
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials: PTSBench: A Comprehensive
Post-Training Sparsity Benchmark Towards Algorithms and

Models
Anonymous Authors

1 DETAILS OF POST-TRAINING SPARSITY
ALGORITHMS

Model compression methods, including quantization[16, 21, 23, 29,
38, 46], distillation[13, 17], and sparsification[6, 7, 12, 14, 25–28, 32,
47], have been widely used in various deep learning tasks, especially
in computer vision task[10, 11]. Model sparsification allows for
efficient acceleration while maintaining model accuracy by simply
pruning the weights. Consequently, it has increasingly garnered
attention in recent years. Among all sparsification techniques, post-
training sparsity (PTS) stands out for its less demand for data and
no need for re-training, while other types often require training on
a huge datasets[4, 7, 49].

1.1 Post-Training Sparsity
Most state-of-the-art PTS methods work by adopting a layer-wise
reconstruction [8, 12, 20, 26]. In this setting, we can define the
problem as follows. Mathematically, wemodel a layer ℓ as a function
𝑓ℓ (𝑥ℓ ,𝑤ℓ) acting on inputs 𝑥ℓ with weights𝑤ℓ .

argmin
𝑤ℓ

L (𝑀 (𝑓ℓ (𝑥ℓ ,𝑤ℓ)) , 𝑀 (𝑓ℓ (𝑥ℓ ,𝑤ℓ))) ,

subject to | |𝑤ℓ | |0 ≤ 𝑘.
(1)

In practice, the expectation of the output activations is often used
as the metric for assessment. Therefore, we can get the formula as
follows.

argmin
𝑤ℓ

E𝑥ℓL(𝑓ℓ (𝑥ℓ ,𝑤ℓ), 𝑓ℓ (𝑥ℓ ,𝑤ℓ)),

subject to | |𝑤ℓ | |0 ≤ 𝑘.
(2)

The expectation over the layer inputs 𝑥ℓ is typically approxi-
mated by calculating the mean over a small set of 𝑁 input samples.
Furthermore, most previous work targets the sparsification of lin-
ear and convolutional layers, which can be represented as linear
layers by unfolding them, as these types of layers are commonly
utilized. In practice, the squared loss metric is employed to evaluate
the error in approximation since it can be analyzed by a series of
approximations, such as second-order information [37] and hessian
matrix [29]. Moreover, the effectiveness of this approach has been
demonstrated in many applications [9, 22, 29, 37].

By following these conventions, we can formally state the layer-
wise reconstruction problem as below, whereWℓ ∈ R𝑑𝑟𝑜𝑤×𝑑𝑐𝑜𝑙 and
Xℓ ∈ R𝑑𝑐𝑜𝑙×𝑁 are weights and activations matrices respectively.

argmin
𝑤ℓ

| |WℓXℓ − ŴℓXℓ | |22,

subject to | |Ŵℓ | |0 ≤ 𝑘.

(3)

In current studies, most of them followed this layer-wise para-
digm, such as POT[26] and OBC [8]. Each of these methods designs

its own criteria for reconstruction based on the layer-wise recon-
struction paradigm. For example, the POT is based on magnitude,
while OBC relies on the Hessian matrix. However, most of these
methods lack a more fine-grained exploration of the layer-wise
paradigm itself. In practical application scenarios, we have iden-
tified three types of fine-grained pluggable components that can
influence the effectiveness of sparsity.

1.2 Comparison with Other Model Compression
Techniques

Current model compression studies mainly focus on reducing orig-
inal models’ size and computation complexity. Model quantzation
reduces the size of a model and enhances computational efficiency
by lowering the precision of weights and activations within the
network [3, 29, 46]. Common quantization approaches involve
converting from 32-bit floating-point numbers to 8-bit integers
or even lower bit depths. Model distillation involves using a pre-
trained larger model (the teacher model) to guide the training of a
smaller model (the student model)[13, 17]. This method leverages
the knowledge from the large model to enhance the performance
of the smaller model. Lightweight model design involves creating
or modifying existing neural network architectures from scratch
to reduce computational complexity and model size while main-
taining performance[34?]. Low-rank decomposition reduces model
parameters by decomposing weight matrices in neural networks
into products of matrices with lower ranks[48]. Model pruning
reduces the complexity of neural networks by removing some of
the less important connections (weights)[12, 49].

1.3 Fine-grained PTS Algorithms
The main paper investigates several fine-grained PTS algorithms
without a thorough introduction. In this section, we introduce each
algorithm we benchmark in detail.

1.3.1 Sparsity Allocation. We choose 4 commonly used sparsity
allocation strategies: Uniform, L2Norm, ERK, and FCPTS.

(1) Uniform [36]: The sparsity 𝑠𝑙 of each independent layer is
equal to the global sparsity constraint 𝑆 .

(2) L2Norm[26]: First, calculate the number of weights to be
removed, 𝑛𝑠 , based on the global sparsity rate 𝑆 and the total
number of parameters 𝑛.

𝑛𝑠 = 𝑆 · 𝑛 (4)

Sort all weights according to their L2 norm size. Mark the
smallest 𝑛𝑠 weights for removal. This process results in the
specific sparsity rate for each layer of the network.

(3) ERK (Erdős-Rényi-Kernel) [4]:This method is an improve-
ment of origin Erdős-Rényi (ER) algorithm[35]. Origin ER
algorithm modifies the sparsity 𝑠ℓ of each layer obtained by

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

L2Norm as the following formula.

𝑠′ℓ = 𝑠ℓ ·
(
1 − 𝑛ℓ−1 + 𝑛ℓ

𝑛ℓ−1 ∗ 𝑛ℓ

)
, (5)

where 𝑛ℓ denotes the number of neurons at layer ℓ . Scaling
the sparsity enables the number of weights in a sparse layer
to scale with the sum of the number of input and output
channels.
ERK enhances ER by including the kernel dimensions in the
scaling factors.

𝑠′ℓ = 𝑠ℓ ·
(
1 − 𝑛ℓ−1 + 𝑛ℓ +𝑤ℓ + ℎℓ

𝑛ℓ−1 ∗ 𝑛ℓ ∗𝑤ℓ ∗ ℎℓ

)
, (6)

where 𝑤𝑙 and ℎℓ are the width and height of ℓ th convolu-
tional layer. The sparsity of the fully connected layers is the
same as in the ER. In a word, ERK allocates larger sparsity
for layers that possess more parameters.

(4) FCPTS[12]: This method allows us to learn the sparsity
allocation accurately and rapidly by incorporating a differen-
tiable bridge function and a controllable optimization object.

𝐿 = 𝐿𝑟𝑒𝑐 + 𝐿𝑐 , (7)

𝐿𝑟𝑒𝑐 = 𝐷𝐾𝐿 (𝑌𝑑 | |𝑌𝑠), (8)

𝐿𝑐 = |
∑
ℓ 𝑠ℓ𝑛ℓ∑
ℓ 𝑛ℓ

− 𝑠0 |, (9)

where 𝑟ℓ denotes the sparsity rate and 𝑛ℓ is element number
of weights of the ℓth layer. 𝑟0 is the global sparsity rate target.
𝐷𝐾𝐿 (·) represents the Kullback-Leibler divergence function.
𝑌𝑑 and 𝑌𝑠 are the output of the dense and sparse models.

1.3.2 Reconstruction. After sparsifying the model according to
the allocated sparsity rates, reconstruction techniques are usually
necessary to restore the accuracy of the sparse model. We utilize a
small set of unlabeled samples to reconstruct the sparse model’s
outputs with those of the original model. This process can be viewed
as distilling the sparse model using the dense model as a teacher. In
our implementation, we utilize the standard Mean Squared Error
(MSE) as the loss function, as shown in 10:

𝐿 =
∑︁

𝑖∈𝑏𝑎𝑡𝑐ℎ
(𝑌 𝑖
𝑑
− 𝑓 (𝑊𝑠 ⊙ 𝑀𝑠 , 𝑋

𝑖
𝑑
) − 𝑏𝑠)2,

where 𝑌 𝑖
𝑑
= 𝑓 (𝑊𝑑 , 𝑋

𝑖
𝑑
) .

(10)

Here, 𝑓 (𝑋,𝑊) is the convolutional or matrix-multiplication op-
eration conducted by the layer with weight𝑊 acting upon input
𝑋 . 𝑋𝑑 is the input of this layer from the dense model. 𝑀𝑠 is the
binary mask corresponding to the sparsity pattern, which is set to
zero if the weight is removed. The sparse binary mask is kept fixed,
and gradient descent based on the loss function defined above is
used for each layer independently to update the parameters and
determine the optimal sparse weights and biases𝑊𝑠 , 𝑏𝑠 .

Based on a summary of previous work and practical experimen-
tal observations, we have identified three fine-grained algorithms
crucial to the reconstruction’s effectiveness. In this section, we will
provide a detailed introduction to these three algorithms.

Error correction. After establishing the layer-wise sparsity
rates, the weights are set to zero based on their specific criterion
within each layer. This sparsification operation distorts the weight
distribution, introducing biases and scale shifts. Error correction

is widely used in post-training quantization (PTQ) [16, 38, 39] to
restore the distortion. However, current PTS methods [26] do not
comprehensively and systematically evaluate this procedure. There-
fore, we borrow this concept and validate whether this component
can be effective for PTS.

