23
24
25
26
27
28
29
30

32
33

35

36

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Supplementary Materials: PTSBench: A Comprehensive
Post-Training Sparsity Benchmark Towards Algorithms and
Models

Anonymous Authors

1 DETAILS OF POST-TRAINING SPARSITY
ALGORITHMS

Model compression methods, including quantization[16, 21, 23, 29,
38, 46], distillation[13, 17], and sparsification[6, 7, 12, 14, 25-28, 32,
47], have been widely used in various deep learning tasks, especially
in computer vision task[10, 11]. Model sparsification allows for
efficient acceleration while maintaining model accuracy by simply
pruning the weights. Consequently, it has increasingly garnered
attention in recent years. Among all sparsification techniques, post-
training sparsity (PTS) stands out for its less demand for data and
no need for re-training, while other types often require training on
a huge datasets[4, 7, 49].

1.1 Post-Training Sparsity

Most state-of-the-art PTS methods work by adopting a layer-wise
reconstruction [8, 12, 20, 26]. In this setting, we can define the
problem as follows. Mathematically, we model a layer ¢ as a function
fe(x¢, we) acting on inputs xp with weights wy.

argmin L (M (f¢ (x¢, we)) , M (fe (xe,We))) ,
K ey
subject to ||we||o < k.
In practice, the expectation of the output activations is often used
as the metric for assessment. Therefore, we can get the formula as
follows.

arg min B, L(fr(xe, we). fo(xe.),
e @
subject to ||we]|o < k.

The expectation over the layer inputs x, is typically approxi-
mated by calculating the mean over a small set of N input samples.
Furthermore, most previous work targets the sparsification of lin-
ear and convolutional layers, which can be represented as linear
layers by unfolding them, as these types of layers are commonly
utilized. In practice, the squared loss metric is employed to evaluate
the error in approximation since it can be analyzed by a series of
approximations, such as second-order information [37] and hessian
matrix [29]. Moreover, the effectiveness of this approach has been
demonstrated in many applications [9, 22, 29, 37].

By following these conventions, we can formally state the layer-
rowXdcol and

X, € R%orXN are weights and activations matrices respectively.

wise reconstruction problem as below, where W, € R4

argfnin [[WeXp — W{’ang,
W (©)
subjectto ||Wyl|o < k.

In current studies, most of them followed this layer-wise para-
digm, such as POT[26] and OBC [8]. Each of these methods designs

its own criteria for reconstruction based on the layer-wise recon-
struction paradigm. For example, the POT is based on magnitude,
while OBC relies on the Hessian matrix. However, most of these
methods lack a more fine-grained exploration of the layer-wise
paradigm itself. In practical application scenarios, we have iden-
tified three types of fine-grained pluggable components that can
influence the effectiveness of sparsity.

1.2 Comparison with Other Model Compression
Techniques

Current model compression studies mainly focus on reducing orig-
inal models’ size and computation complexity. Model quantzation
reduces the size of a model and enhances computational efficiency
by lowering the precision of weights and activations within the
network [3, 29, 46]. Common quantization approaches involve
converting from 32-bit floating-point numbers to 8-bit integers
or even lower bit depths. Model distillation involves using a pre-
trained larger model (the teacher model) to guide the training of a
smaller model (the student model)[13, 17]. This method leverages
the knowledge from the large model to enhance the performance
of the smaller model. Lightweight model design involves creating
or modifying existing neural network architectures from scratch
to reduce computational complexity and model size while main-
taining performance[34?]. Low-rank decomposition reduces model
parameters by decomposing weight matrices in neural networks
into products of matrices with lower ranks[48]. Model pruning
reduces the complexity of neural networks by removing some of
the less important connections (weights)[12, 49].

1.3 Fine-grained PTS Algorithms

The main paper investigates several fine-grained PTS algorithms
without a thorough introduction. In this section, we introduce each
algorithm we benchmark in detail.

1.3.1 Sparsity Allocation. We choose 4 commonly used sparsity
allocation strategies: Uniform, L2Norm, ERK, and FCPTS.

(1) Uniform [36]: The sparsity s; of each independent layer is
equal to the global sparsity constraint S.

(2) L2Norm[26]: First, calculate the number of weights to be
removed, ng, based on the global sparsity rate S and the total
number of parameters n.

ns=S-n 4

Sort all weights according to their L2 norm size. Mark the
smallest ns weights for removal. This process results in the
specific sparsity rate for each layer of the network.

(3) ERK (Erdos-Rényi-Kernel) [4]:This method is an improve-
ment of origin Erdds-Rényi (ER) algorithm[35]. Origin ER
algorithm modifies the sparsity s, of each layer obtained by

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

ACM MM, 2024, Melbourne, Australia

L2Norm as the following formula.

ne—1+nyg
ne—1xng)’

Sp=s¢- (1 (5)
where ny denotes the number of neurons at layer ¢. Scaling
the sparsity enables the number of weights in a sparse layer
to scale with the sum of the number of input and output
channels.

ERK enhances ER by including the kernel dimensions in the
scaling factors.

ne—1+ng+wy +h[

(©)

’

Se=se{l- ng_1%ngxwpshe)’
where w; and h; are the width and height of ¢ th convolu-
tional layer. The sparsity of the fully connected layers is the
same as in the ER. In a word, ERK allocates larger sparsity
for layers that possess more parameters.

(4) FCPTS[12]: This method allows us to learn the sparsity
allocation accurately and rapidly by incorporating a differen-
tiable bridge function and a controllable optimization object.

L=Lyec+Le, (7)

Lyec = DKL(Yd“YS)s (8)
D.pSene

Le = |=—=——— — 59|, 9

c | an 0| ()

where rp denotes the sparsity rate and ny is element number
of weights of the th layer. rj is the global sparsity rate target.
Dk (+) represents the Kullback-Leibler divergence function.
Y; and Y; are the output of the dense and sparse models.

1.3.2 Reconstruction. After sparsifying the model according to
the allocated sparsity rates, reconstruction techniques are usually
necessary to restore the accuracy of the sparse model. We utilize a
small set of unlabeled samples to reconstruct the sparse model’s
outputs with those of the original model. This process can be viewed
as distilling the sparse model using the dense model as a teacher. In
our implementation, we utilize the standard Mean Squared Error
(MSE) as the loss function, as shown in 10:

L= > (Y)- f(Ws 0 M, X]) = by)?,
iebatch (10)
where Yl; = f(Wd,Xé).

Here, f(X, W) is the convolutional or matrix-multiplication op-
eration conducted by the layer with weight W acting upon input
X. X is the input of this layer from the dense model. M; is the
binary mask corresponding to the sparsity pattern, which is set to
zero if the weight is removed. The sparse binary mask is kept fixed,
and gradient descent based on the loss function defined above is
used for each layer independently to update the parameters and
determine the optimal sparse weights and biases W, bs.

Based on a summary of previous work and practical experimen-
tal observations, we have identified three fine-grained algorithms
crucial to the reconstruction’s effectiveness. In this section, we will
provide a detailed introduction to these three algorithms.

Error correction. After establishing the layer-wise sparsity
rates, the weights are set to zero based on their specific criterion
within each layer. This sparsification operation distorts the weight
distribution, introducing biases and scale shifts. Error correction

Anonymous Authors

is widely used in post-training quantization (PTQ) [16, 38, 39] to
restore the distortion. However, current PTS methods [26] do not
comprehensively and systematically evaluate this procedure. There-
fore, we borrow this concept and validate whether this component
can be effective for PTS.

To transfer error correction to PTS, we first perform weight
correction according to 11:

Wy = AWs + E(Wy) — E(AW;),
o(Wy) (11)
o(Ws) +e€

W is the weights after the weight correction operation, and W
and W, denote the weights of sparse and dense models, respectively.
E and o are the mean and standard deviation operators, € is a small
constant.

Then we conduct bias correction as 12:

bs = bg + E(f(Wg, Xg)) — E(f (W, Xg)). (12)

where f (W, X) represents the convolutional or matrix-multiplication
operation performed by the layer on inputs X with weights W. by
and X are bias and input activation in the dense model. After the
weight and bias correction, we can partially correct the error caused
by the distribution shift of weights and biases.

The input of reconstruction. During the reconstruction, we
can either use the output of the previous reconstruction unit from
the dense model as the input (i.e., X;; in 10) or opt for the output after
the previous layers, which are sparsified. We find that the choice
of reconstruction inputs also greatly impacts the final results. This
issue has not been systematically investigated in previous work.
Hence, we also explore this factor in our PTSBench.

Reconstruction granularity.

