Appendix

Table of Contents

A

Proofs

A.1 The SoftMax Location of Gumbel Distribution
A.2 Shifting the Value Function
A.3 The Difference between Two Gumbel Random Variables is a Logistic
A4 Soft Q-Learning Identity

Further Theory and Derivations

B.l ActorLoss
B.2 Maximum-Entropy Reinforcement Learning
B.3 Interpreting the Cross-Entropy as a Pessimism Factor
B.4 Comparison between DoubleGum and XQL

A Discussion on The Convergence of DoubleGum
C.1 Tabular Q-Functions e
C2 DeepQ-Functions e

Further Empirical Evidence for Theoretical Assumptions
D.1 Noise Distributions in Deep Q-Learning
D.2 Adjusting The Pessimism Factor

Further Experimental Details

E.1 Noise Distribution Discrepancy with Extreme Q-Learning
E.2 Continuous Control Benchmarks and Evaluation
E.3 Discrete Control Baselines
E.4 Continuous Control Baselines
E.5 Compute Requirements

Further Results

F.1 Adjusting the Pessimism of DoubleGum
F.2 Adjusting the Pessimism of Baseline Algorithms
F3 Discrete Control
F4 Continuous Control with Default Pessimism
E5 Continuous Control with Pessimism adjusted Per-Suite

17
17
18
18
19

19
19
20
20
21

21
21
23

23
23
23

23
23
23
26
29
29

16

A Proofs

A.1 The SoftMax Location of Gumbel Distribution

We refer to the log-sum-exp operator as the SoftMax operator. This is not the same-named operator
in Bridle (1989, 1990), which we suggest should be (re-)named SoftArgMax.

Theorem 1.
max[a; + gi] = Blog Y _exp (Og) +g, where g,g; ~ G (0,5)
i
where G is a Gumbel distribution. A Gumbel random variable g ~ G(«, B) specified by location
a € R and spread 8 > 0 has PDF p(g) = %exp(—z —exp(—=z)) with z = (g — o)/ 8 and CDF
P(g) = %exp(—exp(—z)) (Gumbel, 1935).

Proof. First note

a;i +9i, 9i~G(0,8) = a;+gi~Gi(ay,B)
Then, denoting y = max;[a; + g;]

P(ng):HPi(ng)

:H@M<w

e (e (-55%))

o (- e (-55))

o (e () S (%)

- <_exp <_; (x ~Blog) exp (C;D))

:goﬂ%E;Wp(§>ﬂ>

= BlogZeXp <ai> +g, where g ~ G (0,05)

B
O
When applied to discrete (Q-Learning, we produce
s,a
max [Qs(s,a) + go,a(s)] = Ba(s) log/ exp <Q0()> da + go(s) (10)
A A, Bo(s)

where gg (), go(-) ~ G (0,8p(-)), foralla € A.

We assume that the same result holds for the continuous case if |A| < oo, an assumption first used
in Lemma 1, Appendix B.1, Page 11 of Haarnoja et al. (2018a) to ensure boundedness. Here, we
require the output of the max-operator to be bounded, which cannot be the case when the number of
its arguments is co.

17

A.2 Shifting the Value Function

Theorem 2.

BlogZeXp (ai;—g) = ﬁlogZeXp (?) +9

Proof.

Blog;exp (az;rg

Q; g

< + ﬂ) (11
= Blogexp (Z) Zexp (O;) (12)
= Blogexp (Z) + BlogZexp <Og> (13)

ai) Yy (14)

A.3 The Difference between Two Gumbel Random Variables is a Logistic

Theorem 3.
21,82~ G(0,8) = z=1x1 —x2, 2z~ L(0,0)

where L is a logistic distribution. A logistic random variable | ~ L(«, 3) with location o and spread

exp (=(I=a)/B)
B has PDF Blitexp (—(—o)/B)) and CDF

1
I+exp (—(I—a)/B)"

Proof. First, construct the convolution based on the joint PDF
L(z)=P(Z < z)
=P(X; —Xy<2)
=P X1 g z + IQ)

o] z+x2

r1) g(22) dzy dag

Il
—

—00 J —00
o0

G(z 4 x2) g(x2) dasy .

— 00

Rewriting x5 as z yields

z) = /_OO G(z+z)g(x)de

o0 z+ T T
= /_OO exp (exp—ﬂ) exp (_5 — exp—6> dz
— /OO exp (76_% (1 +e_%)) e~ 7 dx

— 00

1 2 " 1 =
:/ — exp (—u (1—1—6_5))du7 where u=¢€ ¢, du=——e€ Fdx
o B B
L1 ()
Bl4e s 0
_ 1
B 1+e 5
which is the CDF of L(0, /). O

18

A4 Soft Q-Learning Identity

Theorem 4. For an arbitrary p(x)

B(a))) . e E(x)
log [exp (ﬁ) =, B P8) where ()=
Proof.
exp %
BB+ 3C 17 = BB -8 [pielos 5
:ﬁ/p(a:) log/exp E(gl) dz’ dz

= Blog / exp Egv) dx

When applied to (Q-Learning, the following identity produces

@o(s,) = s,a s)Clm
toyiox [oxw (L5) da= B Qo(s,0)]+ 505) Clro |]

o

J e 25 dw

where py(a | s) =

B Further Theory and Derivations

B.1 Actor Loss

The actor losses used in DoubleGum, SAC, and DDPG are all derived from the same principle. For a
given s, the actor loss function should minimizes the following (reverse) KL-Divergence, previously
presented in Equation 7.

Dl |l whee ol = 7R B

This simplifies as

) . Te(a | s
min 3 Dk |7 = min me(a | s)log ———=
e P

[expQi¥(s,a’)/Bda’
Qgewﬁ(s, CL) da‘|

= max [BH[%HB/%(MSM% exp QiV (s, a)/B da}

pH[my] + B /%(a | 5)

= max
¢

which is then estimated by Monte-Carlo samples from 7y as

max E [Qp"(s,a) — Blogms(a|s)] . (15)
¢ my(als)
SAC (Haarnoja et al., 2018a,b) has a policy with learned variance and state-independent 5. DDPG
(Lillicrap et al., 2015) has a fixed-variance policy which removes the second term in Equation 15 as it
is constant with respect to the maximization. DoubleGum has a state-dependent (), but uses the
same actor loss as DDPG because DoubleGum uses a DDPG fixed-variance policy.