To transfer error correction to PTS, we first perform weight
correction according to 11:

𝑊̂𝑠 = 𝜆𝑊𝑠 + 𝐸 (𝑊𝑑) − 𝐸 (𝜆𝑊𝑠),

where 𝜆 =
𝜎 (𝑊𝑑)

𝜎 (𝑊𝑠) + 𝜖
.

(11)

𝑊̂𝑠 is the weights after the weight correction operation, and𝑊𝑠

and𝑊𝑑 denote the weights of sparse and dense models, respectively.
𝐸 and 𝜎 are the mean and standard deviation operators, 𝜖 is a small
constant.

Then we conduct bias correction as 12:

𝑏𝑠 = 𝑏𝑑 + 𝐸 (𝑓 (𝑊𝑑 , 𝑋𝑑)) − 𝐸 (𝑓 (𝑊̂𝑠 , 𝑋𝑑)) . (12)

where 𝑓 (𝑊,𝑋) represents the convolutional ormatrix-multiplication
operation performed by the layer on inputs 𝑋 with weights𝑊 . 𝑏𝑑
and 𝑋𝑑 are bias and input activation in the dense model. After the
weight and bias correction, we can partially correct the error caused
by the distribution shift of weights and biases.

The input of reconstruction. During the reconstruction, we
can either use the output of the previous reconstruction unit from
the densemodel as the input (i.e.,𝑋𝑑 in 10) or opt for the output after
the previous layers, which are sparsified. We find that the choice
of reconstruction inputs also greatly impacts the final results. This
issue has not been systematically investigated in previous work.
Hence, we also explore this factor in our PTSBench.

Reconstruction granularity.
In the main paper, we provide descriptions of various reconstruc-

tion granularities. To have a better explanation, we offer a more
intuitive visual illustration, as shown in Figure 1.

2 DETAILS OF EXPERIMENTAL SETTINGS
2.1 Details of Datasets
In this section, we give a detailed introduction to the datasets we
include.

CIFAR-10/100[24]:TheCIFAR-10 andCIFAR-100 are twowidely
used computer vision datasets created by the Canadian Institute for
Advanced Research. The CIFAR-10 dataset consists of 60,000 color
images, each sized at 32x32 pixels, divided into 10 classes with 6,000
images per class. In contrast, the CIFAR-100 dataset also comprises
60,000 images but is categorized into 100 classes, with each class
containing 600 images. These datasets are commonly utilized for
training machine learning and computer vision algorithms, partic-
ularly in image recognition and classification tasks. The evaluation
metric of CIFAR-10/100 is accuracy, defined as :

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, (13)

where 𝑇𝑃 (True Positive) means cases correctly identified as posi-
tive, 𝑇𝑁 (True Negative) means cases correctly identified as nega-
tive, 𝐹𝑃 (False positive) means cases incorrectly identified as posi-
tive, and 𝐹𝑁 (False Negative) means cases incorrectly identified as

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Materials: PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

reconstruction granularity

head

body

stem

(w,h,3)

(w/2,h/2,c0)

(w/32,h/32,c4)

(1,1,#classes)

Network Structure

...
block n

block 2

block 1

(w/2,h/2,c0)

(w/4,h/4,c1)

(w/32,h/32,c4)

Block-wise

relu

batchnorm

conv

(w,h,ci)

(w,h,ci*e)

(w,h,ci*e)

(w,h,ci*e)

Single

...
layer n

layer 2

layer 1

(w,h,ci)

(w,h,ci*e)

(w,h,ci*e)

Layer-wise

backward propagation

Figure 1: Visualization of different reconstruction granularities. We take a typical CNN structure model [40] as an example.
A network consists of a stem layer (usually the first convolutional layer on the input), a body, and a head (usually a fully
connected layer). A body is composed of several blocks, and a block contains several layers.

negative. We should calculate the proportion of 𝑇𝑃 and 𝑇𝑁 in all
evaluated cases to estimate the accuracy.

ImageNet-1k:[1] ImageNet is a substantial dataset extensively
used for visual object recognition, consisting of over 14 million im-
ages organized into roughly 20,000 categories based on theWordNet
hierarchy. Specifically, it includes about 1.2 million images in the
training set, 50,000 images in the validation set, and 150,000 images
in the test set. These images are annotated and used to train, vali-
date, and test machine learning models. ImageNet is well-known for
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
a competition that has significantly contributed to advancements
in deep learning and computer vision by benchmarking algorithms
across 1,000 different categories.

PASCAL VOC07[5]: The PASCAL VOC07 (PASCAL Visual
Object Classes 2007) dataset is a key computer vision resource
consisting of 9,963 images annotated across 20 specific categories.
These categories are: Person, Bird, Cat, Cow, Dog, Horse, Sheep,
Aeroplane, Bicycle, Boat, Bus, Car, Motorbike, Train, Bottle, Chair,
Dining table, Potted plant, Sofa, and TV/Monitor. The dataset is
divided into training, validation, and testing sets and is used for a
variety of tasks such as object classification, detection, and segmen-
tation, serving as a benchmark for evaluating the performance of
advanced object detection algorithms. The PASCAL VOC07 uses
mean average precision (mAP) to evaluate results, which is defined
as:

𝑚𝐴𝑃 =
1
𝑛

𝑛∑︁
𝑘=1

𝐴𝑃𝑘 , (14)

where𝐴𝑃𝑘 denotes the average precision of the 𝑘th category, which
calculates that area under the precision-recall curve:

𝐴𝑃𝑘 =

∫ 1

0
𝑝𝑘 (𝑟)𝑑𝑟 . (15)

MSCOCO-2017[31]: The MS COCO (Microsoft Common Ob-
jects in Context) dataset is a large-scale object detection, segmen-
tation, key-point detection, and captioning dataset. The dataset
consists of 328K images. According to community feedback, in
the 2017 release, the training/validation split was changed from

83K/41K to 118K/5K. And the images and annotations are the same.
The 2017 test set is a subset of 41K images from the 2015 test set.
Additionally, 123K images are included in the unannotated dataset.
The COCO17 dataset also uses mean average precision (mAP) as
defined above PASCAL VOC07 uses, which is defined as above.

LSUN-Churches/Bedroom: The LSUN (Large-scale Scene UN-
derstanding) dataset is a specialized collection aimed at scene un-
derstanding and includes specific categories of images such as bed-
rooms and churches. The LSUN dataset includes specific subsets
like LSUN-bedroom and LSUN-churches, aimed at advancing scene
understanding in computer vision. The LSUN-bedroom category
provides a vast collection of bedroom images, extensively used for
training algorithms in image generation and interior scene analysis
tasks. The LSUN-churches subset contains a variety of church exte-
rior images utilized primarily for architectural style classification
and generative modeling. These subsets help in refining algorithms’
capabilities in recognizing and generating images of complex in-
door and architectural scenes, forming a crucial part of the larger
LSUN initiative designed to improve machine understanding of di-
verse real-world environments. LSUN uses FID (Fréchet Inception
Distance) as the evaluation metric, which is defined as follows:

𝐹𝐼𝐷 = | |𝜇𝑟 − 𝜇𝑔 | |2 +𝑇𝑟 (Σ𝑟 + Σ𝑔 − 2(Σ𝑟Σ𝑔)1/2), (16)

where (𝜇𝑟 , Σ𝑟) and (𝜇𝑔, Σ𝑔) denote the mean and covariance of the
feature vector, which are extracted by a pre-trained Inception V3
model[44], of the real images and generated images,𝑇𝑟 (·) calculates
the trace.

2.2 Details of Neural Architecture
This section provides a brief introduction to the benchmarkedmodel
architectures, especially the specific structure.

ResNet[15]: ResNet, or Residual Network, is a revolutionary
convolutional neural network architecture introduced in 2015 that
effectively addresses the vanishing gradient problem in deep net-
works. It features residual blocks with skip connections, allowing
the training of much deeper networks by enabling layers to learn

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

identity functions, preventing performance degradation. This struc-
ture has led to significant improvements in various computer vision
tasks, making ResNet a cornerstone in deep learning advancements.

RegNetX[40]: RegNetX is a family of network architectures
that emerged from research on designing network architectures
systematically to achieve optimal trade-offs between speed, accu-
racy, and model complexity. Introduced by Facebook AI, RegNetX
models use a simple, regularized design that scales depth, width,
and resolution in a predictable manner. They are built using blocks
of convolutions with a consistent structure, which simplifies the
scaling process across different computational budgets and per-
formance needs. This approach allows for efficient and effective
scaling of models, making RegNetX suitable for a range of applica-
tions, from mobile devices to high-end servers, while maintaining
competitive performance in tasks like image classification.

MobileNet[18, 19, 42]: MobileNet is a class of efficient models
for mobile and edge devices, introduced by Google. It is designed
to provide lightweight, deep neural networks by using depth-wise
separable convolutions, significantly reducing the number of pa-
rameters and computational cost compared to standard convolu-
tions. MobileNetV2 and MobileNetV3 are both advancements of the
original MobileNet model, optimized for mobile and edge devices.
MobileNetV2 introduces the inverted residual structure and linear
bottlenecks to improve efficiency, while MobileNetV3, developed
using techniques like network architecture search, enhances the
model further with features like optimized squeeze-and-excitation
blocks and the hard-swish activation function.