In the main paper, we provide descriptions of various reconstruc-
tion granularities. To have a better explanation, we offer a more
intuitive visual illustration, as shown in Figure 1.

where A =

2 DETAILS OF EXPERIMENTAL SETTINGS
2.1 Details of Datasets

In this section, we give a detailed introduction to the datasets we
include.

CIFAR-10/100[24]: The CIFAR-10 and CIFAR-100 are two widely
used computer vision datasets created by the Canadian Institute for
Advanced Research. The CIFAR-10 dataset consists of 60,000 color
images, each sized at 32x32 pixels, divided into 10 classes with 6,000
images per class. In contrast, the CIFAR-100 dataset also comprises
60,000 images but is categorized into 100 classes, with each class
containing 600 images. These datasets are commonly utilized for
training machine learning and computer vision algorithms, partic-
ularly in image recognition and classification tasks. The evaluation
metric of CIFAR-10/100 is accuracy, defined as :

TP+TN
Accuracy = ,
TP+TN +FP+FN
where TP (True Positive) means cases correctly identified as posi-
tive, TN (True Negative) means cases correctly identified as nega-

tive, FP (False positive) means cases incorrectly identified as posi-
tive, and FN(False Negative) means cases incorrectly identified as

(13)

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289
290

Supplementary Materials: PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models

s
/
p
I (1,1 #classes)
|
I (W/32,h/32,¢4) %
'
|
| ? (W/2,h/2,¢)) $ (W/4,h/4,cq)
|
\ (w,h,3) { (W/2,h/2,¢)
\ Network Structure Block-wise

ACM MM, 2024, Melbourne, Australia

——>»backward propagatioﬁ \

) (N\

(w,h,c;*e)

(w,h,c;*e)

batchnorm

—¢ (w,h,c;*e)

conv

) L —>» (wheyp)
Single /
-

Figure 1: Visualization of different reconstruction granularities. We take a typical CNN structure model [40] as an example.
A network consists of a stem layer (usually the first convolutional layer on the input), a body, and a head (usually a fully
connected layer). A body is composed of several blocks, and a block contains several layers.

negative. We should calculate the proportion of TP and TN in all
evaluated cases to estimate the accuracy.

ImageNet-1k:[1] ImageNet is a substantial dataset extensively
used for visual object recognition, consisting of over 14 million im-
ages organized into roughly 20,000 categories based on the WordNet
hierarchy. Specifically, it includes about 1.2 million images in the
training set, 50,000 images in the validation set, and 150,000 images
in the test set. These images are annotated and used to train, vali-
date, and test machine learning models. ImageNet is well-known for
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
a competition that has significantly contributed to advancements
in deep learning and computer vision by benchmarking algorithms
across 1,000 different categories.

PASCAL VOCO07[5]: The PASCAL VOC07 (PASCAL Visual
Object Classes 2007) dataset is a key computer vision resource
consisting of 9,963 images annotated across 20 specific categories.
These categories are: Person, Bird, Cat, Cow, Dog, Horse, Sheep,
Aeroplane, Bicycle, Boat, Bus, Car, Motorbike, Train, Bottle, Chair,
Dining table, Potted plant, Sofa, and TV/Monitor. The dataset is
divided into training, validation, and testing sets and is used for a
variety of tasks such as object classification, detection, and segmen-
tation, serving as a benchmark for evaluating the performance of
advanced object detection algorithms. The PASCAL VOCO07 uses
mean average precision (mAP) to evaluate results, which is defined
as:

1 n
mAP = = » AP, (14)
n
k=1
where AP). denotes the average precision of the kth category, which
calculates that area under the precision-recall curve:

1
APy = A pk(r)dr. (15)

MSCOCO0-2017[31]: The MS COCO (Microsoft Common Ob-
jects in Context) dataset is a large-scale object detection, segmen-
tation, key-point detection, and captioning dataset. The dataset
consists of 328K images. According to community feedback, in
the 2017 release, the training/validation split was changed from

83K/41K to 118K/5K. And the images and annotations are the same.
The 2017 test set is a subset of 41K images from the 2015 test set.
Additionally, 123K images are included in the unannotated dataset.
The COCO17 dataset also uses mean average precision (mAP) as
defined above PASCAL VOCO07 uses, which is defined as above.
LSUN-Churches/Bedroom: The LSUN (Large-scale Scene UN-
derstanding) dataset is a specialized collection aimed at scene un-
derstanding and includes specific categories of images such as bed-
rooms and churches. The LSUN dataset includes specific subsets
like LSUN-bedroom and LSUN-churches, aimed at advancing scene
understanding in computer vision. The LSUN-bedroom category
provides a vast collection of bedroom images, extensively used for
training algorithms in image generation and interior scene analysis
tasks. The LSUN-churches subset contains a variety of church exte-
rior images utilized primarily for architectural style classification
and generative modeling. These subsets help in refining algorithms’
capabilities in recognizing and generating images of complex in-
door and architectural scenes, forming a crucial part of the larger
LSUN initiative designed to improve machine understanding of di-
verse real-world environments. LSUN uses FID (Fréchet Inception
Distance) as the evaluation metric, which is defined as follows:

FID = || = gl l® + Tr(Sy + 39 = 2(3,39) /%), (16)

where (1, %) and (pg, %) denote the mean and covariance of the
feature vector, which are extracted by a pre-trained Inception V3
model[44], of the real images and generated images, Tr(+) calculates
the trace.

2.2 Details of Neural Architecture

This section provides a brief introduction to the benchmarked model
architectures, especially the specific structure.

ResNet[15]: ResNet, or Residual Network, is a revolutionary
convolutional neural network architecture introduced in 2015 that
effectively addresses the vanishing gradient problem in deep net-
works. It features residual blocks with skip connections, allowing
the training of much deeper networks by enabling layers to learn

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

ACM MM, 2024, Melbourne, Australia

identity functions, preventing performance degradation. This struc-
ture has led to significant improvements in various computer vision
tasks, making ResNet a cornerstone in deep learning advancements.

RegNetX[40]: RegNetX is a family of network architectures
that emerged from research on designing network architectures
systematically to achieve optimal trade-offs between speed, accu-
racy, and model complexity. Introduced by Facebook AI, RegNetX
models use a simple, regularized design that scales depth, width,
and resolution in a predictable manner. They are built using blocks
of convolutions with a consistent structure, which simplifies the
scaling process across different computational budgets and per-
formance needs. This approach allows for efficient and effective
scaling of models, making RegNetX suitable for a range of applica-
tions, from mobile devices to high-end servers, while maintaining
competitive performance in tasks like image classification.

MobileNet[18, 19, 42]: MobileNet is a class of efficient models
for mobile and edge devices, introduced by Google. It is designed
to provide lightweight, deep neural networks by using depth-wise
separable convolutions, significantly reducing the number of pa-
rameters and computational cost compared to standard convolu-
tions. MobileNetV2 and MobileNetV3 are both advancements of the
original MobileNet model, optimized for mobile and edge devices.
MobileNetV2 introduces the inverted residual structure and linear
bottlenecks to improve efficiency, while MobileNetV3, developed
using techniques like network architecture search, enhances the
model further with features like optimized squeeze-and-excitation
blocks and the hard-swish activation function.

ShuffleNet[34]: ShuffleNetV2 is an advanced neural network
architecture designed to be highly efficient for mobile devices, im-
proving upon its predecessor, ShuffleNet. It features an optimized
structure that reduces computational complexity while maintain-
ing high accuracy. Key improvements include the use of channel
split and shuffle operations to facilitate better feature mixing and a
streamlined architecture that minimizes memory access cost and
power consumption. These design choices make ShuffleNetV2 par-
ticularly effective for applications in resource-constrained environ-
ments where processing power and memory are limited.

VGG[43]: VGG is a classical convolutional neural network ar-
chitecture. It is proposed by an analysis of how to increase the
depth of such networks. It is characterized b its simplicity: the net-
work utilizes small 3 X 3 filters, and the only other components are
pooling layers and a fully connected layer.

ViT[2]: ViT, or Vision Transformer, is a pioneering model that
applies the transformer architecture, typically used in natural lan-
guage processing, to computer vision tasks. Introduced by Google in
2020, ViT segments an image into fixed-size patches, processes these
through multiple transformer layers, and uses self-attention mech-
anisms to capture complex image features at various scales. This
approach allows ViT to achieve impressive results on image classifi-
cation tasks, challenging traditional convolutional neural networks,
particularly in scenarios where large-scale training datasets are
available. ViT’s performance demonstrates the potential of trans-
formers to generalize across different domains beyond text process-
ing.

DeiT[45]: DeiT, or Data-efficient Image Transformers, is a model
that adapts the Vision Transformer (ViT) for more data-efficient
performance in image classification tasks. Developed by Facebook

Anonymous Authors

Al DeiT incorporates distillation techniques, where the transformer
learns from a pre-trained convolutional neural network acting as
a teacher. This approach improves DeiT’s training efficiency and
effectiveness, making it suitable for scenarios with limited data or
computational resources.