19

B.2 Maximum-Entropy Reinforcement Learning

SACv1 (Haarnoja et al., 2018b) is a special case of DoubleGum and DDPG (Lillicrap et al., 2015) is
a special case of SAC. All three continuous control algorithms have an actor and critic loss derived
from the same principle. Section B.1 shows this for the actor losses of DoubleGum, SAC, and DDPG.
We now relate the critic losses to each other, starting from the most general case, DoubleGum. In
continuous control, DoubleGum uses the following noise model, formed from substituting Equation
7 into Equation 5:

Q5™ (s,a) +loa(s)= B |r+y E [Q5(sa)] +7Bs(s)Clmy || po]| - (16)

p(s'[s,a) me(a'ls")

Here, lp o (-) ~ L£(0, Bp(-)) is a logistic distribution and pg(a | s) o< exp Q%:E:)a) The DoubleGum
critic loss is derived from this noise model by approximating the RHS with Equation 8 and learning 6

with moment matching in Section 3.2.

The SAC noise model is derived from Equation 16 in three ways. First, SAC approximates Iy o(s) ~
L(0, By(+)) asng,o ~ N(0,0), motivated by the fact that both distributions have the same mean/mode.
Secondly, SAC approximates the DoubleGum state-dependent logistic spread Sy (s) as temperature
parameter 3 learned not as a part of the critic but by itself with Lagrangian dual gradient descent.
Thirdly, SAC breaks down C[ry || ps] = H[mg] + Dki[my || pe] before assuming that the KL-
Divergence is negligible, given that it is minimized by the actor loss. These three approximations
yield the SAC noise model as

0" (0) tnga= E drty EQF(,)+ flogme(a’ [S| . (A7)
p(s’|s,a T (a’|s’

MLE of 6 wrt the above noise model yields the MSBE critic loss.

DDPG is a special case of SAC that assumes 8 — 0, removing the last term in Equation 17.
limg_,o po(a | s) becomes deterministic, so m, may be modelled by a deterministic policy.

B.3 Interpreting the Cross-Entropy as a Pessimism Factor

In continuous control, Fujimoto et al. (2018) introduced Twin Networks, a method that improved
sample-efficiency with pessimistic bootstrapped targets computed by returning a sample-wise min-
imum from an ensemble of two @-functions. Follow-up work selects a quantile estimate from an
ensemble (Kuznetsov et al., 2020; Chen et al., 2021; Ball et al., 2023), which we demonstrate is

. . . soft, new
equivalent to estimating \/:97 3 .

Suppose there is an ensemble of n networks where the i network follows Q, (s,a) = Qg(s,a) +
z;(s,a). Here, Qg is an ‘ideal’ function approximator never instantiated nor computed and z is an
arbitrary noise source. When n is sufficiently large,

min E [Qp,(s,a)] =min E [Qq(s,a)+ zi(s,a)] = _ %Els)[Qe(Sva)] +min 2;(s)

i mg(als) i 7g(als)

= E [Qo(s,a)] —g(s), whereg(s) ~G(a(s),B(s)) -

7y (als)

A Gumbel random variable g ~ G(a,) has E[g] = a + .5, where . is the Euler-Mascheroni
constant, so for a deterministic environment the bootstrapped targets become

r+vy E)[Qa(S’,a’)]—704(8’)—7%5(8’),

T (a’|s’

recovering Equation 8, the DoubleGum continuous control targets, up to an additive term ya(s'),
while —v+,/3(s") recovers the spread ycoy(s’) up to a negative scaling factor, indicating that the
default ¢ should be negative. Moskovitz et al. (2021) and Ball et al. (2023) showed that the appropriate
ensemble size and selected quantile changes the overestimation bias, so appropriate values would
ensure a(s’) = 0.

20

B.4 Comparison between DoubleGum and XQL

We present an explanation of Extreme ()-Learning (XQL) as presented in Appendix C.1 of Garg et al.
(2023). XQL can be derived from Soft Bellman Equation backups given by
Q(s',a’)

Q(s,a) <« E [r(s,a,s") +yV*"(s)], where V*(s) = BlogZexp ()
p(s'[s.0) " B

and f3 is a fixed hyperparameter. Computing the log-sum-exp of V*°I is intractable in continuous
control, as the sum over a’ becomes an integral in continuous control tasks.

Garg et al. (2023) present a method of estimating its value using Gumbel regression. Given a
(potentially infinite) set of scalars z € X, Gumbel regression provides a method to estimate the
numerical value of log-sum-expg(z) = (log Y- xexpz/B. Gumbel regression assumes x ~
G(a,), where G is a homoscedastic Gumbel distribution, and £ is a fixed (hyper)parameter. «
estimated by MLE tends towards log-sum-exp (). MLE is performed by numerically maximizing
the log-likelihood of a Gumbel distribution, which recovers the LINear-EXponential (LINEX) loss
function introduced by Varian (1975).

Garg et al. (2023) incorporate Gumbel regression into deep ()-Learning in two ways, which they
name X-SAC and X-TD3. X-SAC combines Gumbel regression to estimate the soft value function
used in SACv0 (Haarnoja et al., 2018a). The soft value function V;"“(s) is a neural network whose
parameters p are learned by Gumbel regression from Qy (s, a) ~ G(V,(s), 5), where ¢ are target
network parameters. A neural network Qg with parameters 6§ may then be learned by the MSE
between itself and Ep,(s/(s,0)[7(5, a, ") + ’}/V;Ott(s)]. X-SAC is vastly different from DoubleGum,
because our algorithm does not estimate the soft value function with a separate neural network.

Gumbel regression is directly used to learn the ()-values in X-TD3. First, the bootstrapped targets are
thusly rewritten

soft (

E

s, a)
’ p(s']s,a)

Y

r+WﬂlogZexp (Q¢(gva’))]

yBlog > exp (T +7Qy(s',a') — Qg(s,a)ﬂ

E

p(s’[s,a)

B

In environments with deterministic environments, which comprise all environments considered by
Garg et al. (2023) and our paper, Lemma C.1 of Garg et al. (2023) provides a method of learning the
soft value function with Gumbel regression on y*°"'(s, a) ~ G(Qg (s, a),y/3). The Gumbel regression
objective used in X-TD3 to learn 6 is vastly different from the moment matching with the logistic
distribution DoubleGum uses to learn 6.