ShuffleNet[34]: ShuffleNetV2 is an advanced neural network
architecture designed to be highly efficient for mobile devices, im-
proving upon its predecessor, ShuffleNet. It features an optimized
structure that reduces computational complexity while maintain-
ing high accuracy. Key improvements include the use of channel
split and shuffle operations to facilitate better feature mixing and a
streamlined architecture that minimizes memory access cost and
power consumption. These design choices make ShuffleNetV2 par-
ticularly effective for applications in resource-constrained environ-
ments where processing power and memory are limited.

VGG[43]: VGG is a classical convolutional neural network ar-
chitecture. It is proposed by an analysis of how to increase the
depth of such networks. It is characterized b its simplicity: the net-
work utilizes small 3 × 3 filters, and the only other components are
pooling layers and a fully connected layer.

ViT[2]: ViT, or Vision Transformer, is a pioneering model that
applies the transformer architecture, typically used in natural lan-
guage processing, to computer vision tasks. Introduced by Google in
2020, ViT segments an image into fixed-size patches, processes these
through multiple transformer layers, and uses self-attention mech-
anisms to capture complex image features at various scales. This
approach allows ViT to achieve impressive results on image classifi-
cation tasks, challenging traditional convolutional neural networks,
particularly in scenarios where large-scale training datasets are
available. ViT’s performance demonstrates the potential of trans-
formers to generalize across different domains beyond text process-
ing.

DeiT[45]:DeiT, or Data-efficient Image Transformers, is a model
that adapts the Vision Transformer (ViT) for more data-efficient
performance in image classification tasks. Developed by Facebook

AI, DeiT incorporates distillation techniques, where the transformer
learns from a pre-trained convolutional neural network acting as
a teacher. This approach improves DeiT’s training efficiency and
effectiveness, making it suitable for scenarios with limited data or
computational resources.

RetinaNet[30]: RetinaNet is a popular deep learning framework
for object detection that effectively addresses the challenge of de-
tecting objects across a range of scales and object sizes. Introduced
by Facebook AI in 2017, RetinaNet is notable for its use of the Focal
Loss function, which helps to solve the problem of class imbalance
by focusing training on hard-to-classify examples. This model com-
bines a feature pyramid network (FPN) with a ResNet backbone,
allowing it to efficiently detect objects at multiple resolutions. The
architecture is designed to be both fast and accurate, making it
highly effective for real-time object detection applications.

SSD[33]: SSD, or Single Shot MultiBox Detector, is an efficient
and powerful algorithm for object detection that performs detection
tasks in a single pass through the network, making it faster than
methods that require separate proposals and detection stages. Intro-
duced in 2016, SSD divides the image into a grid and uses a series
of convolutional layers to predict the presence of objects and their
bounding boxes at multiple scales directly from the feature maps.
This approach eliminates the need for a separate region proposal
network, streamlining the detection process and enhancing speed.
SSD is widely used for real-time applications due to its balance of
speed and accuracy.

Stable Diffusion[41]: Stable Diffusion is a state-of-the-art text-
to-image generation model developed by Stability AI and other
collaborators. Released in 2022, it utilizes a latent diffusion model
architecture to generate high-quality images based on textual de-
scriptions. The model works by gradually refining an initial random
noise image through a series of steps, using a deep learning net-
work to guide the transformation toward an image that matches
the textual input. Stable Diffusion is notable for its efficiency and
the ability to produce detailed, creative images quickly, even on
consumer-grade hardware. It has gained popularity for its open-
source availability, allowing widespread use and customization in
various applications ranging from art creation to educational tools.

3 MORE EVALUATION RESULTS
We provide more detailed experimental results in this section.

3.1 Results on More Sparsity Rates
In the main paper, we mainly choose 4 sparsity rates (50%, 60%, 70%,
and 80%) for evaluation. We report results under more sparsity rate
in Table 1. We can observe almost all models have no performance
decrease at a sparsity rate under 50%. In contrast, nearly all models
face a collapse of precision at a sparsity rate higher than 80%. There-
fore, to make the results more meaningful, we excluded sparsity
rates below 40% and above 90% from the benchmark evaluation.

3.2 Results on Sparsity Allocation
In addition to the sparsity allocation of ResNet-32 that we visualize
in the main paper, we provide more visualization results in this
section, as shown in Figure 2, Figure 3, and Figure 4. From these
figures, we can find similar observations as the main paper: 1)

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Supplementary Materials: PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: The Top@1/Top@5 results under more sparsity rate. Sparsity 0 represents the results of the dense model without
sparsification.

Model Sparsity (%)

0 40 50 60 70 80 90

ResNet-18 70.88/90.44 70.69/90.35 70.10/90.11 68.40/89.10 63.72/86.51 44.94/71.50 6.03/15.70
RegNetX-200M 68.41/89.11 66.84/88.22 64.68/87.07 59.98/84.39 48.36/75.85 24.47/49.90 2.02/7.41
MobileNetV2-x0.5 64.95/86.47 63.38/85.36 62.32/84.82 62.21/83.28 54.29/78.92 24.41/48.14 0.18/0.76
ShuffleNetV2-x0.5 61.25/83.34 60.63/83.16 59.75/82.79 58.59/82.22 56.42/80.59 48.00/75.94 24.03/52.61

co
nv

1

la
ye

r1
.0

.c
on

v1

la
ye

r1
.0

.c
on

v2

la
ye

r1
.1

.c
on

v1

la
ye

r1
.1

.c
on

v2

la
ye

r2
.0

.c
on

v1

la
ye

r2
.0

.c
on

v2

la
ye

r2
.0

.d
ow

ns
am

pl
e.

0

la
ye

r2
.1

.c
on

v1

la
ye

r2
.1

.c
on

v2

la
ye

r3
.0

.c
on

v1

la
ye

r3
.0

.c
on

v2

la
ye

r3
.0

.d
ow

ns
am

pl
e.

0

la
ye

r3
.1

.c
on

v1

la
ye

r3
.1

.c
on

v2

la
ye

r4
.0

.c
on

v1

la
ye

r4
.0

.c
on

v2

la
ye

r4
.0

.d
ow

ns
am

pl
e.

0

la
ye

r4
.1

.c
on

v1

la
ye

r4
.1

.c
on

v2 fc

10
2

10
1

10
0

R
em

ai
ni

ng
 R

at
io

 (%
)

Sparsity Allocation of ResNet-18 Across Different Algorithms

Trend Line
L2Norm
ERK
FCPTS

Figure 2: Visualization of the sparsity allocation of ResNet-18 on ImageNet. The name of each layer is listed at the bottom. The
black line denotes the average remaining ratio of the three algorithms.

co
nv

1
la

ye
r1

.0
.c

on
v1

la
ye

r1
.0

.c
on

v2
la

ye
r1

.0
.c

on
v3

la
ye

r1
.0

.d
ow

ns
am

pl
e.

0
la

ye
r1

.1
.c

on
v1

la
ye

r1
.1

.c
on

v2
la

ye
r1

.1
.c

on
v3

la
ye

r1
.2

.c
on

v1
la

ye
r1

.2
.c

on
v2

la
ye

r1
.2

.c
on

v3
la

ye
r2

.0
.c

on
v1

la
ye

r2
.0

.c
on

v2
la

ye
r2

.0
.c

on
v3

la
ye

r2
.0

.d
ow

ns
am

pl
e.

0
la

ye
r2

.1
.c

on
v1

la
ye

r2
.1

.c
on

v2
la

ye
r2

.1
.c

on
v3

la
ye

r2
.2

.c
on

v1
la

ye
r2

.2
.c

on
v2

la
ye

r2
.2

.c
on

v3
la

ye
r2

.3
.c

on
v1

la
ye

r2
.3

.c
on

v2
la

ye
r2

.3
.c

on
v3

la
ye

r3
.0

.c
on

v1
la

ye
r3

.0
.c

on
v2

la
ye

r3
.0

.c
on

v3
la

ye
r3

.0
.d

ow
ns

am
pl

e.
0

la
ye

r3
.1

.c
on

v1
la

ye
r3

.1
.c

on
v2

la
ye

r3
.1

.c
on

v3
la

ye
r3

.2
.c

on
v1

la
ye

r3
.2

.c
on

v2
la

ye
r3

.2
.c

on
v3

la
ye

r3
.3

.c
on

v1
la

ye
r3

.3
.c

on
v2

la
ye

r3
.3

.c
on

v3
la

ye
r3

.4
.c

on
v1

la
ye

r3
.4

.c
on

v2
la

ye
r3

.4
.c

on
v3

la
ye

r3
.5

.c
on

v1
la

ye
r3

.5
.c

on
v2

la
ye

r3
.5

.c
on

v3
la

ye
r4

.0
.c

on
v1

la
ye

r4
.0

.c
on

v2
la

ye
r4

.0
.c

on
v3

la
ye

r4
.0

.d
ow

ns
am

pl
e.