RetinaNet[30]: RetinaNet is a popular deep learning framework
for object detection that effectively addresses the challenge of de-
tecting objects across a range of scales and object sizes. Introduced
by Facebook Al in 2017, RetinaNet is notable for its use of the Focal
Loss function, which helps to solve the problem of class imbalance
by focusing training on hard-to-classify examples. This model com-
bines a feature pyramid network (FPN) with a ResNet backbone,
allowing it to efficiently detect objects at multiple resolutions. The
architecture is designed to be both fast and accurate, making it
highly effective for real-time object detection applications.

SSD[33]: SSD, or Single Shot MultiBox Detector, is an efficient
and powerful algorithm for object detection that performs detection
tasks in a single pass through the network, making it faster than
methods that require separate proposals and detection stages. Intro-
duced in 2016, SSD divides the image into a grid and uses a series
of convolutional layers to predict the presence of objects and their
bounding boxes at multiple scales directly from the feature maps.
This approach eliminates the need for a separate region proposal
network, streamlining the detection process and enhancing speed.
SSD is widely used for real-time applications due to its balance of
speed and accuracy.

Stable Diffusion[41]: Stable Diffusion is a state-of-the-art text-
to-image generation model developed by Stability Al and other
collaborators. Released in 2022, it utilizes a latent diffusion model
architecture to generate high-quality images based on textual de-
scriptions. The model works by gradually refining an initial random
noise image through a series of steps, using a deep learning net-
work to guide the transformation toward an image that matches
the textual input. Stable Diffusion is notable for its efficiency and
the ability to produce detailed, creative images quickly, even on
consumer-grade hardware. It has gained popularity for its open-
source availability, allowing widespread use and customization in
various applications ranging from art creation to educational tools.

3 MORE EVALUATION RESULTS

We provide more detailed experimental results in this section.

3.1 Results on More Sparsity Rates

In the main paper, we mainly choose 4 sparsity rates (50%, 60%, 70%,
and 80%) for evaluation. We report results under more sparsity rate
in Table 1. We can observe almost all models have no performance
decrease at a sparsity rate under 50%. In contrast, nearly all models
face a collapse of precision at a sparsity rate higher than 80%. There-
fore, to make the results more meaningful, we excluded sparsity
rates below 40% and above 90% from the benchmark evaluation.

3.2 Results on Sparsity Allocation

In addition to the sparsity allocation of ResNet-32 that we visualize
in the main paper, we provide more visualization results in this
section, as shown in Figure 2, Figure 3, and Figure 4. From these
figures, we can find similar observations as the main paper: 1)

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

446

463

465
466

467

469
470
471
472
473
474
475

476

478
479
480
481
482
483
484

485

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

512
513
514

515

516

517

518

519

520

521

522

Supplementary Materials: PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models

ACM MM, 2024, Melbourne, Australia

Table 1: The Top@1/Top@5 results under more sparsity rate. Sparsity 0 represents the results of the dense model without

sparsification.
Model Sparsity (%)
0 40 50 60 70 80 90
ResNet-18 70.88/90.44 70.69/90.35 70.10/90.11 68.40/89.10 63.72/86.51 44.94/71.50 6.03/15.70
RegNetX-200M 68.41/89.11 66.84/88.22 64.68/87.07 59.98/84.39 48.36/75.85 24.47/49.90 2.02/7.41
MobileNetV2-x0.5 64.95/86.47 63.38/85.36 62.32/84.82 62.21/83.28 54.29/78.92 24.41/48.14 0.18/0.76
ShuffleNetV2-x0.5 61.25/83.34 60.63/83.16 59.75/82.79 58.59/82.22 56.42/80.59 48.00/75.94 24.03/52.61

Remaining Ratio (%)
>

layer1.0.conv1
layer1.0.conv2
layer1.1.conv1
layer1.1.conv2

Sparsity Allocation of ResNet-18 Across Different Algorithms

layer2.0.conv1

layer2.0.conv2

layer2.0.downsample.0

layer2.1.conv1
layer2.1.conv2

layer3.0.conv1
layer3.0.conv2

layer3.0.downsample.0

layer3.1.conv1
layer3.1.conv2

layer4.0.conv1
layer4.0.conv2

layer4.0.downsample.0

—e— Trend Line
B [2Norm
0 ERK

N FCPTS

layer4.1.conv1

layer4.1.conv2

Figure 2: Visualization of the sparsity allocation of ResNet-18 on ImageNet. The name of each layer is listed at the bottom. The
black line denotes the average remaining ratio of the three algorithms.

Remaining Ratio (%)
>

-2

T T AN O T AN T AN T AN®
>>>>m'>>>>>>>>>
c ccc2cCccCccCccccc c C
Q0 0 0 0 a0 Q0 Q0 Q000 Q9
006G EGGQ9G6G60064009
Scoge-=addcSco
Tt €ococooooQqy
ma)a);mﬂ)a)ommu)a)az
2220 >
IR R I R

S

)

>

&

Sparsity Allocation of ResNet-50 Across Different Algorithms

layer2.0.downsample.0

2.1.conv1
2.1.conv2
2.1.conv3
2.2.conv1
2.2.conv2
2.2.conv3
2.3.conv1
2.3.conv2
2.3.conv3
3.0.conv1
3.0.conv2
3.0.conv3

3.1.conv1
3.1.conv2
3.1.conv3
3.2.conv1
3.2.conv2
3.2.conv3
3.3.conv1
3.3.conv2
3.3.conv3
3.4.conv1
3.4.conv2
3.4.conv3
3.5.conv1
3.5.conv2
3.5.conv3
4.0.conv1
4.0.conv2

layer3.0.downsample.0

aye
aye
aye
aye
aye
aye

layer4.0.downsample.0

—
|
|
|

4.1.conv2
4.1.conv3
4.2.conv1
4.2.conv2

aye
aye
aye
aye

Trend Line
L2Norm
ERK

FCPTS

Figure 3: Visualization of the sparsity allocation of ResNet-50 on ImageNet. The name of each layer is listed at the bottom. The
black line denotes the average remaining ratio of the three algorithms.

the fully connected layer is preserved well, especially in good-
performance sparsity allocation algorithms, and 2) the downsample

layers usually have a high remaining ratio, while good-performance

algorithms tend to sparsify them more. Besides, we can draw a new
interesting observation: the deeper the layers are, the more weights

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

ACM MM, 2024, Melbourne, Australia Anonymous Authors

581 Sparsity Allocation of ResNet-56 Across Different Algorithms 639
0
582 10 —e— Trend Line 640
583 \ N | 2Norm 641
—_
2 ERK
584 < 642
=] n g NG FCPTS
585 = 643
2 LhLL]
586 e 644
2 10
587 = 645
<
588 g 646
589 & 647
590 648
-2
591 10 649
T A TA TA T A TA T A Tl TA T TN OO TN Tl T AT AT AT AT T TN T AT AT TAT N TN AT YO
>>2>22222222222222222¢g222222222222222222¢g2222222222222222
592 §SE5C55555555555555555285555555555555555552855585655555685685¢5853 650
Q0000000000000 0Q000000Q0FQCQ000Q00000000000000FEFQ0Q00000000000000¢0¢06
593 COrNNNRITVVOONMNRIOC AT NNNOTIODOONNOVOCO @ = NNOMOT LW GQNNOD 651
CT T T T T T T T T T T I rT T TN 2aaaaaddadadadadaddaddaladlgdd 20000ddgdddodngoogoon
ol wih wih i i i i wih wih u i i wih wlh uhh uh i u N R I LR R PPV
R R R R R R EE R E R R R R EE R R R
594 P T I P T P I T T e - 652
T T T T T T T T T T T T T TTTTTITITCITTTTTTTTTTTTTTTTT TS TTT T T TTT O T OO0 O®
S =} ;
595 N P 653
5] o
596 > > 654
o ©
597 655

% Figure 4: Visualization of the sparsity allocation of ResNet-56 on CIFAR-100. The name of each layer is listed at the bottom. 65

The black line denotes the average remaining ratio of the three algorithms. 657
600 658

599

oo Table 2: Comparison of the time consumption of error correction. The best results of each model are marked bolder. The h o
602 . D) PENETE I8) 3 P] 660
denotes hours, and the m denotes minutes. ’'w/’ denotes *with’, and w/o’ denotes *without’.