To motivate their use of Gumbel regression, Garg et al. (2023) derived a noise model which they use
to present empirical evidence of homoscedastic Gumbel noise. In contrast, we presented empirical
evidence of heteroscedastic logistic noise formed from a noise model with two heteroscedastic
Gumbel distributions.

C A Discussion on The Convergence of DoubleGum

To the best of our knowledge, there are two types of convergence analysis in ()-Learning: 1) operator-
theoretic analysis over tabular Q-functions, and 2) training dynamics of neural network parameters.
We believe the second is more appropriate for DoubleGum, because our theory addresses issues in
using neural networks (and not tables) for (Q-learning. Nevertheless, for completeness, we discuss
convergence guarantees for the tabular setting and the function approximation setting. While we can
guarantee convergence for the former setting, we have no guarantees for the second.

C.1 Tabular Q-Functions

Appendices B.1 and B.2 present DoubleGum as a MaxEnt RL algorithm. When @Q-functions are
tabular, Appendix A of Haarnoja et al. (2018a) shows that MaxEnt RL algorithms may be derived

21

E ST SR

Algorithm 2: DoubleGum Soft Policy Iteration

Input: Finite MDP (S, A, r, p), initial tables Q, 3, y*°, initial policy 7
Qutput: Optimal Tabular Q-function Q*
for training iteration ¢ do
for all s do
for all a do
Y (s,a) + [r(& a,s') +Bi(s")log > ., exp (Qé<‘z;’,‘§/))]
(s’ |s a) ‘
Qiv1(s,a) « y*"(s,a)
Bii(s) X2 |V [yof(s,a)]
ar~m(als)

exp(Qi+1(s,a)/Bi+1(s))
define 7T(a ‘ S) < Do exp(Qitvi1(s,a’)/Bit1(s))

from soft policy iteration. We therefore present a convergence proof for DoubleGum with tabular
Q-functions based on soft policy iteration.

DoubleGum treats the return as coming from a logistic distribution and learns its location and spread.
In the tabular setting, two tables would need to be learned, (s, a) and 3(s). An algorithm to learn
these tables in a finite MDP with soft policy iteration is presented in Algorithm 2. Policy evaluation
is done by Lines 4-6 while Line 7 performs policy improvement.

Proof of convergence of Algorithm 2 is similar to the SAC proof of convergence in Appendix B of
Haarnoja et al. (2018a). This should not be surprising, given that Appendix B.2 shows SAC as a
special case of DoubleGum. We first show that policy evaluation converges and that a new policy
found by policy improvement does not reduce the magnitude of the value function.

Lemma 5 (Soft Policy Evaluation). Consider the Soft Policy Evaluation operator given by

Qi(slﬂ a/)

Qnlo e X 5:()

p(s'|s;a)

r(s,a,s") +vBi(s") logz exp <)1 over all (s, a) pairs.

lim;_, o Q; converges to the soft Q-value.

Proof. Following Appendix A.4
s) log Z exp (Qﬁ(? ;1)

where p(a | s) =

) - ﬂ(IES)[QG(S, a)l + B(s) C[r || p]

exp(Q(s,a)/5(s))
> exp(Q(s,a’)/B(s))

the bootstrapped targets may be thusly rewritten

[r(s,a,s) +5(s logZexp(I)>]

= E [r(s, a,s')+v E [Q(s',a)]+ B(s)Clr || p]}

p(s'|s,a)

p(s’]s,a) w(a’|s’)
= E [r'(s,a, Y+~ E [Q(5, a’)]}
p(s’]s,a) w(a’|s’)

where 1/ (s,a,s") = r(s,a,s") + B(s') C[x || p].

Following Lemma 1 in Haarnoja et al. (2018a), Sutton and Barto (1998) gives convergence of
Qiv1(5,a) < Ep(gr)s,a) [r'(s,a,s’) + VE (a5 [Qi(s, a)]] O

The proof of Soft Policy Improvement should be identical to SAC, given that Appendix B.1 shows
that DoubleGum and SAC use identical actor losses. As such, Lemma 5 can be used in place of
Lemma 1 in Theorem 1 of Haarnoja et al. (2018a), thus showing convergence of DoubleGum in the
tabular setting.

22

C.2 Deep Q-Functions

Parameters of the deep Q-function used by DoubleGum in Algorithm 1 are learned by a loss function
equivalent to that of heteroscedastic normal regression. Convergence of DoubleGum in the function
approximation setting would therefore rely on convergence of heteroscedastic normal regression.

Zhang et al. (2023) introduces PAC-bounds for heteroscedastic normal regression, but on the condition
that the mean-estimate is close to the ground truth mean, as mentioned in Paragraph 1 of Section 4.
This is empirically achieved by Seitzer et al. (2022), who analyze heteroscedastic normal regression
and find that the mean-estimate frequently converges to an underfitting solution. This is because the
Negative Log-Likelihood (NLL) of a normal distribution is minimized when the variance becomes
large — in Equation 6, this term is denoted with o3. As such, changes in Q" will not change the
loss function much. To rectify this, Seitzer et al. (2022) multiplies the NLL of the normal with the
numerical value of the standard deviation, reducing the dominance of oy on the loss function.

D Further Empirical Evidence for Theoretical Assumptions

D.1 Noise Distributions in Deep Q-Learning

Figure 6 presents graphs corresponding to Figure 1c for all environments considered in this paper.
Continuous control results were generated from DoubleGum with default pessimism (¢ = —0.1).

D.2 Adjusting The Pessimism Factor

Figure 7 presents graphs corresponding to Figure 2 for all continuous control environments considered
in this paper.

E Further Experimental Details

E.1 Noise Distribution Discrepancy with Extreme Q-Learning

In Appendix D.2 of Page 19, Garg et al. (2023) fitted a Gumbel distribution to the TD errors on
three continuous control environments. The Gumbel distribution was a good fit in two of the three
environments they benchmarked on. We could not reproduce this result and attribute the discrepancy
to experimental differences.