0
la

ye
r4

.1
.c

on
v1

la
ye

r4
.1

.c
on

v2
la

ye
r4

.1
.c

on
v3

la
ye

r4
.2

.c
on

v1
la

ye
r4

.2
.c

on
v2

la
ye

r4
.2

.c
on

v3 fc

10
2

10
1

10
0

R
em

ai
ni

ng
 R

at
io

 (%
)

Sparsity Allocation of ResNet-50 Across Different Algorithms

Trend Line
L2Norm
ERK
FCPTS

Figure 3: Visualization of the sparsity allocation of ResNet-50 on ImageNet. The name of each layer is listed at the bottom. The
black line denotes the average remaining ratio of the three algorithms.

the fully connected layer is preserved well, especially in good-
performance sparsity allocation algorithms, and 2) the downsample
layers usually have a high remaining ratio, while good-performance

algorithms tend to sparsify them more. Besides, we can draw a new
interesting observation: the deeper the layers are, the more weights

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

co
nv

1
la

ye
r1

.0
.c

on
v1

la
ye

r1
.0

.c
on

v2
la

ye
r1

.1
.c

on
v1

la
ye

r1
.1

.c
on

v2
la

ye
r1

.2
.c

on
v1

la
ye

r1
.2

.c
on

v2
la

ye
r1

.3
.c

on
v1

la
ye

r1
.3

.c
on

v2
la

ye
r1

.4
.c

on
v1

la
ye

r1
.4

.c
on

v2
la

ye
r1

.5
.c

on
v1

la
ye

r1
.5

.c
on

v2
la

ye
r1

.6
.c

on
v1

la
ye

r1
.6

.c
on

v2
la

ye
r1

.7
.c

on
v1

la
ye

r1
.7

.c
on

v2
la

ye
r1

.8
.c

on
v1

la
ye

r1
.8

.c
on

v2
la

ye
r2

.0
.c

on
v1

la
ye

r2
.0

.c
on

v2
la

ye
r2

.0
.d

ow
ns

am
pl

e.
0

la
ye

r2
.1

.c
on

v1
la

ye
r2

.1
.c

on
v2

la
ye

r2
.2

.c
on

v1
la

ye
r2

.2
.c

on
v2

la
ye

r2
.3

.c
on

v1
la

ye
r2

.3
.c

on
v2

la
ye

r2
.4

.c
on

v1
la

ye
r2

.4
.c

on
v2

la
ye

r2
.5

.c
on

v1
la

ye
r2

.5
.c

on
v2

la
ye

r2
.6

.c
on

v1
la

ye
r2

.6
.c

on
v2

la
ye

r2
.7

.c
on

v1
la

ye
r2

.7
.c

on
v2

la
ye

r2
.8

.c
on

v1
la

ye
r2

.8
.c

on
v2

la
ye

r3
.0

.c
on

v1
la

ye
r3

.0
.c

on
v2

la
ye

r3
.0

.d
ow

ns
am

pl
e.

0
la

ye
r3

.1
.c

on
v1

la
ye

r3
.1

.c
on

v2
la

ye
r3

.2
.c

on
v1

la
ye

r3
.2

.c
on

v2
la

ye
r3

.3
.c

on
v1

la
ye

r3
.3

.c
on

v2
la

ye
r3

.4
.c

on
v1

la
ye

r3
.4

.c
on

v2
la

ye
r3

.5
.c

on
v1

la
ye

r3
.5

.c
on

v2
la

ye
r3

.6
.c

on
v1

la
ye

r3
.6

.c
on

v2
la

ye
r3

.7
.c

on
v1

la
ye

r3
.7

.c
on

v2
la

ye
r3

.8
.c

on
v1

la
ye

r3
.8

.c
on

v2 fc

10
2

10
1

10
0

R
em

ai
ni

ng
 R

at
io

 (%
)

Sparsity Allocation of ResNet-56 Across Different Algorithms

Trend Line
L2Norm
ERK
FCPTS

Figure 4: Visualization of the sparsity allocation of ResNet-56 on CIFAR-100. The name of each layer is listed at the bottom.
The black line denotes the average remaining ratio of the three algorithms.

Table 2: Comparison of the time consumption of error correction. The best results of each model are marked bolder. The ℎ
denotes hours, and the𝑚 denotes minutes. ’w/’ denotes ’with’, and ’w/o’ denotes ’without’.

Model Error Correction Sparsity Rate

50 60 70 80

ResNet-18 w/o 35m56s 35m53s 38m48s 41m53s
w/ 1h26m 1h38m 1h32m 1h32m

ResNet-50 w/o 1h32m 1h35m 1h25m 1h27m
w/ 2h6m 2h7m 2h7m 2h4m

RegNet-200M w/o 31m44s 38m15s 33m44s 31m59s
w/ 45m19s 45m15s 41m35s 41m31s

RegNet-400M w/o 46m50s 46m29s 47m19s 47m9s
w/ 1h8m 1h8m 1h8m 1h8m

MobileNetV2-x1.0 w/o 32m1s 35m0s 44m5s 44m4s
w/ 1h4m 1h4m 59m53s 59m51s

it would be sparsified in L2Norm and ERK, while FCPTS does not
obey this manner.

3.3 Results on Time Speed
We also evaluate the time consumption. Since it is obvious that spar-
sity allocation and the input of reconstruction will not introduce
extra time consumption, we only provide the time consumption re-
sults of error correction and different reconstruction granularities,
as shown in Figure 2 and Figure 3.

From Figure 2, we can discover that although error correction
may have positive effects on the performance of the sparse model
in specific settings, it will bring un-negligible time costs. So, there
is a trade-off between precision and time when adopting error
correction.

Figure 3 presents the results of time consumption of different
reconstruction granularities. The block-wise reconstruction con-
sistently outperforms the time perspective, while reconstructing
layer-wisely is better than performing it singlely. This is due to the
fact that using coarser granularity for reconstruction significantly
reduces the need for loss calculations, which are often very time-
consuming. Therefore, reconstruction in the block-wise pattern is
always the preferred choice, considering both time and precision
factors.

4 RAW RESULTS
This section provides the raw results of each track we benchmark
in the main paper.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Supplementary Materials: PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Comparison of the time consumption of different reconstruction granularities. The best results of each model are
marked bolder. The ℎ denotes hours, and the𝑚 denotes minutes.

Model Granularity Sparsity Rate (%)

50 60 70 80

ResNet-18
Single 3h32m 3h34 3h31 3h28
Layer-wise 2h2m 1h58m 2h11m 2h5m
Block-wise 1h37m 1h40m 1h47m 1h41m

ResNet-50
Single 4h44m 4h40m 4h38m 4h31m
Layer-wise 3h30m 3h21m 3h8m 3h22m
Block-wise 2h7m 2h12m 2h12m 2h10m

RegNet-200M
Single 5h24m 5h30m 5h16m 5h22m
Layer-wise 1h10m 1h4m 1h8m 1h15m
Block-wise 31m55s 38m15s 40m22s 42m19s

RegNet-400M
Single 6h3m 6h2m 6h0m 6h0m
Layer-wise 1h33m 1h33m 1h48m 1h48m
Block-wise 1h1m 1h9m 1h19m 1h19m

MobileNetV2-x1.0
Single 5h42m 5h33m 5h29m 5h39m
Layer-wise 42m43s 35m0s 59m42s 45m22s
Block-wise 32m1s 27m43s 44m5s 44m4s

Table 4: The raw results of L2Norm sparsity allocation strategy on different models, datasets, and tasks. The sparsity 0 denotes
the origin model without sparsification. Each dataset and model architecture is introduced in the previous. The CLS task uses
accuracy as a metric, the DET task uses mAP as a metric, and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)

0 50 60 70 80

CLS

ImageNet

ResNet-18 70.88 69.83 68.25 62.85 35.08
ResNet-50 77.67 77.30 75.97 68.86 2.17
RegNetX-200M 68.41 64.68 59.68 48.36 24.47
RegNetX-400M 70.05 67.53 65.67 56.62 28.55
MobileNet-x1.0 72.84 70.58 66.19 46.10 0.39
ViT 77.28 77.1 75.32 70.42 50.41

CIFAR-10
ResNet-32 93.53 93.12 92.51 90.29 70.16
ResNet-56 94.37 93.93 93.61 92.84 87.03
VGG-19 93.91 93.86 93.90 93.8 93.78

CIFAR-100
ResNet-32 70.16 67.95 64.09 48.50 11.59
ResNet-56 72.63 72.35 71.02 64.63 39.10
VGG-19 73.87 73.84 73.85 73.88 73.47

DET
PASCAL VOC07 MobileNetV2-SSDLite 68.70 68.54 67.85 64.45 33.56

MobileNetV1-SSD 67.50 67.41 66.85 66.29 57.78

MSCOCO17 RetinaNet-ResNet18 32.70 31.70 30.60 30.50 19.90
RetinaNet-ResNet50 37.90 37.20 36.50 34.40 25.80

GEN LSUN-Bedroom Stable Diffusion 2.97 4.25 - - -

LSUN-Churches Stable Diffusion 4.55 5.29 - - -

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: The raw results of ERK sparsity allocation strategy on different models, datasets, and tasks. The sparsity 0 denotes
the origin model without sparsification. Each dataset and model architecture is introduced in the previous. The CLS task uses
accuracy as a metric, the DET task uses mAP as a metric, and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)