603 661
604 662
605 Model Error Correction Sparsity Rate 663
606 50 60 70 80 ood
v w/o 35m56s 35mb53s 38m48s 41mb53s 665
- ResNet-18 w/ th2ém 1h38m 1h32m 1h32m -
610 ResNet-50 w/o 1h32m 1h35m 1h25m 1h27m 668
611 w/ 2h6m 2h7m 2h7m 2h4m 669
o RegNet-200M w/o 31lmdds 38m15s 33mdds 31m59s o
o w/ 45m19s 45ml15s 41m35s 41m3ls o
615 w/o 46m50s 46m29s 47m19s 47m9s 673
o6 RegNet-400M w/ 1h8m 1hsm 1h8m 1h8m o7t
o . w/o 32ml1s 35m0s 44m5s 44mds o
o MobileNetV2-x10 o, th4m 1h4m 59m53s 59m5ls o
619 677
620 678
621 it would be sparsified in L2Norm and ERK, while FCPTS does not Figure 3 presents the results of time consumption of different 679
622 obey this manner. reconstruction granularities. The block-wise reconstruction con- 680
623 sistently outperforms the time perspective, while reconstructing 681
624 layer-wisely is better than performing it singlely. This is due to the 682
625 fact that using coarser granularity for reconstruction significantly 083
626 . reduces the need for loss calculations, which are often very time- 684
627 3.3 Results on Time Speed consuming. Therefore, reconstruction in the block-wise pattern is 685
628 We also evaluate the time consumption. Since it is obvious that spar- always the preferred choice, considering both time and precision 636
629 sity allocation and the input of reconstruction will not introduce factors. 687
630 extra time consumption, we only provide the time consumption re- 688
631 sults of error correction and different reconstruction granularities, 689
632 as shown in Figure 2 and Figure 3. 690
633 From Figure 2, we can discover that although error correction 691
634 may have positive effects on the performance of the sparse model 692
635 in specific settings, it will bring un-negligible time costs. So, there 4 RAW RESULTS 693
636 is a trade-off between precision and time when adopting error This section provides the raw results of each track we benchmark 694
637 correction. in the main paper. 695

638 696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

753
754

Supplementary Materials: PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models

ACM MM, 2024, Melbourne, Australia

Table 3: Comparison of the time consumption of different reconstruction granularities. The best results of each model are
marked bolder. The h denotes hours, and the m denotes minutes.

Model Granularity Sparsity Rate (%)
50 60 70 80
Single 3h32m 3h34 3h31 3h28
ResNet-18 Layer-wise 2h2m 1h58m 2h1lm 2h5m
Block-wise 1h37m 1h40m 1h47m 1h41m
Single 4h44m 4h40m 4h38m 4h31m
ResNet-50 Layer-wise ~ 3h30m 3h21m 3h8m 3h22m
Block-wise 2h7m 2h12m 2h12m 2h10m
Single 5h24m 5h30m 5h16m 5h22m
RegNet-200M Layer-wise ~ 1h10m 1h4m 1h8m 1h15m
Block-wise 31m55s 38m15s 40m22s 42m19s
Single 6h3m 6h2m 6hOm 6hOm
RegNet-400M Layer-wise 1h33m 1h33m 1h48m 1h48m
Block-wise 1h1m 1h9m 1h19m 1h19m
Single 5h42m 5h33m 5h29m 5h39m
MobileNetV2-x1.0 Layer-wise 42m43s 35m0s 59m42s 45m22s
Block-wise 32mls 27m43s 44m5s 44mds

Table 4: The raw results of L2Norm sparsity allocation strategy on different models, datasets, and tasks. The sparsity 0 denotes
the origin model without sparsification. Each dataset and model architecture is introduced in the previous. The CLS task uses
accuracy as a metric, the DET task uses mAP as a metric, and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)

0 60 70 80

ResNet-18 70.88 69.83 68.25 62.85 35.08

ResNet-50 77.67 77.30 7597 68.86 2.17

ImageNet RegNetX-200M 68.41 64.68 59.68 48.36 24.47

& RegNetX-400M 70.05 67.53 65.67 56.62 28.55
MobileNet-x1.0 72.84 70.58 66.19 46.10 0.39

CLS ViT 77.28 77.1 7532 7042 5041
ResNet-32 93.53 93.12 9251 90.29 70.16

CIFAR-10 ResNet-56 9437 9393 93.61 92.84 87.03
VGG-19 9391 93.86 93.90 93.8 93.78
ResNet-32 70.16 67.95 64.09 4850 11.59
CIFAR-100 ResNet-56 72.63 7235 71.02 64.63 39.10
VGG-19 73.87 73.84 73.85 73.88 7347

MobileNetV2-SSDLite 68.70 68.54 67.85 64.45 33.56

DET PASCAL VOC07 MobileNetV1-SSD 67.50 67.41 6685 6629 57.78
RetinaNet-ResNet18 32.70 31.70 30.60 30.50 19.90
MSCOCO17 RetinaNet-ResNet50 37.90 37.20 3650 3440 25.80

GEN LSUN-Bedroom Stable Diffusion 297 425 - - -
LSUN-Churches Stable Diffusion 4.55 5.29 - - -

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776

777

779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813
814
815
816

817

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

870

ACM MM, 2024, Melbourne, Australia

Anonymous Authors

Table 5: The raw results of ERK sparsity allocation strategy on different models, datasets, and tasks. The sparsity 0 denotes
the origin model without sparsification. Each dataset and model architecture is introduced in the previous. The CLS task uses

accuracy as a metric, the DET task uses mAP as a metric, and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)

0 50 60 70 80

ResNet-18 70.88 69.28 66.71 59.60 32.26

ResNet-50 77.67 74.27 69.31 4999 3.80

ImageNet RegNetX-200M 68.41 64.53 60.71 5296 31.55
& RegNetX-400M 70.05 69.96 67.07 60.39 37.10
MobileNet-x1.0 72.84 69.14 63.00 41.84 3.07

CLS ViT 77.28 77.19 7598 71.09 59.82
ResNet-32 93.53 9271 92.03 89.61 76.83

CIFAR-10 ResNet-56 9437 9393 9361 92.84 87.03
VGG-19 9391 93.87 93.83 93.70 93.42

ResNet-32 70.16 66.75 61.74 45.51 15.05

CIFAR-100 ResNet-56 72.63 71.73 70.22 62.65 36.96
VGG-19 73.87 73.89 73.88 73.40 72.23
MobileNetV2-SSDLite 68.70 68.55 67.84 64.63 33.60
DET PASCAL VOC07 MobileNetV1-SSD 67.50 67.36 6686 6631 57.79
RetinaNet-ResNet18 32.70 32.10 31.60 30.50 27.30
MSCOCO17 RetinaNet-ResNet50 37.90 37.60 37.10 36.00 33.20

GEN LSUN-Bedroom Stable Diffusion 297 849 - - -
LSUN-Churches Stable Diffusion 455 5.60 - - -

Table 6: The raw results of Uniform sparsity allocation strategy on different models, datasets, and tasks. The sparsity 0 denotes
the origin model without sparsification. Each dataset and model architecture is introduced in the previous. The CLS task uses

accuracy as a metric, the DET task uses mAP as a metric, and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)
0 50 60 70 80
ResNet-18 70.88 69.54 68.15 63.01 24.71
ResNet-50 77.67 77.02 7299 56.22 0.98
ImageNet RegNetX-200M 68.41 63.92 5423 2938 8.82
& RegNetX-400M 70.05 66.98 61.67 39.25 1.24
MobileNet-x1.0 72.84 69.70 49.44 5.56 0.54
CLS ViT 77.28 73.81 18.73 0.17 0.11
ResNet-32 93,53 92.19 90.24 85.23 44.00
CIFAR-10 ResNet-56 9437 93.11 91.22 87.22 71.09
VGG-19 93.91 93.23 9355 9291 92.01
ResNet-32 70.16 65.34 59.01 41.09 1.25
CIFAR-100 ResNet-56 72.63 7193 66.23 59.22 15.09
VGG-19 73.87 73.29 73.09 73.01 71.02
MobileNetV2-SSDLite 68.70 68.31 64.22 59.22 21.09
DET PASCAL VOC07 MobileNetV1-SSD 67.50 66.09 6490 62.21 41.29
RetinaNet-ResNet18 32.70 31.50 2930 19.20 9.10
MSCOCO17 RetinaNet-ResNet50 37.90 36.90 33.20 27.50 10.90
GEN LSUN-Bedroom Stable Diffusion 2.97 49.03 - - -
LSUN-Churches Stable Diffusion 4.55 20.34 - - -

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

Supplementary Materials: PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models