Garg et al. (2023) logged their batch of 256 TD errors once every 5,000 steps during training for
100,000 timesteps, producing ~ 4000 samples which were aggregated. They also computed boot-
strapped targets with online parameters. In contrast, we sample 10,000 TD errors with bootstrapped
targets computed from target parameters at a single timestep instance, and we do not aggregate
samples across timesteps.

E.2 Continuous Control Benchmarks and Evaluation

As mentioned in Section 6.2, the evaluation metric in continuous control was the normalized IQM with
95% stratified bootstrap confidence intervals from Agarwal et al. (2021). Returns were normalized by
a minimum value computed from the mean of 100 rollouts sampled from a uniform policy and the
maximum possible return from the environment. When the maximum value was not specified, we
used the maximum value of any single rollout attained by any of the baselines.

We benchmarked on four continuous control suites: DeepMind Control (Tassa et al., 2018; Tun-
yasuvunakool et al., 2020), MuJoCo (Todorov et al., 2012; Brockman et al., 2016), MetaWorld
(Yu et al., 2020), and Box2D (Brockman et al., 2016). These environments were selected to
be as extensive as possible. DeepMind Control and MetaWorld were chosen because of their
diversity of tasks, while the MuJoCo and Box2D environments are popular benchmarks within
the common interface of OpenAl Gym (Brockman et al., 2016), now Gymnasium (Farama
Foundation, 2023). No citation exists for Gymnasium as of writing this paper, and we link to
their GitHub repository https://github.com/Farama-Foundation/Gymnasium as suggested in
https://github.com/Farama-Foundation/Gymnasium/issues/82.

23

https://github.com/Farama-Foundation/Gymnasium
https://github.com/Farama-Foundation/Gymnasium/issues/82

CartPole-v1 Acrobot-v1 MountainCar-v0
25

e Y | N
j 1.6 L5 1.5
Z 0.8 1.0 0.0
0.0 0.5 15
—0.8 0.0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Timesteps (in millions)
(a) Discrete Control
. acrobot-swingup reacher-hard finger-turn_hard hopper-hop fish-swim cheetah-run
. 2.2 27 2.7
2.4 W W 1.7 2.0
" f 20 /ﬂ’“'/\ 24 VW“M«V"/JMAAV 24 6 NW"\A/“’*MMM o
I iy 1| M 21 [210/ W\M 1 18 P MWMW'“’ fy
1.8 ‘\ 161 /ﬂ 1.8 1.8 “‘ e 1.5/ 16
N e B Ty e A A
1.2 12 1.2 1.3
X . . X .5 1. X . 1. X . . X . . X .5 1.
j 0.0 0.5 1.0 0.0 0. 0 0.0 0.5 0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0. 0
Z walker-run quadruped-run swimmer-swimmerl5 humanoid-run dog-run
1.8 176 2.4
1.80 M \ 1.80 " :
J/'W“‘WM 17 el MY 1681 | g 22
1.65 ‘M, L6] b i 1.65 ‘/ 160{ | Wl 2.0 ‘
1soll 15{ 1501 152 ‘w‘, 18 o
e T e e
1. ’ [[E
s 13 136
0.0 05 1.0 0.0 05 1.0 0.0 05 1.0 00 05 1.0 0.0 05 1.0
Timesteps (in millions)
(b) DeepMind Control
Hopper-v4 HalfCheetah-v4 Walker2d-v4 Ant-v4 Humanoid-v4
1.76
2.8 29 2.2
A 1.68 : 22 o o
\. . | o LA
o opharydytlpn v MMMM 2.0 ’\vw«w“ 20{ 2.0 P
E 2.0 Lz | b 1.8 18 A‘/ 1.8
| v
1.6 1.44 1.6 161" 1.6
2 "H""‘t“"&’ 1.36 1] it bk 1 4] B
0.0 05 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 10 0.0 035 1.0
Timesteps (in millions)
(c) MuJoCo
button-press-v2 door-open-v2 drawer-close-v2 drawer-open-v2 225peg»inserl»side-vZ 27 pick-place-v2
20 . .
3.0 24 A
24 A\ 2.00 o 24)
1.8 N poea My A ; R A
,/”‘v""\/“/ WNWWWNN 20 W‘W’MP/V 25 . s 2.1 N/% M,M/rﬁ/ﬂwy 175 ‘\A‘w W Ww\ 21 Vi%,Myﬁfy’\/\f W
161 e 20" Lg{ sl
14 16 | Lsof| 8|
’ 15 L5 1.51]
12 12 s 125 nacand
1.0 - 100 1.2
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
push-v2 reach-v2 window-open-v2 window-close-v2 basketball-v2 dial-turn-v2
2 10 24 24 250 205
2.0 : o A
P LAt 21 AN 21 vy 225 ul
AL o) Ll o 1 2000
j 18]/ 23 / 18 M/\AM‘ 1.8 M | 2.00 /M“”N“ o) 75 !"Nmu‘r”mﬂ%fwww
2.0 ’ :
“ ii 15|, 13 ' :;(5) (150
' N e R 12 BT e S W
12 1.0 1.25 :
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
s sweep-into-v2 hammer-v2 22 assembly-v2
2.25
2.0 i 2.0
Mo am\l
1.84] WWM 2.00 | 1.8 whun),ww,vww
16 b/ L5] Myt 1.6
1.2 1.25 12
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Timesteps (in millions)
(d) MetaWorld
3 5Bipeda.lWalker—v3 BipedalWalkerHardcore-v3
2ol 32
s \ 2.8 —— Homo-Normal
- =1 Ly . e
E 2ol UPIPTIVRE 24 o —— Hetero-Logistic (expected)
, \ 2.0
15 ‘m 6 —— Moment-Matched Hetero-Normal
1.0 | e
1.2
0.0 0.5 1.0 0.0 0.5 1.0

Timesteps (in millions)

(e) Box2D

Figure 6: Negative Log-Likelihoods (NLLs) of the noise in Deep (Q-Learning under different
distributions throughout training (lower is better). Mean calculated per-task & standard deviation.

