.14/90.45 69.60/89.13 62.36/85.06 39.39/66.20  0.724/0.406
MobileNetV2-x0.5 64.95/86.48 63.28/84.76 61.89/84.01 57.89/82.02 39.75/68.04 0.568/0.312
MobileNetV2 [42] MobileNetV2-x0.75 70.27/89.98 68.19/88.45 65.53/87.05 55.69/81.28 19.01/39.12 1.033/0.711
MobileNetV2-x1.0 72.84/91.61 70.63/89.90 66.76/88.21 52.56/79.00 10.34/24.89 1.250/0.921
MobileNetV2-x1.4 75.57/92.61 73.95/91.84 70.85/90.49 59.36/83.66 11.81/27.22 1.142/0.833
MobileNetV3-x0.35 50.57/74.53 49.71/73.88 48.82/73.23 47.24/71.12 42.81/68.78 0.271/0.135
MobileNetV3-x0.5 57.68/80.50 56.66/79.78 55.58/79.14 53.25/77.60 44.51/71.49 0.358/0.173
MobileNetV3 [18] MobileNetV3-x0.75 63.05/84.41 61.68/83.60 60.19/82.75 55.95/80.28 39.20/67.48 0.557/0.278
MobileNetV3-x1.0 66.93/87.05 65.26/86.24 63.13/85.04 56.39/81.21 32.41/59.72  0.754/0.413
MobileNetV3-x1.4 71.31/89.84 69.76/89.19 67.78/88.32 62.01/85.04 38.65/66.65 0.659/0.335
ViT[2] ViT-B/32 75.86/92.49 75.29/92.15 74.03/91.48 67.43/87.50 45.21/69.85 0.546/0.313
ViT-L/16 77.28/94.77 77.10/93.91  75.32/93.05 70.42/90.78 50.41/77.56  0.464/0.250
DeiT[45] I)e?Ils 79.90/95.00 77.47/93.97 74.05/92.14 60.34/83.87 22.83/41.53 1.062/0.720
DeiT-B 81.80/95.60 81.16/95.37 80.48/93.06 78.62/94.23 71.93/90.38 0.183/0.097

Discussion of the Rationale for Using PTS to
Benchmark Model’s Sparisty Ability

Using the Post-Training Sparsification (PTS) algorithm to evaluate

requires training models on large datasets, which can take
many hours or even days to complete. This extensive time
commitment can be impractical for benchmarking exper-
iments, where numerous models need to be evaluated. In

contrast, the PTS method can sparsify a model in just a few
hours or even minutes. Therefore, from a time efficiency

perspective, PTS is a superior choice.

step after the PTS pipeline. The results are shown in Table
20. We can observe that even at a high sparsity rate, the
models can still easily reach a high performance, which is
not beneficial to the evaluation of models.

Therefore, we take PTS methods as the ruler of the model from
the two aforementioned aspects.

5.3 Discussion of Error Correction

In the main paper, we find that the effectiveness of the error correc-
tion step varies across different tasks. In classification tasks, error
correction can enhance the final performance of the model. How-

ever, in detection tasks, error correction tends to result in a low

not require extensive training of the model, which better
reflects the inherent sparsity capabilities of the model’s struc-
ture. We also test a non-PTS method by concating a training

model performance. In this section, we delve deeper into investigat-
ing the reasons behind these differences. We aim to find whether
the failure of error correction under the detection task is related to
the sensitivity of the neck and head in detectors.
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Table 18: The raw results of different tasks. The sparsity 0 denotes the origin model without sparsification. Each dataset and
model architecture is introduced in the previous. The CLS task uses accuracy as a metric, the DET task uses mAP as a metric,

and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)
0 50 60 70 80
ResNet-18 70.88 69.83 68.25 62.85 35.08
ResNet-50 77.67 77.30 7597 68.86 2.17
ImageNet RegNetX-200M 68.41 64.68 59.68 48.36 24.47
& RegNetX-400M 70.05 67.53 65.67 56.62 28.55
MobileNet-x1.0 72.84 70.58 66.19 46.10 0.39
CLS ViT 77.28 771  75.32 70.42 50.41
ResNet-32 93.53 93.12 92,51 90.29 70.16
CIFAR-10 ResNet-56 94.37 93.93 93.61 92.84 87.03
VGG-19 9391 93.86 93.90 93.8 93.78
ResNet-32 70.16 67.95 64.09 48.50 11.59
CIFAR-100 ResNet-56 72.63 72.35 71.02 64.63 39.10
VGG-19 73.87 73.84 73.85 73.88 73.47
MobileNetV2-SSDLite 68.70 68.54 67.85 64.45 33.56
DET PASCAL VOCO7 MobileNetV1-SSD 67.50 67.41 66.85 66.29 57.78
RetinaNet-ResNet18 32.70 31.70 30.60 30.50 19.90
MSCOCO17 RetinaNet-ResNet50 37.90 37.20 36.50 34.40 25.80
GEN LSUN-Bedroom  Stable Diffusion 2.97 425 57.88 1129.12 29803.50
LSUN-Churches Stable Diffusion 455 529 79.28 3922.09 87293.50

Table 19: Comparison of the accuracy and efficiency between
POT and PTSBench. OpenVINO is the framework POT adopt.

Model Framework Accuracy Time

ResNetts R 027 thoomin
ResNetso R ess  zhomm
Regheoc2ooM RETRY G0t oo
RegNetX-400M Sgg;:;zﬁ 2332 lellnglmmi?
MobileNetV2-x1.0 %’;EZ;I:E 222(1, 51};1420;1:;

Table 20: The Top@1 accuracy results of a non-PTS method.

Model Dense Sparsity Rate (%)

50 60 70 80
ResNet-18 70.88 70.95 70.67 70.42 68.62
ResNet-50 77.67 7749 77.46 77.29 76.26
RegNetX-200M  68.41 67.29 6630 64.35 60.40
RegNetX-400M  72.05 71.01 7093 69.54 66.98
MobileNetV2 72.84 7126 70.16 67.53 63.43

Table 21: Comparing the results of applying error correction
to different components of the detection model.

Sparsity Rate (%) Method
no EC allEC backbone EC
50 32.1 30.2 31.1
60 31.6 214 22.8
70 30.5 1.2 2.7
80 27.3 0 0
90 15.5 0 0

We apply error correction only to the backbone part of the detec-
tion model while preserving the post-sparsity weight distribution
in the neck and head parts. We aim to find whether the failure of
error correction under the detection task is related to the sensitivity
of the neck and head in detectors. The results are shown in Table 21.
We can find that including the neck and head in the error correction
process does not significantly impact the results (e.g., with 1% mAP
increase at 50%, 60%, and 70% sparsity rates). This suggests that the
failure of error correction under the detection task is not because
of the neck and head. We will investigate the reason behind it in
our future work.

As we also use other techniques like parameter reconstruction in
previous experiments, it is still unclear whether the error correction
fails because of itself instead of the combination of other techniques.
To further investigate this, after performing error correction, we
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Table 22: The results of directly measuring the model’s accu-
racy without undergoing reconstruction.

Sparsity Rate (%) Lhod
w/o EC  w/EC
50 32.5 0.1
60 26.6 0
70 19.2 0
80 2.4 0
90 0 0

bypassed the reconstruction process and directly evaluated the
accuracy of the sparse model. The results are presented in Table 22.
We can see that there is a huge gap between the methods using EC
and not using EC (e.g., at 50% sparsity rate, the method with EC
occurs a collapse on mAP while the result of the method without
EC is 32.5), which demonstrates the negative effect caused by the
EC itself.
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