ACM MM, 2024, Melbourne, Australia

Table 7: The raw results of FCPTS initiated with ERK sparsity allocation strategy on different models, datasets, and tasks. The
sparsity 0 denotes the origin model without sparsification. Each dataset and model architecture is introduced in the previous.
The CLS task uses accuracy as a metric, the DET task uses mAP as a metric, and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)
0 50 60 70 80
ResNet-18 70.88 69.44 68.86 67.62 64.90
ResNet-50 77.67 76.53 7540 73.81 70.41
ImageNet RegNetX-200M 68.41 64.98 63.52 60.87 55.41
& RegNetX-400M 70.05 70.15 69.11 67.07 61.89
MobileNet-x1.0 72.84 68.92 6589 62.12 49.65
CLS ViT 77.28 77.10 7532 7042 50.41
ResNet-32 93.53 86.23 89.14 81.07 89.48
CIFAR-10 ResNet-56 9437 91.29 92.13 89.18 89.16
VGG-19 9391 93.81 93.79 93.82 93.78
ResNet-32 70.16 69.70 78.82 69.02 67.28
CIFAR-100 ResNet-56 72.63 71.62 7113 7038 68.67
VGG-19 73.87 73.84 73.86 73.85 73.61
MobileNetV2-SSDLite 68.70 68.15 68.01 67.20 64.29
DET PASCAL VOC07 MobileNetV1-SSD 67.50 67.41 67.12 66.64 66.01
RetinaNet-ResNet18 32.70 3230 32.10 31.50 28.80
MSCOCO17 RetinaNet-ResNet50 37.90 3750 37.20 36.30 33.50
GEN LSUN-Bedroom Stable Diffusion 297 3.23 - - -
LSUN-Churches Stable Diffusion 455 499 - - -

Table 8: The raw results of the sparse model without reconstruction on different tasks, datasets, and model architectures.
Sparsity 0% denotes the origin model without sparsification.

Task Datasets Model Sparsity (%)
0 50 60 70 80
ResNet-18 70.88 65.92 56.89 34.02 3.76
ResNet-50 77.67 73.48 65.03 28.66 0.28
CLS ImageNet RegNetX-200M 68.41 53.88 30.46 6.06 0.32
RegNetX-400M 71.84 59.24 33.10 3.83 0.17
MobileNet-x1.0 72.84 5698 28.74 1.72 0.11
RetinaNet-ResNet18 32.70 30.90 15.70 0 0
DET ~ MSCOCO17 RetinaNet-ResNet50 37.90 32.50 19.70 1.50 0
GEN LSUN-Bedroom Stable Diffusion 297 49.03 - - -
LSUN-Churches Stable Diffusion 455 29.34 - - -

4.2 Reconstruction

4.1 Sparsity Allocation

Table 4, 5, 6, and 7 shows the results of the sparsity allocation track.
From Table 4 and Table 5, we can find that L2Norm and ERK can
maintain model performance at a relatively low sparsity rate but
face challenges at a high sparsity rate. Table 6 shows that uniform
sparsity allocation strategy may have difficulty even in a sparsity
at 60%. Table 7 represents the raw results of FCPTS(ERK), which
can reach high performance in a sparsity rate at 80%. From these
tables, we can intuitively recognize the well-behaved algorithms.

Table 8 shows the raw results of the sparse model without per-
forming any reconstruction procedure. Table 9, Table 10, Table 11,
Table 12, Table 13, Table 14, and Table 15 represents the detailed
raw results of the reconstruction track. Note that FID is a negative
indicator, so the smaller the REL, the better the performance. While
it is the opposite for CLS and DET tasks.

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

1045
1046
1047
1048

1049

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

ACM MM, 2024, Melbourne, Australia

Anonymous Authors

Table 9: The raw results without error correction. Sparsity 0% denotes the origin model without sparsification. ABS denotes the
absolute precision, and REL denotes the relative precision against the one without reconstruction.

Sparsity (%)

Task Datasets Model . 50 60 70 30
ABS REL ABS REL ABS REL ABD REL
ResNet-18 70.88 70.28 +4.35 69.02 +12.12 64.61 +30.58 46.66 +42.90
ResNet-50 77.67 7692 +343 74.65 +9.61 61.80 +33.13 1.21 +0.93
CLS ImageNet RegNetX-200M 68.41 64.94 +11.05 58.73 +28.27 4380 +37.73 20.26 +19.93
RegNetX-400M 71.84 69.95 +10.71 6636 +33.25 57.47 +53.64 28.08 +27.90
MobileNet-x1.0 72.84 6990 +1291 60.42 +31.68 31.16 +29.44 0.87 +0.76
RetinaNet-ResNet18 32.70 3250 +1.60 32.20 +16.50 31.90 +31.90 30.10 +30.10
DET ~ MSCOCO17 RetinaNet-ResNet50 3790 37.80 +5.30 37.60 +17.90 36.50 +35.00 35.10 +35.10
GEN LSUN-Bedroom Stable Diffusion 297 425 -44.78 - - - - - -
LSUN-Churches Stable Diffusion 455 529 -24.05 - - - - - -

Table 10: The raw results with error correction. Sparsity 0% denotes the origin model without sparsification. ABS denotes the
absolute precision, and REL denotes the relative precision against the one without reconstruction.

Sparsity (%)
Task Datasets Model . 50 60 70 30

ABS REL ABS REL ABS REL ABD REL
ResNet-18 70.88 70.27 +434 69.10 +12.20 64.64 +30.61 47.70 +43.94

ResNet-50 77.67 7692 +3.43 75.22 +10.18 62.80 +34.13 1.53 +1.23

CLS ImageNet RegNetX-200M 68.41 65.00 +11.05 61.28 +30.82 5242 +46.35 29.98 +29.65
RegNetX-400M 71.84 6994 +10.70 67.92 +34.81 6155 +57.71 41.02 +40.84

MobileNet-x1.0 72.84 6990 +12.92 66.23 +37.49 46.45 +44.73 0.63 +0.52

RetinaNet-ResNet18 32.70 26.90 0 21.40 +5.70 1.20 +1.20 0 0

DET MSCOCO17 RetinaNet-ResNet50 37.90 10.20 0 0 0 0 0 0 0
GEN LSUN-Bedroom Stable Diffusion 297 433 -44.70 - - - - - -
LSUN-Churches Stable Diffusion 4.55 5.27 -24.07 - - - - - -

Table 11: The raw results using the output of the sparse model as input. Sparsity 0% denotes the origin model without
sparsification. ABS denotes the absolute precision, and REL denotes the relative precision against the one without reconstruction.

Sparsity (%)

Task Datasets Model . 50 60 70 80
ABS REL ABS REL ABS REL ABD REL
ResNet-18 70.88 69.83 +3.90 68.52 +11.62 63.28 +29.25 4598 +42.22
ResNet-50 77.67 77.03 +3.54 75.64 +10.60 65.09 +36.42 1092 +10.64
CLS ImageNet RegNetX-200M 68.41 6490 +10.92 61.28 +30.82 5242 +46.35 2998 +29.65
RegNetX-400M 71.84 70.03 +10.79 66.86 +33.76 59.90 +56.07 37.54 +37.36
MobileNet-x1.0 72.84 70.25 +13.26 66.22 +37.48 46.40 +44.69 0.63 +0.52
RetinaNet-ResNet18 32.70 32.40 +1.50 32.10 +16.40 31.80 +31.80 29.90 +29.90
DET ~ MSCOCO17 RetinaNet-ResNet50 37.90 37.80 +5.30 37.60 +17.90 36.50 +35.00 35.10 +35.10
GEN LSUN-Bedroom Stable Diffusion 297 425 -44.78 - - - - - -
LSUN-Churches Stable Diffusion 4.55 5.29 -24.05 - - - - - -

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160

Supplementary Materials: PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models ACM MM, 2024, Melbourne, Australia