The legend for all graphs is in Figure 6e. .

acrobot-swingup reacher-hard finger-turn_hard hopper-hop fish-swim cheetah-run

1500 P u—— -
1007 / ===
1200
75
50
25
3 0
g 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
I=|
I 100 quadruped-run swimmer-swimmerl5 humanoid-run dog-run
0
= 75
60
45
30
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Timesteps (in millions)
(a) DeepMind Control
Hopper-v4 HalfCheetah-v4 100 Walker2d-v4 Ant-v4 Humanoid-v4
1500
© 1000
< 1200 =
2 L 750
5o v 500
=)
= 250
0
X . . 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Timesteps (in millions)
(b) MuJoCo
button-press-v2 1250 door-open-v2 1250 drawer-close-v2 drawer-open-v2 peg-insert-side-v2 pick-place-v2
o /1000 B 00| g 0 o 1200 -
1200 e = 800 900 P 750 P
— 750 750 / ’
500 500 o 600 - §
400 300 2501 é
250 250 200 0 0=
0 0 -250
X 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 L0 0.0 0.5 1.0
push-v2 reach-v2 window-open-v2 window-close-v2 basketball-v2 dial-turn-v2
2000 1250
o 1200 i 1000 1250 1000
=l 300 1600 B 1000 ___— 1000
= 600 1200 _ 750 ' 750
op 400 800 500 500
2 200 400 250 250
0 0 0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 X
sweep-into-v2 hammer-v2 1250 assembly-v2
1200 =) — 1000
900 g 750 -
600 500
300 250
0 0
0.0 0.5 1.0 0.0 0.5 1.0

Timesteps (in millions)

(c) MetaWorld
BipedalWalker-v3 BipedalWalkerHardcore-v3
430 — ¢=-05
Q 900
= 30 600 —— ¢=—0.1 (Default)
El) 150 y 300 | — ¢=00
%’ ot [} [P ———— —_— =01
e
0 —300 — ¢=05
0.0 0.5 1.0 0.0 0.5 1.0

Timesteps (in millions)

(d) Box2D

Figure 7: The effect of changing pessimism factor ¢ on the target ()-value in continuous control. IQM
calculated per-task + standard deviation. The legend for all graphs is in Figure 7d.

25

DeepMind Control (DMC) was designed to benchmark continuous control, over a broad range of
agent morphologies. We selected agent morphologies that could be trained from states with a broad
range of action spaces from 1 (acrobot) to 38 (dog). We did not benchmark on humanoid_CMU as
this environment was not intended to be solved with RL from scratch, unlike the other baselines. The
hardest task was selected from each of the agent morphologies. Properties of the 11 DMC tasks are
presented in Table 1a.

MetaWorld was designed to have a diverse range of tasks to evaluate the generalization ability of
learned policies. Each environment within MetaWorld is therefore made up of multiple tasks, all with
the same underlying structure of an MDP but with different numerical values of their parameters. We
follow the method of Seyde et al. (2022) to benchmark on a single MetaWorld task by first selecting
an environment and then randomly selecting a set of numerical parameters. Each new instantiation of
a MetaWorld task would result in a different set of hyperparameters. As such, we expect the error
bars in the aggregate statistics of MetaWorld to be substantially larger than the other environments.
We benchmark on tasks formed from the union of the ML1, MT10, and ML10 train tasks that a policy
in MetaWorld would be trained on, as well as the five environments benchmarked in Seyde et al.
(2022). Properties of the 15 MetaWorld tasks are presented in Table Ic.

MuJoCo was evaluated on the same tasks as SAC (Haarnoja et al., 2018b). These tasks were all
locomotion-based. Properties of the 5 MuJoCo tasks are presented in Table 1b.

Box2D was evaluated on all continuous control tasks from states. Properties of the 2 Box2D tasks are
presented in 1d.

E.3 Discrete Control Baselines

Discrete control algorithms were implemented as described in Section 3.4. Hyperparameters used in
discrete control algorithms are detailed in Tables 2 and 3. We provide explanations for these design
choices as follows.

DQN: The original DQN algorithm in Mnih et al. (2015) was designed for pixel inputs. We modified
DQN to use state inputs by using an architecture described in Section 3.4 we used in continuous
control that was popular for use with state inputs. Conversely to the continuous control architecture,
we found removing GroupNorm (Wu and He, 2018) was crucial to getting DQN to work. Similarly
to the continuous control architecture, we found that changing the initialization and target network
updating drastically improved performance. We also used the MSE and Adam (Kingma and Ba,
2014) optimizers as Ceron and Castro (2021) showed that this yielded improved performance
over the Huber Loss (Huber, 1992) and RMSProp (Hinton et al., 2012) of the original DQN. Our
implementation of DQN solves classic discrete control tasks that the CleanRL (Huang et al., 2022b)
reproduction of the original DQN paper at https://docs.cleanrl.dev/rl-algorithms/dqn/
#experiment-results_1 could not solve.

Dueling Double DQN (Dueling DDQN) was a baseline modified from Hessel et al. (2018) designed
to be as compatible with DoubleGum as possible. Rainbow evaluated six innovations to DQN: Double
DQN (Van Hasselt et al., 2016), Dueling DQN (Wang et al., 2016), noisy networks (Fortunato et al.,
2017), n-step returns, C51 distributional RL (Bellemare et al., 2017), and prioritized replay (Schaul
et al., 2016). We only used the first two of these six innovations in DoubleGum. We did not find
n-step returns effective in discrete domains we considered, nor prioritized replay. Distributional
RL was incompatible with DoubleGum, while Schwarzer et al. (2023) did not find noisy networks
advantageous.

DoubleDQN was implemented following Van Hasselt et al. (2016) by computing bootstrapped targets
of Q™ (s, max, Q3™ (s, a)). Dueling DQN was implemented following Wang et al. (2016), with the
advantage and value heads having two layers with a hidden layer of size 256 and ReLU activations.
The stability of Dueling DQN was greatly improved by setting the biases of both dueling heads to 0.

DoubleGum was implemented as Dueling DDQN with an additional variance head described in
Section 3.4.