0 50 60 70 80

CLS

ImageNet

ResNet-18 70.88 69.28 66.71 59.60 32.26
ResNet-50 77.67 74.27 69.31 49.99 3.80
RegNetX-200M 68.41 64.53 60.71 52.96 31.55
RegNetX-400M 70.05 69.96 67.07 60.39 37.10
MobileNet-x1.0 72.84 69.14 63.00 41.84 3.07
ViT 77.28 77.19 75.98 71.09 59.82

CIFAR-10
ResNet-32 93.53 92.71 92.03 89.61 76.83
ResNet-56 94.37 93.93 93.61 92.84 87.03
VGG-19 93.91 93.87 93.83 93.70 93.42

CIFAR-100
ResNet-32 70.16 66.75 61.74 45.51 15.05
ResNet-56 72.63 71.73 70.22 62.65 36.96
VGG-19 73.87 73.89 73.88 73.40 72.23

DET
PASCAL VOC07 MobileNetV2-SSDLite 68.70 68.55 67.84 64.63 33.60

MobileNetV1-SSD 67.50 67.36 66.86 66.31 57.79

MSCOCO17 RetinaNet-ResNet18 32.70 32.10 31.60 30.50 27.30
RetinaNet-ResNet50 37.90 37.60 37.10 36.00 33.20

GEN LSUN-Bedroom Stable Diffusion 2.97 8.49 - - -

LSUN-Churches Stable Diffusion 4.55 5.60 - - -

Table 6: The raw results of Uniform sparsity allocation strategy on different models, datasets, and tasks. The sparsity 0 denotes
the origin model without sparsification. Each dataset and model architecture is introduced in the previous. The CLS task uses
accuracy as a metric, the DET task uses mAP as a metric, and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)

0 50 60 70 80

CLS

ImageNet

ResNet-18 70.88 69.54 68.15 63.01 24.71
ResNet-50 77.67 77.02 72.99 56.22 0.98
RegNetX-200M 68.41 63.92 54.23 29.38 8.82
RegNetX-400M 70.05 66.98 61.67 39.25 1.24
MobileNet-x1.0 72.84 69.70 49.44 5.56 0.54
ViT 77.28 73.81 18.73 0.17 0.11

CIFAR-10
ResNet-32 93.53 92.19 90.24 85.23 44.00
ResNet-56 94.37 93.11 91.22 87.22 71.09
VGG-19 93.91 93.23 93.55 92.91 92.01

CIFAR-100
ResNet-32 70.16 65.34 59.01 41.09 1.25
ResNet-56 72.63 71.93 66.23 59.22 15.09
VGG-19 73.87 73.29 73.09 73.01 71.02

DET
PASCAL VOC07 MobileNetV2-SSDLite 68.70 68.31 64.22 59.22 21.09

MobileNetV1-SSD 67.50 66.09 64.90 62.21 41.29

MSCOCO17 RetinaNet-ResNet18 32.70 31.50 29.30 19.20 9.10
RetinaNet-ResNet50 37.90 36.90 33.20 27.50 10.90

GEN LSUN-Bedroom Stable Diffusion 2.97 49.03 - - -

LSUN-Churches Stable Diffusion 4.55 20.34 - - -

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Supplementary Materials: PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 7: The raw results of FCPTS initiated with ERK sparsity allocation strategy on different models, datasets, and tasks. The
sparsity 0 denotes the origin model without sparsification. Each dataset and model architecture is introduced in the previous.
The CLS task uses accuracy as a metric, the DET task uses mAP as a metric, and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)

0 50 60 70 80

CLS

ImageNet

ResNet-18 70.88 69.44 68.86 67.62 64.90
ResNet-50 77.67 76.53 75.40 73.81 70.41
RegNetX-200M 68.41 64.98 63.52 60.87 55.41
RegNetX-400M 70.05 70.15 69.11 67.07 61.89
MobileNet-x1.0 72.84 68.92 65.89 62.12 49.65
ViT 77.28 77.10 75.32 70.42 50.41

CIFAR-10
ResNet-32 93.53 86.23 89.14 81.07 89.48
ResNet-56 94.37 91.29 92.13 89.18 89.16
VGG-19 93.91 93.81 93.79 93.82 93.78

CIFAR-100
ResNet-32 70.16 69.70 78.82 69.02 67.28
ResNet-56 72.63 71.62 71.13 70.38 68.67
VGG-19 73.87 73.84 73.86 73.85 73.61

DET
PASCAL VOC07 MobileNetV2-SSDLite 68.70 68.15 68.01 67.20 64.29

MobileNetV1-SSD 67.50 67.41 67.12 66.64 66.01

MSCOCO17 RetinaNet-ResNet18 32.70 32.30 32.10 31.50 28.80
RetinaNet-ResNet50 37.90 37.50 37.20 36.30 33.50

GEN LSUN-Bedroom Stable Diffusion 2.97 3.23 - - -

LSUN-Churches Stable Diffusion 4.55 4.99 - - -

Table 8: The raw results of the sparse model without reconstruction on different tasks, datasets, and model architectures.
Sparsity 0% denotes the origin model without sparsification.

Task Datasets Model Sparsity (%)

0 50 60 70 80

CLS ImageNet

ResNet-18 70.88 65.92 56.89 34.02 3.76
ResNet-50 77.67 73.48 65.03 28.66 0.28
RegNetX-200M 68.41 53.88 30.46 6.06 0.32
RegNetX-400M 71.84 59.24 33.10 3.83 0.17
MobileNet-x1.0 72.84 56.98 28.74 1.72 0.11

DET MSCOCO17 RetinaNet-ResNet18 32.70 30.90 15.70 0 0
RetinaNet-ResNet50 37.90 32.50 19.70 1.50 0

GEN LSUN-Bedroom Stable Diffusion 2.97 49.03 - - -
LSUN-Churches Stable Diffusion 4.55 29.34 - - -

4.1 Sparsity Allocation
Table 4, 5, 6, and 7 shows the results of the sparsity allocation track.
From Table 4 and Table 5, we can find that L2Norm and ERK can
maintain model performance at a relatively low sparsity rate but
face challenges at a high sparsity rate. Table 6 shows that uniform
sparsity allocation strategy may have difficulty even in a sparsity
at 60%. Table 7 represents the raw results of FCPTS(ERK), which
can reach high performance in a sparsity rate at 80%. From these
tables, we can intuitively recognize the well-behaved algorithms.

4.2 Reconstruction
Table 8 shows the raw results of the sparse model without per-
forming any reconstruction procedure. Table 9, Table 10, Table 11,
Table 12, Table 13, Table 14, and Table 15 represents the detailed
raw results of the reconstruction track. Note that FID is a negative
indicator, so the smaller the REL, the better the performance. While
it is the opposite for CLS and DET tasks.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 9: The raw results without error correction. Sparsity 0% denotes the origin model without sparsification. ABS denotes the
absolute precision, and REL denotes the relative precision against the one without reconstruction.

Task Datasets Model
Sparsity (%)

0 50 60 70 80

ABS REL ABS REL ABS REL ABD REL

CLS ImageNet

ResNet-18 70.88 70.28 +4.35 69.02 +12.12 64.61 +30.58 46.66 +42.90
ResNet-50 77.67 76.92 +3.43 74.65 +9.61 61.80 +33.13 1.21 +0.93
RegNetX-200M 68.41 64.94 +11.05 58.73 +28.27 43.80 +37.73 20.26 +19.93
RegNetX-400M 71.84 69.95 +10.71 66.36 +33.25 57.47 +53.64 28.08 +27.90
MobileNet-x1.0 72.84 69.90 +12.91 60.42 +31.68 31.16 +29.44 0.87 +0.76

DET MSCOCO17 RetinaNet-ResNet18 32.70 32.50 +1.60 32.20 +16.50 31.90 +31.90 30.10 +30.10
RetinaNet-ResNet50 37.90 37.80 +5.30 37.60 +17.90 36.50 +35.00 35.10 +35.10

GEN LSUN-Bedroom Stable Diffusion 2.97 4.25 -44.78 - - - - - -
LSUN-Churches Stable Diffusion 4.55 5.29 -24.05 - - - - - -

Table 10: The raw results with error correction. Sparsity 0% denotes the origin model without sparsification. ABS denotes the
absolute precision, and REL denotes the relative precision against the one without reconstruction.

Task Datasets Model
Sparsity (%)

0 50 60 70 80

ABS REL ABS REL ABS REL ABD REL

CLS ImageNet

ResNet-18 70.88 70.27 +4.34 69.10 +12.20 64.64 +30.61 47.70 +43.94
ResNet-50 77.67 76.92 +3.43 75.22 +10.18 62.80 +34.13 1.53 +1.23
RegNetX-200M 68.41 65.00 +11.05 61.28 +30.82 52.42 +46.35 29.98 +29.65
RegNetX-400M 71.84 69.94 +10.70 67.92 +34.81 61.55 +57.71 41.02 +40.84
MobileNet-x1.0 72.84 69.90 +12.92 66.23 +37.49 46.45 +44.73 0.63 +0.52

DET MSCOCO17 RetinaNet-ResNet18 32.70 26.90 0 21.40 +5.70 1.20 +1.20 0 0
RetinaNet-ResNet50 37.90 10.20 0 0 0 0 0 0 0

GEN LSUN-Bedroom Stable Diffusion 2.97 4.33 -44.70 - - - - - -
LSUN-Churches Stable Diffusion 4.55 5.27 -24.07 - - - - - -

Table 11: The raw results using the output of the sparse model as input. Sparsity 0% denotes the origin model without
sparsification. ABS denotes the absolute precision, andREL denotes the relative precision against the onewithout reconstruction.