1161 Table 12: The raw results using the output of the sparse model as input. Sparsity 0% denotes the origin model without 1219
1162 sparsification. ABS denotes the absolute precision, and REL denotes the relative precision against the one without reconstruction. 1220
1163 1221
1164 sparsity (%) 1222
1165 1223
Task Datasets Model 50 60 70 30 ,
1166 0 1224
1167 ABS REL ABS REL ABS REL ABD REL 1225
e ResNet-18 70.88 69.81 +388 68.16 +11.26 6257 +2854 3415 +30.39 e
e ResNet-50 77.67 77.02 +354 7522 +10.18 62.80 +34.13 153 +1.25 e
e CLS ImageNet RegNetX-200M 6841 6392 +10.04 60.11 +29.65 4897 +42.90 18.63 +18.30 1
w RegNetX-400M 7184 69.96 +10.72 66.60 +3350 5830 +54.47 32.75 +32.57 e
e MobileNet-x1.0 72.84 69.28 +1230 6559 +36.85 4505 +4333 042 +0.31 e
1173 1231
1174 DET MSCOCO17 Ret%naNet—ResNetlS 32.70 3230 +1.40 3190 +16.20 31.10 +31.10 29.00 +29.00 1232
1175 RetinaNet-ResNet50 37.90 37.50 +5.00 3690 +17.20 3550 +34.00 33.40 +33.40 -
176 GEN LSUN-Bedroom Stable Diffusion 297 477 -44.26 - - - - - - 1234
n7 LSUN-Churches Stable Diffusion 455 6.01 -23.33 - - - - - - 1235
1178 1236
1179 Table 13: The raw results using single reconstruction. Sparsity 0% denotes the origin model without sparsification. ABS denotes 1237
180 the absolute precision, and REL denotes the relative precision against the one without reconstruction. 1238
1181 1239
1182 S - 1240
1183 T k d 1 parSIty (%) 1241
1184 as Datasets Mode 0 50 60 70 80 1242
e ABS REL ABS REL ABS REL ABD REL 124
1186 1244
1187 ResNet-18 70.88 70.31 +4.38 69.61 +12.71 67.59 +33.56 61.50 +57.74 1245
s ResNet-50 77.67 7344 -004 7132 +628 59.20 +30.53 1441 +14.14 i
s CLS ImageNet RegNetX-200M 6841 6401 +10.12 6191 +3145 5495 +48.88 3638 +36.05 s
1100 RegNetX-400M 71.84 6920 +9.95 67.85 +3474 61.11 +57.27 3537 +35.19 s
Lo MobileNet-x1.0 72.84 6590 +8.91 6222 +3348 4604 +4432 918 +9.07 o
192 RetinaNet-ResNet18 3270 3030 -0.60 29.70 +1400 28.10 +28.10 2260 +22.60 1250
DET MSCOCO1

1193 7 RetinaNet-ResNet50 37.90 36.10 +3.60 35.10 +15.40 32.20 +30.70 28.30 +28.30 1251
1194 1252

LSUN-Bedroom Stable Diffusion 297 551 -4352 - - - - - - N
1195 GEN i . 1253
110 LSUN-Churches Stable Diffusion 455 566 -23.68 - - - - - - .
EZ; Table 14: The raw results using layer-wise reconstruction. Sparsity 0% denotes the origin model without sparsification. ABS i:

denotes the absolute precision, and REL denotes the relative precision against the one without reconstruction.

1199 1257

1200 1258
1201 Sparsity (%) 1259
1202 Task Datasets Model 50 60 70 80 1260
1203 0 1261
s ABS REL ABS REL ABS REL ABD REL o
1205 ResNet-18 7088 7041 +448 6976 +12.86 67.84 +33.81 6325 +59.49 1263
1206 ResNet-50 7767 7491 +142 7324 +820 6801 +3934 5240 +52.12 1264
1207 CLS ImageNet RegNetX-200M 68.41 6487 +10.98 6240 +31.94 5620 +50.13 41.40 +41.07 1265
1208 RegNetX-400M 7184 7022 +10.97 6857 +3536 6373 +59.89 4933 +49.15 1266
1209 MobileNet-x1.0 7284 6594 +8.94 6276 +3402 50.16 +48.44 21.80 +21.69 1267
1210 1268
RetinaNet-ResNet18 3270 3050 -0.40 30.30 +14.60 29.90 +29.90 2630 +26.30
:i; DET MSCOCO17 RetinaNet-ResNet50 37.90 3640 +3.90 35.60 +15.90 3420 +3270 31.90 +31.90 E;;
1213 GEN LSUN-Bedroom Stable Diffusion 2.97 5.43 -43.60 - - - - - - 1271
1214 LSUN-Churches Stable Diffusion 4.55 545 -23.89 - - - - - - 1272
1215 1273
1216 1274
1217 1275

1218 1276

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

1334

ACM MM, 2024, Melbourne, Australia

Anonymous Authors

Table 15: The raw results using block-wise reconstruction. Sparsity 0% denotes the origin model without sparsification. ABS
denotes the absolute precision, and REL denotes the relative precision against the one without reconstruction

Sparsity (%)
Task Datasets Model . 50 60 70 30
ABS REL ABS REL ABS REL ABD REL
ResNet-18 70.88 70.44 +4.51 69.70 +12.80 68.11 +34.08 64.08 +60.32
ResNet-50 77.67 75.08 +1.59 74.21 +9.17 7144 +42.77 63.78 +63.50
CLS ImageNet RegNetX-200M 68.41 65.02 +11.13 6391 +33.45 57.89 +51.82 44.49 +44.16
RegNetX-400M 71.84 7098 +11.73 69.11 +36.00 65.53 +61.69 55.83 +55.65
MobileNet-x1.0 72.84 66.01 +9.02 65.14 +36.40 53.39 +51.67 27.21 +27.10
RetinaNet-ResNet18 32.70 3230 +1.40 31.60 +15.90 30.50 +30.50 37.30 +27.30
DET ~ MSCOCO17 RetinaNet-ResNet50 37.90 37.50 +5.00 37.10 +17.40 36.00 +34.50 33.20 +33.20
GEN LSUN-Bedroom Stable Diffusion 297 425 -44.78 - - - - - -
LSUN-Churches Stable Diffusion 455 529 -24.05 - - - - - -

Table 16: Network architectures used in our PTSBench.

Model

ResNet [15]
RegNetX [40]
MobileNet-V2 [42]
MobileNet-V3 [18]

Architecture

residual
residual + group conv
depth-wise conv
squeeze-and-excitation block

ShuffleNet-V2 [34] group conv
DeiT [45] transformer
ViT [2] transformer

4.3 Neural Architecture and Model Size
Robustness

Table 17 shows different models’ raw results under different sparsity
rates. We also provide the intermediate mean relative accuracy loss
for each model architecture. The results of neural architecture and
model size robustness tracks are both calculated from it. We list
these networks’ unique structures in Table 16 to better demonstrate
these networks’ differences.

4.4 Different Tasks

Table 18 presents the raw results of different tasks track. The results
of the GEN task collapse when the sparsity rate is higher than 50%,
thus we do not take them into account in many tracks in the main

paper.

5 MORE DISCUSSION

5.1 Discussion of Novelty and Significance

We emphasize that our PTSBench includes the following significant
contributions: (1) the first systematic benchmark that enables a
new view to quantitatively evaluate fine-grained PTS algorithms
and the sparsification ability of models, (2) uncovering several
useful insights and take-away conclusions, and (3) a well-organized
open-source evaluation framework and codebase.

(1) PTSBench is the first effort to facilitate comprehensive and
systematic evaluation and comparisons between PTS algo-
rithms and models. PTSBench deconstructs the common
pipeline used by existing methods and, based on summariz-
ing a universal paradigm for PTS, explores the fine-grained
algorithms of PTS in detail. It also, for the first time, decou-
ples the model’s sparsity effects from the sparsity algorithms,
linking and exploring sparsity abilities as an inherent aspect
of the model itself. In existing works, the sparsity algorithms
and model architectures are often asynchronously consid-
ered, which may result in misleading experiments and con-
clusions. Our PTSBench enables a new approach towards a
fair comparison of different models by building a unified eval-
uation track for each model on neural architecture, model
size robustness, and different tasks.

(2) PTSBench reveals several valuable and useful insights and
conclusions. Based on the systematic and quantitative evalu-
ation, superior guidance can emerge, which is essential for
pushing PTS algorithms to be accurate and efficient. For in-
stance, we recommend using block-wise reconstruction for
its superior accuracy and efficiency. We also provide several
interesting hypotheses and valuable observations, such as
the attention-based models, which are usually more suitable
for sparsification for their unique mechanism. These unprece-
dented quantitative insights identify which techniques are
effective and which models tend to be sparsification-friendly,
which may provide convenience for further research and
practical deployment.

(3) PTSBench is an upcoming well-coded open-source frame-
work. It will enable every individual to easily evaluate a
model’s sparsity ability. It also outperforms for its coding. We
provide a comparison of PTSBench and POT[26], as shown
in Table19. Our PTSBench outperforms in both accuracy and
efficiency. In future work, we will also include more state-of-
the-art methods. We hope our PTSBench can provide useful
advice for future studies.

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

1450

Supplementary Materials: PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models

ACM MM, 2024, Melbourne, Australia

Table 17: The Top@ 1/Top@5 results of different models under different sparsity rates. MRAL denotes the mean relative accuracy

loss, which is introduced in the main paper.