26

https://docs.cleanrl.dev/rl-algorithms/dqn/#experiment-results_1
https://docs.cleanrl.dev/rl-algorithms/dqn/#experiment-results_1

Table 1: Properties of Continuous Control Environments

(a) DeepMind Control

Environment Task \ Action Dimension Maximum Return Minimum Return
acrobot swingup 1 1000 3.252
reacher hard 2 1000 8.547
finger-turn hard 2 1000 67.78
hopper hop 4 1000 0.07236
fish swim 5 1000 70.99
cheetah run 6 1000 3.647
walker run 6 1000 22.96
quadruped run 12 1000 108.2
swimmer swimmerl5 14 1000 157
humanoid run 21 1000 0.877
dog run 38 1000 4.883
(b) MuJoCo
Task \ Action Dimension Maximum Return Minimum Return
Hopper-v4 3 3572 18.52
HalfCheetah-v4 6 11960 -283.4
Walker2d-v4 6 5737 2.753
Ant-v4 8 6683 -60.06
Humanoid-v4 17 6829 122.5
(c) MetaWorld
Task \ Action Dimension Maximum Return Minimum Return
button-press-v2 4 10000 187.5
door-open-v2 4 10000 277.1
drawer-close-v2 4 10000 842.5
drawer-open-v2 4 10000 631.8
peg-insert-side-v2 4 10000 8.083
pick-place-v2 4 10000 5.449
push-v2 4 10000 30.62
reach-v2 4 10000 776.1
window-open-v2 4 10000 230.3
window-close-v2 4 10000 306.7
basketball-v2 4 10000 10.2
dial-turn-v2 4 10000 125.6
sweep-into-v2 4 10000 63.41
hammer-v2 4 10000 395.1
assembly-v2 4 10000 226.3
(d) Box2D
Task \ Action Dimension Maximum Return Minimum Return
BipedalWalker-v3 4 300 -99.97
BipedalWalkerHardcore-v3 4 300 -107.9

27

Table 2: Shared Hyperparameters of Benchmarked Algorithms

Hyperparameter \ Value
Evaluation Episodes 10

Evaluation Frequency | Maximum Timesteps / 100
Discount Factor «y 0.99

n-Step Returns 1 step

Replay Ratio 1

Replay Buffer Size 1,000,000
Maximum Timesteps 1,000,000

Table 3: Hyperparameters for Discrete Control

Hyperparameter \ Value
Starting Timesteps 2,000
Maximum Timesteps 100,000
Exploration Policy Churn
Optimizer Adam
Learning rate 3e-4
Number of groups in network GroupNorm 0

Network structure

Linear (256), ReLU, Linear (256), ReLU

Table 4: Hyperparameters for Continuous Control

Hyperparameter \ Value
Starting Timesteps 10,000
Maximum Timesteps 1,000,000
Exploration Noise 0.2
Policy Noise in Critic Loss 0.1
Policy Noise in Actor Loss 0.1
Actor optimizer Adam
Actor learning rate 3e-4
Critic optimizer Adam
Critic learning rate 3e-4
Number of groups in Actor GroupNorm 16
Number of groups in Critic GroupNorm 16
Critic target networks EMA 7, 5e-3

Actor target networks EMA

Critic structure

Actor structure

1
Linear(256), GroupNorm, ReLU

Linear(256), GroupNorm, ReLU
Linear (256), GroupNorm, ReLU

Linear(256), GroupNorm, ReLU

Table 5: Pessimism Hyperparameters in Continuous Control

\ Pessimism Hyperparameter

Algorithm -

\ Default DeepMind Control MuJoCo MetaWorld Box2D
DoubleGum (ours) —0.1 —0.1 —0.5 0.1 —0.1
DDPG/TD3 Twin Single Twin Single Twin
SAC Twin Single Twin Single Twin
XQL Twin (8 = 5) Single (3) Single (5) Twin(2) Twin (5)
QR-DDPG Single Single Twin Single Twin
FinerTD3 1 1 3 3 1

28

E.4 Continuous Control Baselines

Continuous control algorithms were implemented as described in Section 3.4. Hyperparameters used
in continuous control algorithms are detailed in Tables 2 and 4. Pessimism hyperparameters are
presented in Table 5 and were found following results in Appendix F.2.

As mentioned, all implementations used networks with two hidden layers of width 256, with orthogo-
nal initialization (Saxe et al., 2013) and GroupNorm (Wu and He, 2018). Following Kostrikov (2021),
target network parameters were updated with an EMA of 5e — 3 in the critic and 0 in the actor. All
these design choices differ from their original implementations but improved aggregate performance.
We provide explanations for these design choices as follows.

DDPG was introduced in Lillicrap et al. (2015) and Fujimoto et al. (2018) updated the design
choices of DDPG to empirically improve its performance. In addition to the existing changes, our
implementation uses the noise clipping scheme in the actor specified by Laskin et al. (2021).

TD3 was implemented with three changes from Fujimoto et al. (2018). First, we update the actor once
per critic update — ie using a delay of 1. This is such that the only hyperparameter change between
our DDPG and TD3 is the use of Twin Networks. Secondly, we update the actor to maximize the
mean of two critics rather than a single critic, a design choice we found empirically reduced variance
between training runs. Thirdly, we do not compute the EMA of actor-network parameters. Removing
this EMA improves sample efficiency but at the cost of higher variance.

FinerTD3 (our introduced baseline) was implemented with the same hyperparameters as TD3 but
with an ensemble of 5 critic networks. We chose to use 5 networks because we tuned the pessimism
factor hyperparameter of DoubleGum over 5 values. The 5 critics in FinerTD3 enable five values of
pessimism to be used. Pessimism of FinerTD3 is adjusted in the bootstrapped targets. The 5 critic
values are sorted by decreasing positivity, and the i smallest value is used as the target critic value
in the bootstrapped targets.

SAC was implemented with hyperparameters from Kostrikov (2021), which we found improved
performance. Kostrikov (2021) differs from Haarnoja et al. (2018b) in two additional ways from
those mentioned. The standard deviation in the actor was clipped to [—10, 2], and the target entropy
was the action dimension divided by 2 instead of just the action dimension.