Task Datasets Model
Sparsity (%)

0 50 60 70 80

ABS REL ABS REL ABS REL ABD REL

CLS ImageNet

ResNet-18 70.88 69.83 +3.90 68.52 +11.62 63.28 +29.25 45.98 +42.22
ResNet-50 77.67 77.03 +3.54 75.64 +10.60 65.09 +36.42 10.92 +10.64
RegNetX-200M 68.41 64.90 +10.92 61.28 +30.82 52.42 +46.35 29.98 +29.65
RegNetX-400M 71.84 70.03 +10.79 66.86 +33.76 59.90 +56.07 37.54 +37.36
MobileNet-x1.0 72.84 70.25 +13.26 66.22 +37.48 46.40 +44.69 0.63 +0.52

DET MSCOCO17 RetinaNet-ResNet18 32.70 32.40 +1.50 32.10 +16.40 31.80 +31.80 29.90 +29.90
RetinaNet-ResNet50 37.90 37.80 +5.30 37.60 +17.90 36.50 +35.00 35.10 +35.10

GEN LSUN-Bedroom Stable Diffusion 2.97 4.25 -44.78 - - - - - -
LSUN-Churches Stable Diffusion 4.55 5.29 -24.05 - - - - - -

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Supplementary Materials: PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models ACM MM, 2024, Melbourne, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 12: The raw results using the output of the sparse model as input. Sparsity 0% denotes the origin model without
sparsification. ABS denotes the absolute precision, andREL denotes the relative precision against the onewithout reconstruction.

Task Datasets Model
Sparsity (%)

0 50 60 70 80

ABS REL ABS REL ABS REL ABD REL

CLS ImageNet

ResNet-18 70.88 69.81 +3.88 68.16 +11.26 62.57 +28.54 34.15 +30.39
ResNet-50 77.67 77.02 +3.54 75.22 +10.18 62.80 +34.13 1.53 +1.25
RegNetX-200M 68.41 63.92 +10.04 60.11 +29.65 48.97 +42.90 18.63 +18.30
RegNetX-400M 71.84 69.96 +10.72 66.60 +33.50 58.30 +54.47 32.75 +32.57
MobileNet-x1.0 72.84 69.28 +12.30 65.59 +36.85 45.05 +43.33 0.42 +0.31

DET MSCOCO17 RetinaNet-ResNet18 32.70 32.30 +1.40 31.90 +16.20 31.10 +31.10 29.00 +29.00
RetinaNet-ResNet50 37.90 37.50 +5.00 36.90 +17.20 35.50 +34.00 33.40 +33.40

GEN LSUN-Bedroom Stable Diffusion 2.97 4.77 -44.26 - - - - - -
LSUN-Churches Stable Diffusion 4.55 6.01 -23.33 - - - - - -

Table 13: The raw results using single reconstruction. Sparsity 0% denotes the origin model without sparsification. ABS denotes
the absolute precision, and REL denotes the relative precision against the one without reconstruction.

Task Datasets Model
Sparsity (%)

0 50 60 70 80

ABS REL ABS REL ABS REL ABD REL

CLS ImageNet

ResNet-18 70.88 70.31 +4.38 69.61 +12.71 67.59 +33.56 61.50 +57.74
ResNet-50 77.67 73.44 -0.04 71.32 +6.28 59.20 +30.53 14.41 +14.14
RegNetX-200M 68.41 64.01 +10.12 61.91 +31.45 54.95 +48.88 36.38 +36.05
RegNetX-400M 71.84 69.20 +9.95 67.85 +34.74 61.11 +57.27 35.37 +35.19
MobileNet-x1.0 72.84 65.90 +8.91 62.22 +33.48 46.04 +44.32 9.18 +9.07

DET MSCOCO17 RetinaNet-ResNet18 32.70 30.30 -0.60 29.70 +14.00 28.10 +28.10 22.60 +22.60
RetinaNet-ResNet50 37.90 36.10 +3.60 35.10 +15.40 32.20 +30.70 28.30 +28.30

GEN LSUN-Bedroom Stable Diffusion 2.97 5.51 -43.52 - - - - - -
LSUN-Churches Stable Diffusion 4.55 5.66 -23.68 - - - - - -

Table 14: The raw results using layer-wise reconstruction. Sparsity 0% denotes the origin model without sparsification. ABS
denotes the absolute precision, and REL denotes the relative precision against the one without reconstruction.

Task Datasets Model
Sparsity (%)

0 50 60 70 80

ABS REL ABS REL ABS REL ABD REL

CLS ImageNet

ResNet-18 70.88 70.41 +4.48 69.76 +12.86 67.84 +33.81 63.25 +59.49
ResNet-50 77.67 74.91 +1.42 73.24 +8.20 68.01 +39.34 52.40 +52.12
RegNetX-200M 68.41 64.87 +10.98 62.40 +31.94 56.20 +50.13 41.40 +41.07
RegNetX-400M 71.84 70.22 +10.97 68.57 +35.36 63.73 +59.89 49.33 +49.15
MobileNet-x1.0 72.84 65.94 +8.94 62.76 +34.02 50.16 +48.44 21.80 +21.69

DET MSCOCO17 RetinaNet-ResNet18 32.70 30.50 -0.40 30.30 +14.60 29.90 +29.90 26.30 +26.30
RetinaNet-ResNet50 37.90 36.40 +3.90 35.60 +15.90 34.20 +32.70 31.90 +31.90

GEN LSUN-Bedroom Stable Diffusion 2.97 5.43 -43.60 - - - - - -
LSUN-Churches Stable Diffusion 4.55 5.45 -23.89 - - - - - -

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 15: The raw results using block-wise reconstruction. Sparsity 0% denotes the origin model without sparsification. ABS
denotes the absolute precision, and REL denotes the relative precision against the one without reconstruction

Task Datasets Model
Sparsity (%)

0 50 60 70 80

ABS REL ABS REL ABS REL ABD REL

CLS ImageNet

ResNet-18 70.88 70.44 +4.51 69.70 +12.80 68.11 +34.08 64.08 +60.32
ResNet-50 77.67 75.08 +1.59 74.21 +9.17 71.44 +42.77 63.78 +63.50
RegNetX-200M 68.41 65.02 +11.13 63.91 +33.45 57.89 +51.82 44.49 +44.16
RegNetX-400M 71.84 70.98 +11.73 69.11 +36.00 65.53 +61.69 55.83 +55.65
MobileNet-x1.0 72.84 66.01 +9.02 65.14 +36.40 53.39 +51.67 27.21 +27.10

DET MSCOCO17 RetinaNet-ResNet18 32.70 32.30 +1.40 31.60 +15.90 30.50 +30.50 37.30 +27.30
RetinaNet-ResNet50 37.90 37.50 +5.00 37.10 +17.40 36.00 +34.50 33.20 +33.20

GEN LSUN-Bedroom Stable Diffusion 2.97 4.25 -44.78 - - - - - -
LSUN-Churches Stable Diffusion 4.55 5.29 -24.05 - - - - - -

Table 16: Network architectures used in our PTSBench.

Model Architecture

ResNet [15] residual
RegNetX [40] residual + group conv
MobileNet-V2 [42] depth-wise conv
MobileNet-V3 [18] squeeze-and-excitation block
ShuffleNet-V2 [34] group conv
DeiT [45] transformer
ViT [2] transformer

4.3 Neural Architecture and Model Size
Robustness

Table 17 shows different models’ raw results under different sparsity
rates. We also provide the intermediate mean relative accuracy loss
for each model architecture. The results of neural architecture and
model size robustness tracks are both calculated from it. We list
these networks’ unique structures in Table 16 to better demonstrate
these networks’ differences.

4.4 Different Tasks
Table 18 presents the raw results of different tasks track. The results
of the GEN task collapse when the sparsity rate is higher than 50%,
thus we do not take them into account in many tracks in the main
paper.

5 MORE DISCUSSION
5.1 Discussion of Novelty and Significance
We emphasize that our PTSBench includes the following significant
contributions: (1) the first systematic benchmark that enables a
new view to quantitatively evaluate fine-grained PTS algorithms
and the sparsification ability of models, (2) uncovering several
useful insights and take-away conclusions, and (3) a well-organized
open-source evaluation framework and codebase.

(1) PTSBench is the first effort to facilitate comprehensive and
systematic evaluation and comparisons between PTS algo-
rithms and models. PTSBench deconstructs the common
pipeline used by existing methods and, based on summariz-
ing a universal paradigm for PTS, explores the fine-grained
algorithms of PTS in detail. It also, for the first time, decou-
ples the model’s sparsity effects from the sparsity algorithms,
linking and exploring sparsity abilities as an inherent aspect
of the model itself. In existing works, the sparsity algorithms
and model architectures are often asynchronously consid-
ered, which may result in misleading experiments and con-
clusions. Our PTSBench enables a new approach towards a
fair comparison of different models by building a unified eval-
uation track for each model on neural architecture, model
size robustness, and different tasks.