5.2

a model’s sparsity ability primarily involves two considerations:

(1) Efficiency evaluation: Using non-PTS methods typically

(2) Avoiding the impact of training: The PTS method does

Sparsity Rate (%)

Model Family Model Architecture Dense MRAL
50 60 70 80
ResNet-18 70.88/90.44 69.94/89.62 69.09/89.07 66.22/87.56 54.57/79.85 0.334/0.173
ResNet-34 74.74/92.94 74.31/92.13 73.66/91.83 71.05/90.53 59.5183.67 0.273/0.146
ResNet [15] ResNet-50 77.67/94.16 77.49/93.98 76.44/93.15 73.13/91.65 48.22/73.43 0.453/0.257
ResNet-101 79.29/94.93 78.90/94.33 77.36/93.72 69.61/90.32 11.07/25.16 1.011/0.802
ResNet-152 79.91/95.27 79.54/94.66 77.75/94.05 69.09/90.52 7.30/13.51 1.075/0.927
RegNetX-200M 68.41/89.11 65.34/86.79 62.02/84.88 53.22/79.80 31.45/60.70 0.900/0.496
RegNetX-400M 72.05/91.27 69.96/89.63 66.60/88.01 58.30/83.24 32.75/63.07 0.841/0.450
RegNetX-600M 73.43/92.10 72.13/90.90 69.90/89.92 63.19/86.67 42.01/71.91 0.633/0.314
RegNetX [40] RegNetX-800M 74.83/92.89 73.49/91.80 71.44/90.79 65.69/87.80 42.11/71.90 0.622/0.315
RegNetX-1600M 76.78/93.85 75.35/92.86 72.35/91.63 61.49/86.49 24.55/48.66 0.955/0.594
RegNetX-3200M 78.21/94.60 76.72/93.55 73.77/92.29 60.58/86.26 8.74/20.47 1.189/0.907
RegNetX-4000M 78.86/94.69 77.93/93.98 75.44/93.11 66.01/89.23 23.12/41.45 0.925/0.644
RegNetX-6400M 78.94/95.03 78.75/94.44 77.82/94.18 75.33/93.24 66.31/88.93 0.222/0.097
ShuffleNetV2-x0.5 61.25/83.34 59.31/81.44 58.06/80.73 55.55/79.35 47.94/74.38 0.393/0.209
ShuffleNetV2 [34] ShuffleNetV2-x1.0 69.75/89.46 67.22/87.56 64.20/86.28 56.44/82.09 32.78/61.59 0.836/0.450
ShuffleNetV2-x1.5 72.78/91.19 69.68/89.27 65.97/87.42 55.56/81.37 27.58/55.02 0.993/0.566
ShuffleNetV2-x2.0 74.33/92.06 72.14/90.45 69.60/89.13 62.36/85.06 39.39/66.20 0.724/0.406
MobileNetV2-x0.5 64.95/86.48 63.28/84.76 61.89/84.01 57.89/82.02 39.75/68.04 0.568/0.312
MobileNetV2 [42] MobileNetV2-x0.75 70.27/89.98 68.19/88.45 65.53/87.05 55.69/81.28 19.01/39.12 1.033/0.711
MobileNetV2-x1.0 72.84/91.61 70.63/89.90 66.76/88.21 52.56/79.00 10.34/24.89 1.250/0.921
MobileNetV2-x1.4 75.57/92.61 73.95/91.84 70.85/90.49 59.36/83.66 11.81/27.22 1.142/0.833
MobileNetV3-x0.35 50.57/74.53 49.71/73.88 48.82/73.23 47.24/71.12 42.81/68.78 0.271/0.135
MobileNetV3-x0.5 57.68/80.50 56.66/79.78 55.58/79.14 53.25/77.60 44.51/71.49 0.358/0.173
MobileNetV3 [18] MobileNetV3-x0.75 63.05/84.41 61.68/83.60 60.19/82.75 55.95/80.28 39.20/67.48 0.557/0.278
MobileNetV3-x1.0 66.93/87.05 65.26/86.24 63.13/85.04 56.39/81.21 32.41/59.72 0.754/0.413
MobileNetV3-x1.4 71.31/89.84 69.76/89.19 67.78/88.32 62.01/85.04 38.65/66.65 0.659/0.335
ViT[2] ViT-B/32 75.86/92.49 75.29/92.15 74.03/91.48 67.43/87.50 45.21/69.85 0.546/0.313
ViT-L/16 77.28/94.77 77.10/93.91 75.32/93.05 70.42/90.78 50.41/77.56 0.464/0.250
DeiT[45] I)e?Ils 79.90/95.00 77.47/93.97 74.05/92.14 60.34/83.87 22.83/41.53 1.062/0.720
DeiT-B 81.80/95.60 81.16/95.37 80.48/93.06 78.62/94.23 71.93/90.38 0.183/0.097

Discussion of the Rationale for Using PTS to
Benchmark Model’s Sparisty Ability

Using the Post-Training Sparsification (PTS) algorithm to evaluate

requires training models on large datasets, which can take
many hours or even days to complete. This extensive time
commitment can be impractical for benchmarking exper-
iments, where numerous models need to be evaluated. In

contrast, the PTS method can sparsify a model in just a few
hours or even minutes. Therefore, from a time efficiency

perspective, PTS is a superior choice.

step after the PTS pipeline. The results are shown in Table
20. We can observe that even at a high sparsity rate, the
models can still easily reach a high performance, which is
not beneficial to the evaluation of models.

Therefore, we take PTS methods as the ruler of the model from
the two aforementioned aspects.

5.3 Discussion of Error Correction

In the main paper, we find that the effectiveness of the error correc-
tion step varies across different tasks. In classification tasks, error
correction can enhance the final performance of the model. How-

ever, in detection tasks, error correction tends to result in a low

not require extensive training of the model, which better
reflects the inherent sparsity capabilities of the model’s struc-
ture. We also test a non-PTS method by concating a training

model performance. In this section, we delve deeper into investigat-
ing the reasons behind these differences. We aim to find whether
the failure of error correction under the detection task is related to
the sensitivity of the neck and head in detectors.

1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507

1508

ACM MM, 2024, Melbourne, Australia

Anonymous Authors

Table 18: The raw results of different tasks. The sparsity 0 denotes the origin model without sparsification. Each dataset and
model architecture is introduced in the previous. The CLS task uses accuracy as a metric, the DET task uses mAP as a metric,

and the GEN task uses FID as a metric.

Task Datasets Model Sparsity (%)
0 50 60 70 80
ResNet-18 70.88 69.83 68.25 62.85 35.08
ResNet-50 77.67 77.30 7597 68.86 2.17
ImageNet RegNetX-200M 68.41 64.68 59.68 48.36 24.47
& RegNetX-400M 70.05 67.53 65.67 56.62 28.55
MobileNet-x1.0 72.84 70.58 66.19 46.10 0.39
CLS ViT 77.28 771 75.32 70.42 50.41
ResNet-32 93.53 93.12 92,51 90.29 70.16
CIFAR-10 ResNet-56 94.37 93.93 93.61 92.84 87.03
VGG-19 9391 93.86 93.90 93.8 93.78
ResNet-32 70.16 67.95 64.09 48.50 11.59
CIFAR-100 ResNet-56 72.63 72.35 71.02 64.63 39.10
VGG-19 73.87 73.84 73.85 73.88 73.47
MobileNetV2-SSDLite 68.70 68.54 67.85 64.45 33.56
DET PASCAL VOCO7 MobileNetV1-SSD 67.50 67.41 66.85 66.29 57.78
RetinaNet-ResNet18 32.70 31.70 30.60 30.50 19.90
MSCOCO17 RetinaNet-ResNet50 37.90 37.20 36.50 34.40 25.80
GEN LSUN-Bedroom Stable Diffusion 2.97 425 57.88 1129.12 29803.50
LSUN-Churches Stable Diffusion 455 529 79.28 3922.09 87293.50

Table 19: Comparison of the accuracy and efficiency between
POT and PTSBench. OpenVINO is the framework POT adopt.

Model Framework Accuracy Time

ResNetts R 027 thoomin
ResNetso R ess zhomm
Regheoc2ooM RETRY G0t oo
RegNetX-400M Sgg;:;zﬁ 2332 lellnglmmi?
MobileNetV2-x1.0 %’;EZ;I:E 222(1, 51};1420;1:;

Table 20: The Top@1 accuracy results of a non-PTS method.

Model Dense Sparsity Rate (%)

50 60 70 80
ResNet-18 70.88 70.95 70.67 70.42 68.62
ResNet-50 77.67 7749 77.46 77.29 76.26
RegNetX-200M 68.41 67.29 6630 64.35 60.40
RegNetX-400M 72.05 71.01 7093 69.54 66.98
MobileNetV2 72.84 7126 70.16 67.53 63.43

Table 21: Comparing the results of applying error correction
to different components of the detection model.