XQL Garg et al. (2023) presents two off-policy algorithms: X-TD3 and X-SAC. We use X-TD3 to be
consistent with the DDPG fixed-variance actor of DoubleGum and refer to it throughout as XQL.
XQL tunes two hyperparameters per task: the use of twin networks/not and scalar hyperparameter £3.
We swept over the same [-values as Garg et al. (2023): 1, 2, 5 without Twin Critics and 3, 4, 10 and
20 with Twin Critics. § was tuned in the same way as pessimism — we found a default 5 value and a
[tuned per-suite. § values are presented in Table 5 and were found following results in Appendix
F2.

MoG-DDPG is formed by combining a Mixture-of-Gaussians (MoG) critic with DDPG. The MoG
critic was introduced in Appendix A of Barth-Maron et al. (2018) and improved by Shahriari et al.
(2022). The latter paper combines the MoG critic with DDPG with distributed training, but we
remove the distributed training component because we do not use it in DoubleGum.

QR-DDPG (our introduced baseline) combines the quantile regression method of Dabney et al.
(2018b) with a DDPG actor. Although Ma et al. (2020); Wurman et al. (2022) and Teng et al. (2022)
have combined quantile regression with SAC, we combine it with DDPG because DoubleGum is
built on top of DDPG. Like Dabney et al. (2018b), we use 201 quantiles, but these are initialized
with orthogonal initialization and are optimized with the MSE, rather than the Huber loss. QR
was developed for discrete control and uses the Huber loss with the RMSProp optimizer popular in
discrete control methods. We found better performance with the MSE and Adam optimizer, perhaps
confirming the result of Ceron and Castro (2021) in distributional RL for continuous control.

DoubleGum was implemented as DDPG with a variance head described in Section 3.4.
E.5 Compute Requirements
A single training run for discrete control may take up to 3 to 5 minutes on a laptop with an Intel Core

19 CPU, NVIDIA 1050 GPU and 31.0 GiB of RAM. On the same system, a single training run for
continuous control takes 1 - 2 hours.

29

Table 6: Discrete Control Numerical Results
\ Score at 100K timesteps (IQM over 12 seeds)

Task -

| DoubleGum (ours) DQN DuelingDDQN
CartPole-vi 500 +113.4 475 +105.5 496.9 + 89.1
Acrobot-vil -62.78 + 1.775 -73.52 £5.191 -64.12 +17.15
MountainCar-v0 -98.17 + 2.45 -99.37 £5.914 -98.75 4+ 30.73

The overwhelming majority of our experiments were run on private infrastructure. This cluster had a
mixture of Intel Broadwell, Skylake, Cascade Lake, AMD Rome, AMD Milan CPUs, and NVIDIA
P100s, V100s, and A100s GPUs. Benchmarking continuous control took roughly ten times longer
than benchmarking discrete control. Multi-threaded experiments for continuous control running
twelve seeds in parallel took 5 - 8 hours. 8 algorithms (DoubleGum, DDPG, TD3, MoG-Ceritics,
SAC, XQL, QR-DDPG, FinerTD3) were benchmarked over 33 continuous control environments, and
there were further runs for hyperparameter sweeps (4 for DoubleGum, 1 for SAC, 6 for XQL, 1 for
QR-DDPG and 4 for FinerTD3), yielding 24 runs in total. These algorithms were run at least 10 times
for development and hyperparameter tuning. This yields a lower bound of 8 x 33 x 24 x 10 = 63360
hours (7.23 years) of computation.

Assuming that all experiments were run on Tesla V100-SXM2-16GB (TDP of 250W), the cluster it
was run on had a carbon efficiency of 0.0006 kgCO,eq/kWh (that of the surrounding power grid)
and that there were 63360 hours of cumulative computation, the total emissions were 9.51 kgCOseq,
equivalent to driving 36km in an average car. Estimations were conducted using the MachineLearning
Impact calculator presented in Lacoste et al. (2019).

F Further Results

F.1 Adjusting the Pessimism of DoubleGum

Figure 8 shows that sample efficiency is sensitive to the pessimism factor ¢ adjusting pessimism per
suite greatly impacts sample efficiency. The best performing ¢ was ¢ = —0.1, and was thus set as the
default pessimism factor value.

Figure 9 shows that the performance of DoubleGum may be improved when the degree of pessimism
is changed per suite. This graph was used to determine what pessimism factor to use in each suite,
whose values are reported in Table 5.

F.2 Adjusting the Pessimism of Baseline Algorithms

This section presents graphs used to determine which pessimism values to use for baseline algorithms.
All final values are reported in Table 5.

Figure 10 shows that sample efficiency is sensitive to the use of pessimism determined by the use
of Twin Networks/not. In aggregate, each method was improved by using Twin Networks. Twin
networks were therefore set as the default pessimism option for all baseline algorithms apart from
QR-DDPG, because Twin Networks was not used with quantile regression in (Dabney et al., 2018b).
Figure 11 was used to determine whether to use Twin Networks/not on a per suite basis.

Similarly, Figures 14 and 15 were respectively used to determine pessimism hyperparameters for
FinerTD3. In these two graphs, numbers refer to the i smallest value returned by the ensemble
of target critics. Finally, Figures 12 and 13 were respectively used to determine pessimism and (3
hyperparameters for XQL.

F.3 Discrete Control

Table 6 presents results for discrete control at 100K timesteps.

30

https://mlco2.github.io/impact#compute
https://mlco2.github.io/impact#compute

0.4 — ¢c=-0.5

—— ¢ = —0.1 (Default)
— ¢=0

— ¢=0.1

— ¢=05

0.3

QM

0.2

0.1

0.0

00 02 04 06 08 10
Timesteps (in millions)

Figure 8: Adjusting the pessimism factor ¢ in DoubleGum, IQM normalized score over 33 tasks in 4
suites with 95% stratified bootstrap Cls.

MuJoCo MetaWorld
030

0.24
0.18
0.12
0.06

X 0.00
00 02 04 06 08 10 00 02 04 06 08 10

0.60
0.45
0.30

QM

0.15

0.00

Timesteps (in millions)

¢ = —0.1 (Default) c=0

c=0.5

c=-0.5

c=0.1

Figure 9: Adjusting pessimism in DoubleGum, per-suite IQM with 95% stratified bootstrap ClIs.