(2) PTSBench reveals several valuable and useful insights and
conclusions. Based on the systematic and quantitative evalu-
ation, superior guidance can emerge, which is essential for
pushing PTS algorithms to be accurate and efficient. For in-
stance, we recommend using block-wise reconstruction for
its superior accuracy and efficiency. We also provide several
interesting hypotheses and valuable observations, such as
the attention-based models, which are usually more suitable
for sparsification for their uniquemechanism. These unprece-
dented quantitative insights identify which techniques are
effective and which models tend to be sparsification-friendly,
which may provide convenience for further research and
practical deployment.

(3) PTSBench is an upcoming well-coded open-source frame-
work. It will enable every individual to easily evaluate a
model’s sparsity ability. It also outperforms for its coding.We
provide a comparison of PTSBench and POT[26], as shown
in Table19. Our PTSBench outperforms in both accuracy and
efficiency. In future work, we will also include more state-of-
the-art methods. We hope our PTSBench can provide useful
advice for future studies.

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Supplementary Materials: PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models ACM MM, 2024, Melbourne, Australia

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 17: The Top@1/Top@5 results of differentmodels under different sparsity rates. MRAL denotes themean relative accuracy
loss, which is introduced in the main paper.

Model Family Model Architecture Dense Sparsity Rate (%) MRAL
50 60 70 80

ResNet [15]

ResNet-18 70.88/90.44 69.94/89.62 69.09/89.07 66.22/87.56 54.57/79.85 0.334/0.173
ResNet-34 74.74/92.94 74.31/92.13 73.66/91.83 71.05/90.53 59.5183.67 0.273/0.146
ResNet-50 77.67/94.16 77.49/93.98 76.44/93.15 73.13/91.65 48.22/73.43 0.453/0.257
ResNet-101 79.29/94.93 78.90/94.33 77.36/93.72 69.61/90.32 11.07/25.16 1.011/0.802
ResNet-152 79.91/95.27 79.54/94.66 77.75/94.05 69.09/90.52 7.30/13.51 1.075/0.927

RegNetX [40]

RegNetX-200M 68.41/89.11 65.34/86.79 62.02/84.88 53.22/79.80 31.45/60.70 0.900/0.496
RegNetX-400M 72.05/91.27 69.96/89.63 66.60/88.01 58.30/83.24 32.75/63.07 0.841/0.450
RegNetX-600M 73.43/92.10 72.13/90.90 69.90/89.92 63.19/86.67 42.01/71.91 0.633/0.314
RegNetX-800M 74.83/92.89 73.49/91.80 71.44/90.79 65.69/87.80 42.11/71.90 0.622/0.315
RegNetX-1600M 76.78/93.85 75.35/92.86 72.35/91.63 61.49/86.49 24.55/48.66 0.955/0.594
RegNetX-3200M 78.21/94.60 76.72/93.55 73.77/92.29 60.58/86.26 8.74/20.47 1.189/0.907
RegNetX-4000M 78.86/94.69 77.93/93.98 75.44/93.11 66.01/89.23 23.12/41.45 0.925/0.644
RegNetX-6400M 78.94/95.03 78.75/94.44 77.82/94.18 75.33/93.24 66.31/88.93 0.222/0.097

ShuffleNetV2 [34]

ShuffleNetV2-x0.5 61.25/83.34 59.31/81.44 58.06/80.73 55.55/79.35 47.94/74.38 0.393/0.209
ShuffleNetV2-x1.0 69.75/89.46 67.22/87.56 64.20/86.28 56.44/82.09 32.78/61.59 0.836/0.450
ShuffleNetV2-x1.5 72.78/91.19 69.68/89.27 65.97/87.42 55.56/81.37 27.58/55.02 0.993/0.566
ShuffleNetV2-x2.0 74.33/92.06 72.14/90.45 69.60/89.13 62.36/85.06 39.39/66.20 0.724/0.406

MobileNetV2 [42]

MobileNetV2-x0.5 64.95/86.48 63.28/84.76 61.89/84.01 57.89/82.02 39.75/68.04 0.568/0.312
MobileNetV2-x0.75 70.27/89.98 68.19/88.45 65.53/87.05 55.69/81.28 19.01/39.12 1.033/0.711
MobileNetV2-x1.0 72.84/91.61 70.63/89.90 66.76/88.21 52.56/79.00 10.34/24.89 1.250/0.921
MobileNetV2-x1.4 75.57/92.61 73.95/91.84 70.85/90.49 59.36/83.66 11.81/27.22 1.142/0.833

MobileNetV3 [18]

MobileNetV3-x0.35 50.57/74.53 49.71/73.88 48.82/73.23 47.24/71.12 42.81/68.78 0.271/0.135
MobileNetV3-x0.5 57.68/80.50 56.66/79.78 55.58/79.14 53.25/77.60 44.51/71.49 0.358/0.173
MobileNetV3-x0.75 63.05/84.41 61.68/83.60 60.19/82.75 55.95/80.28 39.20/67.48 0.557/0.278
MobileNetV3-x1.0 66.93/87.05 65.26/86.24 63.13/85.04 56.39/81.21 32.41/59.72 0.754/0.413
MobileNetV3-x1.4 71.31/89.84 69.76/89.19 67.78/88.32 62.01/85.04 38.65/66.65 0.659/0.335

ViT[2] ViT-B/32 75.86/92.49 75.29/92.15 74.03/91.48 67.43/87.50 45.21/69.85 0.546/0.313
ViT-L/16 77.28/94.77 77.10/93.91 75.32/93.05 70.42/90.78 50.41/77.56 0.464/0.250

DeiT[45] DeiT-S 79.90/95.00 77.47/93.97 74.05/92.14 60.34/83.87 22.83/41.53 1.062/0.720
DeiT-B 81.80/95.60 81.16/95.37 80.48/93.06 78.62/94.23 71.93/90.38 0.183/0.097

5.2 Discussion of the Rationale for Using PTS to
Benchmark Model’s Sparisty Ability

Using the Post-Training Sparsification (PTS) algorithm to evaluate
a model’s sparsity ability primarily involves two considerations:

(1) Efficiency evaluation: Using non-PTS methods typically
requires training models on large datasets, which can take
many hours or even days to complete. This extensive time
commitment can be impractical for benchmarking exper-
iments, where numerous models need to be evaluated. In
contrast, the PTS method can sparsify a model in just a few
hours or even minutes. Therefore, from a time efficiency
perspective, PTS is a superior choice.

(2) Avoiding the impact of training: The PTS method does
not require extensive training of the model, which better
reflects the inherent sparsity capabilities of the model’s struc-
ture. We also test a non-PTS method by concating a training

step after the PTS pipeline. The results are shown in Table
20. We can observe that even at a high sparsity rate, the
models can still easily reach a high performance, which is
not beneficial to the evaluation of models.

Therefore, we take PTS methods as the ruler of the model from
the two aforementioned aspects.

5.3 Discussion of Error Correction
In the main paper, we find that the effectiveness of the error correc-
tion step varies across different tasks. In classification tasks, error
correction can enhance the final performance of the model. How-
ever, in detection tasks, error correction tends to result in a low
model performance. In this section, we delve deeper into investigat-
ing the reasons behind these differences. We aim to find whether
the failure of error correction under the detection task is related to
the sensitivity of the neck and head in detectors.

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 18: The raw results of different tasks. The sparsity 0 denotes the origin model without sparsification. Each dataset and
model architecture is introduced in the previous. The CLS task uses accuracy as a metric, the DET task uses mAP as a metric,
and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)

0 50 60 70 80

CLS

ImageNet

ResNet-18 70.88 69.83 68.25 62.85 35.08
ResNet-50 77.67 77.30 75.97 68.86 2.17
RegNetX-200M 68.41 64.68 59.68 48.36 24.47
RegNetX-400M 70.05 67.53 65.67 56.62 28.55
MobileNet-x1.0 72.84 70.58 66.19 46.10 0.39
ViT 77.28 77.1 75.32 70.42 50.41

CIFAR-10
ResNet-32 93.53 93.12 92.51 90.29 70.16
ResNet-56 94.37 93.93 93.61 92.84 87.03
VGG-19 93.91 93.86 93.90 93.8 93.78

CIFAR-100
ResNet-32 70.16 67.95 64.09 48.50 11.59
ResNet-56 72.63 72.35 71.02 64.63 39.10
VGG-19 73.87 73.84 73.85 73.88 73.47

DET
PASCAL VOC07 MobileNetV2-SSDLite 68.70 68.54 67.85 64.45 33.56

MobileNetV1-SSD 67.50 67.41 66.85 66.29 57.78

MSCOCO17 RetinaNet-ResNet18 32.70 31.70 30.60 30.50 19.90
RetinaNet-ResNet50 37.90 37.20 36.50 34.40 25.80

GEN LSUN-Bedroom Stable Diffusion 2.97 4.25 57.88 1129.12 29803.50

LSUN-Churches Stable Diffusion 4.55 5.29 79.28 3922.09 87293.50

Table 19: Comparison of the accuracy and efficiency between
POT and PTSBench. OpenVINO is the framework POT adopt.