Sparsity Rate (%) Method
no EC allEC backbone EC
50 32.1 30.2 31.1
60 31.6 214 22.8
70 30.5 1.2 2.7
80 27.3 0 0
90 15.5 0 0

We apply error correction only to the backbone part of the detec-
tion model while preserving the post-sparsity weight distribution
in the neck and head parts. We aim to find whether the failure of
error correction under the detection task is related to the sensitivity
of the neck and head in detectors. The results are shown in Table 21.
We can find that including the neck and head in the error correction
process does not significantly impact the results (e.g., with 1% mAP
increase at 50%, 60%, and 70% sparsity rates). This suggests that the
failure of error correction under the detection task is not because
of the neck and head. We will investigate the reason behind it in
our future work.

As we also use other techniques like parameter reconstruction in
previous experiments, it is still unclear whether the error correction
fails because of itself instead of the combination of other techniques.
To further investigate this, after performing error correction, we

1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

1624

1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681

1682

Supplementary Materials: PTSBench: A Comprehensive Post-Training Sparsity Benchmark Towards Algorithms and Models

Table 22: The results of directly measuring the model’s accu-
racy without undergoing reconstruction.

Sparsity Rate (%) Lhod
w/o EC w/EC
50 32.5 0.1
60 26.6 0
70 19.2 0
80 2.4 0
90 0 0

bypassed the reconstruction process and directly evaluated the
accuracy of the sparse model. The results are presented in Table 22.
We can see that there is a huge gap between the methods using EC
and not using EC (e.g., at 50% sparsity rate, the method with EC
occurs a collapse on mAP while the result of the method without
EC is 32.5), which demonstrates the negative effect caused by the
EC itself.

REFERENCES

[1] JiaDeng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

[2

(5

[6

[7

[13

[14

(15

—

]

]

]

]

]

A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. leee, 248-255.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy,
and Dharmendra S Modha. 2019. Learned step size quantization. arXiv preprint
arXiv:1902.08153 (2019).

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen.
2020. Rigging the lottery: Making all tickets winners. In International Conference
on Machine Learning. PMLR, 2943-2952.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. 2010. The pascal visual object classes (voc) challenge. Inter-
national journal of computer vision 88 (2010), 303-338.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. 2023. Structural Pruning for
Diffusion Models. arXiv preprint arXiv:2305.10924 (2023).

Jonathan Frankle and Michael Carbin. 2018. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018).

Elias Frantar and Dan Alistarh. 2022. Optimal brain compression: A framework for
accurate post-training quantization and pruning. Advances in Neural Information
Processing Systems 35 (2022), 4475-4488.

Elias Frantar and Dan Alistarh. 2022. SPDY: Accurate pruning with speedup
guarantees. In International Conference on Machine Learning. PMLR, 6726-6743.
Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The state of sparsity in deep
neural networks. arXiv preprint arXiv:1902.09574 (2019).

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and
Kurt Keutzer. 2022. A survey of quantization methods for efficient neural network
inference. In Low-Power Computer Vision. Chapman and Hall/CRC, 291-326.
Ruihao Gong, Yang Yong, Zining Wang, Jinyang Guo, Xiuying Wei, Yuging Ma,
and Xianglong Liu. 2024. Fast and Controllable Post-training Sparsity: Learning
Optimal Sparsity Allocation with Global Constraint in Minutes. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 38. 12190-12198.

Jinyang Guo, Jiaheng Liu, Zining Wang, Yuqing Ma, Ruihao Gong, Ke Xu, and
Xianglong Liu. 2023. Adaptive Contrastive Knowledge Distillation for BERT
Compression. In Findings of the Association for Computational Linguistics: ACL
2023. 8941-8953.

Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights
and connections for efficient neural network. Advances in neural information
processing systems 28 (2015).

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. 2023.
PTQD: Accurate Post-Training Quantization for Diffusion Models. arXiv preprint
arXiv:2305.10657 (2023).

(17]

(18]

[19

[21

[22

[23

S
=}

[25

[26

[27]

[28

™
9,

[30

[31

[32

[33

[34

(35

[36

@
=

[38

[39

ACM MM, 2024, Melbourne, Australia

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference
on computer vision. 1314-1324.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel
Soudry. 2021. Accelerated sparse neural training: A provable and efficient method
to find n: m transposable masks. Advances in neural information processing systems
34 (2021), 21099-21111.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized neural networks: Training neural networks with low
precision weights and activations. The Journal of Machine Learning Research 18,
1(2017), 6869-6898.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. 2021.
Accurate post training quantization with small calibration sets. In International
Conference on Machine Learning. PMLR, 4466-4475.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and2
training of neural networks for efficient integer-arithmetic-only inference. In
IEEE Conf. Comput. Vis. Pattern Recog. 2704-2713.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer,
and Amir Gholami. 2022. A fast post-training pruning framework for transform-
ers. Advances in Neural Information Processing Systems 35 (2022), 24101-24116.
Ivan Lazarevich, Alexander Kozlov, and Nikita Malinin. 2021. Post-training deep
neural network pruning via layer-wise calibration. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 798-805.

Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. 2020.
Layer-adaptive sparsity for the magnitude-based pruning. arXiv preprint
arXiv:2010.07611 (2020).

Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, and Luc
Van Gool. 2022. Revisiting random channel pruning for neural network compres-
sion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 191-201.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei
Wang, and Shi Gu. 2021. Brecq: Pushing the limit of post-training quantization
by block reconstruction. arXiv preprint arXiv:2102.05426 (2021).

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980-2988.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In Computer Vision—-ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 740
755.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu,
Zhangyang Wang, and Mykola Pechenizkiy. 2022. The unreasonable effectiveness
of random pruning: Return of the most naive baseline for sparse training. arXiv
preprint arXiv:2202.02643 (2022).

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detec-
tor. In Computer Vision—-ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part I 14. Springer, 21-37.
Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. Shufflenet
v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the
European conference on computer vision (ECCV). 116-131.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen,
Madeleine Gibescu, and Antonio Liotta. 2018. Scalable training of artificial neural
networks with adaptive sparse connectivity inspired by network science. Nature
communications 9, 1 (2018), 2383.

Hesham Mostafa and Xin Wang. 2019. Parameter efficient training of deep convo-
lutional neural networks by dynamic sparse reparameterization. In International
Conference on Machine Learning. PMLR, 4646-4655.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen
Blankevoort. 2020. Up or down? adaptive rounding for post-training quantization.
In International Conference on Machine Learning. PMLR, 7197-7206.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. 2019.
Data-free quantization through weight equalization and bias correction. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision. 1325-1334.
Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart
Van Baalen, and Tijmen Blankevoort. 2021. A white paper on neural network
quantization. arXiv preprint arXiv:2106.08295 (2021).

1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740

1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798

ACM MM, 2024, Melbourne, Australia

[40] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr
Dollar. 2020. Designing network design spaces. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 10428—10436.

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjérn

Ommer. 2022. High-resolution image synthesis with latent diffusion models. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.

10684-10695.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE conference on computer vision and pattern recognition.

4510-4520.

[43] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. 2016. Rethinking the inception architecture for computer vision. In

Proceedings of the IEEE conference on computer vision and pattern recognition.

2818-2826.

[42

[44

Anonymous Authors

[45] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre

Sablayrolles, and Hervé Jégou. 2021. Training data-efficient image transformers
& distillation through attention. In International conference on machine learning.
PMLR, 10347-10357.

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. 2022.
Qdrop: Randomly dropping quantization for extremely low-bit post-training
quantization. arXiv preprint arXiv:2203.05740 (2022).

Kaixin Xu, Zhe Wang, Xue Geng, Min Wu, Xiaoli Li, and Weisi Lin. 2023. Efficient
Joint Optimization of Layer-Adaptive Weight Pruning in Deep Neural Networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision. 17447~
17457.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. 2017. On compressing
deep models by low rank and sparse decomposition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 7370-7379.

Michael Zhu and Suyog Gupta. 2017. To prune, or not to prune: exploring
the efficacy of pruning for model compression. arXiv preprint arXiv:1710.01878
(2017).

1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856

	1 Details of Post-Training Sparsity Algorithms
	1.1 Post-Training Sparsity
	1.2 Comparison with Other Model Compression Techniques
	1.3 Fine-grained PTS Algorithms

	2 Details of experimental settings
	2.1 Details of Datasets
	2.2 Details of Neural Architecture

	3 More evaluation results
	3.1 Results on More Sparsity Rates
	3.2 Results on Sparsity Allocation
	3.3 Results on Time Speed

	4 Raw Results
	4.1 Sparsity Allocation
	4.2 Reconstruction
	4.3 Neural Architecture and Model Size Robustness
	4.4 Different Tasks

	5 More Discussion
	5.1 Discussion of Novelty and Significance
	5.2 Discussion of the Rationale for Using PTS to Benchmark Model's Sparisty Ability
	5.3 Discussion of Error Correction

	References