Model Framework Accuracy Time

ResNet-18 OpenVINO 70.10 4h15min
PTSBench 70.27 1h26min

ResNet-50 OpenVINO 76.82 10h16min
PTSBench 76.92 2h6min

RegNetX-200M OpenVINO 64.68 3h1min
PTSBench 64.94 43min19s

RegNetX-400M OpenVino 67.53 6h21min
PTSBench 69.29 1h8min

MobileNetV2-x1.0 OpenVino 65.51 5h40min
PTSBench 69.90 1h4min

Table 20: The Top@1 accuracy results of a non-PTS method.

Model Dense Sparsity Rate (%)

50 60 70 80

ResNet-18 70.88 70.95 70.67 70.42 68.62
ResNet-50 77.67 77.49 77.46 77.29 76.26
RegNetX-200M 68.41 67.29 66.30 64.35 60.40
RegNetX-400M 72.05 71.01 70.93 69.54 66.98
MobileNetV2 72.84 71.26 70.16 67.53 63.43

Table 21: Comparing the results of applying error correction
to different components of the detection model.

Sparsity Rate (%) Method

no EC all EC backbone EC

50 32.1 30.2 31.1
60 31.6 21.4 22.8
70 30.5 1.2 2.7
80 27.3 0 0
90 15.5 0 0

We apply error correction only to the backbone part of the detec-
tion model while preserving the post-sparsity weight distribution
in the neck and head parts. We aim to find whether the failure of
error correction under the detection task is related to the sensitivity
of the neck and head in detectors. The results are shown in Table 21.
We can find that including the neck and head in the error correction
process does not significantly impact the results (e.g., with 1% mAP
increase at 50%, 60%, and 70% sparsity rates). This suggests that the
failure of error correction under the detection task is not because
of the neck and head. We will investigate the reason behind it in
our future work.

As we also use other techniques like parameter reconstruction in
previous experiments, it is still unclear whether the error correction
fails because of itself instead of the combination of other techniques.
To further investigate this, after performing error correction, we

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Supplementary Materials: PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models ACM MM, 2024, Melbourne, Australia

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Table 22: The results of directly measuring the model’s accu-
racy without undergoing reconstruction.

Sparsity Rate (%) Method

w/o EC w/ EC

50 32.5 0.1
60 26.6 0
70 19.2 0
80 2.4 0
90 0 0

bypassed the reconstruction process and directly evaluated the
accuracy of the sparse model. The results are presented in Table 22.
We can see that there is a huge gap between the methods using EC
and not using EC (e.g., at 50% sparsity rate, the method with EC
occurs a collapse on mAP while the result of the method without
EC is 32.5), which demonstrates the negative effect caused by the
EC itself.

REFERENCES
[1] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[2] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[3] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy,
and Dharmendra S Modha. 2019. Learned step size quantization. arXiv preprint
arXiv:1902.08153 (2019).

[4] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen.
2020. Rigging the lottery: Making all tickets winners. In International Conference
on Machine Learning. PMLR, 2943–2952.

[5] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. 2010. The pascal visual object classes (voc) challenge. Inter-
national journal of computer vision 88 (2010), 303–338.

[6] Gongfan Fang, Xinyin Ma, and Xinchao Wang. 2023. Structural Pruning for
Diffusion Models. arXiv preprint arXiv:2305.10924 (2023).

[7] Jonathan Frankle andMichael Carbin. 2018. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018).

[8] Elias Frantar andDanAlistarh. 2022. Optimal brain compression: A framework for
accurate post-training quantization and pruning. Advances in Neural Information
Processing Systems 35 (2022), 4475–4488.

[9] Elias Frantar and Dan Alistarh. 2022. SPDY: Accurate pruning with speedup
guarantees. In International Conference on Machine Learning. PMLR, 6726–6743.

[10] Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The state of sparsity in deep
neural networks. arXiv preprint arXiv:1902.09574 (2019).

[11] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and
Kurt Keutzer. 2022. A survey of quantization methods for efficient neural network
inference. In Low-Power Computer Vision. Chapman and Hall/CRC, 291–326.

[12] Ruihao Gong, Yang Yong, Zining Wang, Jinyang Guo, Xiuying Wei, Yuqing Ma,
and Xianglong Liu. 2024. Fast and Controllable Post-training Sparsity: Learning
Optimal Sparsity Allocation with Global Constraint in Minutes. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 38. 12190–12198.

[13] Jinyang Guo, Jiaheng Liu, Zining Wang, Yuqing Ma, Ruihao Gong, Ke Xu, and
Xianglong Liu. 2023. Adaptive Contrastive Knowledge Distillation for BERT
Compression. In Findings of the Association for Computational Linguistics: ACL
2023. 8941–8953.

[14] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. Advances in neural information
processing systems 28 (2015).

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[16] Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. 2023.
PTQD: Accurate Post-Training Quantization for Diffusion Models. arXiv preprint
arXiv:2305.10657 (2023).

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[18] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference
on computer vision. 1314–1324.

[19] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[20] Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel
Soudry. 2021. Accelerated sparse neural training: A provable and efficient method
to find n: m transposable masks. Advances in neural information processing systems
34 (2021), 21099–21111.

[21] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized neural networks: Training neural networks with low
precision weights and activations. The Journal of Machine Learning Research 18,
1 (2017), 6869–6898.

[22] Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. 2021.
Accurate post training quantization with small calibration sets. In International
Conference on Machine Learning. PMLR, 4466–4475.

[23] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and2
training of neural networks for efficient integer-arithmetic-only inference. In
IEEE Conf. Comput. Vis. Pattern Recog. 2704–2713.

[24] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[25] Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer,
and Amir Gholami. 2022. A fast post-training pruning framework for transform-
ers. Advances in Neural Information Processing Systems 35 (2022), 24101–24116.

[26] Ivan Lazarevich, Alexander Kozlov, and Nikita Malinin. 2021. Post-training deep
neural network pruning via layer-wise calibration. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 798–805.

[27] Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. 2020.
Layer-adaptive sparsity for the magnitude-based pruning. arXiv preprint
arXiv:2010.07611 (2020).

[28] Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, and Luc
Van Gool. 2022. Revisiting random channel pruning for neural network compres-
sion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 191–201.

[29] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, PengHu, Qi Zhang, Fengwei Yu,Wei
Wang, and Shi Gu. 2021. Brecq: Pushing the limit of post-training quantization
by block reconstruction. arXiv preprint arXiv:2102.05426 (2021).

[30] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[31] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 740–
755.

[32] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu,
ZhangyangWang, andMykola Pechenizkiy. 2022. The unreasonable effectiveness
of random pruning: Return of the most naive baseline for sparse training. arXiv
preprint arXiv:2202.02643 (2022).

[33] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detec-
tor. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer, 21–37.

[34] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. Shufflenet
v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the
European conference on computer vision (ECCV). 116–131.

[35] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen,
Madeleine Gibescu, and Antonio Liotta. 2018. Scalable training of artificial neural
networks with adaptive sparse connectivity inspired by network science. Nature
communications 9, 1 (2018), 2383.

[36] HeshamMostafa and Xin Wang. 2019. Parameter efficient training of deep convo-
lutional neural networks by dynamic sparse reparameterization. In International
Conference on Machine Learning. PMLR, 4646–4655.

[37] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen
Blankevoort. 2020. Up or down? adaptive rounding for post-training quantization.
In International Conference on Machine Learning. PMLR, 7197–7206.

[38] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. 2019.
Data-free quantization through weight equalization and bias correction. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision. 1325–1334.

[39] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart
Van Baalen, and Tijmen Blankevoort. 2021. A white paper on neural network
quantization. arXiv preprint arXiv:2106.08295 (2021).

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

ACM MM, 2024, Melbourne, Australia Anonymous Authors

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

[40] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr
Dollár. 2020. Designing network design spaces. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 10428–10436.

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
10684–10695.

[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[43] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[44] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2818–2826.

[45] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. 2021. Training data-efficient image transformers
& distillation through attention. In International conference on machine learning.
PMLR, 10347–10357.

[46] Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. 2022.
Qdrop: Randomly dropping quantization for extremely low-bit post-training
quantization. arXiv preprint arXiv:2203.05740 (2022).

[47] Kaixin Xu, ZheWang, Xue Geng, MinWu, Xiaoli Li, andWeisi Lin. 2023. Efficient
Joint Optimization of Layer-Adaptive Weight Pruning in Deep Neural Networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision. 17447–
17457.

[48] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. 2017. On compressing
deep models by low rank and sparse decomposition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 7370–7379.

[49] Michael Zhu and Suyog Gupta. 2017. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv preprint arXiv:1710.01878
(2017).

	1 Details of Post-Training Sparsity Algorithms
	1.1 Post-Training Sparsity
	1.2 Comparison with Other Model Compression Techniques
	1.3 Fine-grained PTS Algorithms

	2 Details of experimental settings
	2.1 Details of Datasets
	2.2 Details of Neural Architecture

	3 More evaluation results
	3.1 Results on More Sparsity Rates
	3.2 Results on Sparsity Allocation
	3.3 Results on Time Speed

	4 Raw Results
	4.1 Sparsity Allocation
	4.2 Reconstruction
	4.3 Neural Architecture and Model Size Robustness
	4.4 Different Tasks

	5 More Discussion
	5.1 Discussion of Novelty and Significance
	5.2 Discussion of the Rationale for Using PTS to Benchmark Model's Sparisty Ability
	5.3 Discussion of Error Correction

	References