0.40

0.32

—— DDPG ---- TD3
s 0 —— SAC ---- Twin-SAC
2 s —— XQL -——- Twin-XQL
0.08 QR-DDPG Twin-QR-DDPG
0.00
00 02 04 06 08 10

Timesteps (in millions)

Figure 10: Adjusting pessimism of baseline algorithms with the use of Twin Networks/not, IQM
normalized score over 33 tasks in 4 suites with 95% stratified bootstrap CIs. Methods that default to
use Twin Networks are dashed.

DMC MuJoCo MetaWorld Box2D

0.60 0.8
0.24

0.45 0.6

0.18
0.12

0.30 0.4

QM

0.15 0.2 /" 0.06 SO
0oL/ 0,00

00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0

0.00

Timesteps (in millions)
—— DDPG — SAC — XQL QR-DDPG
---- TD3 ---- Twin-SAC ---- Twin-XQL Twin-QR-DDPG

Figure 11: Adjusting pessimism of baseline algorithms with the use of Twin Networks/not, per-suite
IQM normalized score with 95% stratified bootstrap Cls. Methods that default to use Twin Networks
are dashed.

Untuned
0.30
0.24 — B=3 == B=1
S o — B=4 p=2
2 e — B=10 B=5
0.06 — =20

0.00

00 02 04 06 08 10
Timesteps (in millions)

Figure 12: Adjusting pessimism of XQL, IQM normalized score over 33 tasks in 4 suites with 95%
stratified bootstrap CIs. Methods that use Twin Networks are dashed.

31

DMC MuJoCo MetaWorld o Box2D
0.25 X

0.60
s 0.16 020
s 0.12 0.15
g o 0.08 010
0.15 0.04{ A ! 0.05
0.00 0.00 0.00
00 02 04 06 08 10 00 02 04 06 08 10

Timesteps (in millions)

— B=3 — B=10 -~ B=1 B=>5
—— B=4 — B=20 =2

Figure 13: Adjusting pessimism of XQL, per-suite IQM normalized score with 95% stratified
bootstrap CIs. Methods that use Twin Networks are dashed.

0.40 .
— Pessimism 0

—— Pessimism 1 (Default)
—— Pessimism 2

0.32

0.24

QM

0.16 .
—— Pessimism 3
0.08 .
—— Pessimism 4

0.00

00 02 04 06 08 10
Timesteps (in millions)

Figure 14: Adjusting pessimism of FinerTD3, IQM normalized score over 33 tasks in 4 suites with
95% stratified bootstrap Cls.

DMC MuJoCo 025 MetaWorld Box2D
0.60 y 038)
0.20
= 045 0.6 o015
0.30 04
g 0.10
0.15 02 0.05
0.00 ool o
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Timesteps (in millions)
—— Pessimism 0 —— Pessimism 2 —— Pessimism 4
—— Pessimism 1 (Default) —— Pessimism 3

Figure 15: Adjusting pessimism of FinerTD3, per-suite IQM normalized score with 95% stratified
bootstrap Cls.

MuJoCo MetaWorld Box2D
0.60 0.24 !
= 0.45 0.18
o 030 0.12
T oos 0.06
0.00 0.00

" 00 02 04 06 08 10 00 02 04 06 08 10
Timesteps (in millions)

—— DoubleGum, ¢ = —0.1 (Ours) —— DDPG ---- Twin-SAC QR-DDPG
—— MoG-DDPG ---- TD3 ---- Twin-XQL FinerTD3

Figure 16: Continuous control with default parameters, per-suite IQM normalized score with 95%
stratified bootstrap CIs. Methods that default to use Twin Networks are dashed.

32

MuJoCo 030 MetaWorld

0.60 0.8

IR 024
045 0.6 NNV e R N AN
o 030 0.4 Ay 012 sl A
0.15 02 0.06] A
0.00 0.0 0.00
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 10
Timesteps (in millions)
—— DoubleGum, best ¢, (Ours) —— SAC (best w/wo Twin) QR-DDPG (best w/wo Twin)
MoG-DDPG (untuned) XQL (best of B w/wo Twin) FinerTD3 (best pessimism)
—— best of DDPG/TD3

Figure 17: Continuous control with the best pessimism hyperparameters tuned per suite, per-suite
IQM normalized score with 95% stratified bootstrap Cls.

F.4 Continuous Control with Default Pessimism

Figures 16 and 18 respectively present aggregate per-suite and per-task results of DoubleGum
benchmarked against baseline algorithms with default pessimism values.

Table 7 presents the performance of all algorithms with default pessimism at 1 million timesteps.
This graph has six subsections. The first four subsections present per-task results from DeepMind
Control, MuJoCo, MetaWorld, and Box2D, respectively, corresponding to results from 18. The next
subsection presents per-suite aggregate results, corresponding to Figure 16, while the last subsection
presents aggregate results over all tasks and suites, corresponding to Figure 1. In aggregate results,
only the IQM is reported.

F.5 Continuous Control with Pessimism adjusted Per-Suite

Figures 17 and 19 respectively present aggregate per-suite and per-task results of DoubleGum
benchmarked against baseline algorithms with the best pessimism values adjusted per-suite.

Table 8 presents the performance of all algorithms with default pessimism at 1 million timesteps.
This graph has six subsections. The first four subsections present per-task results from DeepMind
Control, MuJoCo, MetaWorld, and Box2D, respectively, corresponding to results from 19. The next
subsection presents per-suite aggregate results, corresponding to Figure 17, while the last subsection
presents aggregate results over all tasks and suites, corresponding to Figure 1. In aggregate results,
only the IQM is reported.

33

650 $STE0 20820 9270 85€€°0 920€°0 60LE0 870 7 9e32133V 1V
6L9L°0 YOLE0 65980 85990 YOTL'0 61€0 1168°0 16€6°0 ae30133y agxod
L981°0 L1070 1881°0 LT060°0 6v1°0 v061°0 €61°0 607°0 9230133y plIOMEIOIN
S0£8°0 600 €TH10 10£9°0 91LLO LLOE0 £€99+°0 8180 ae30133y 0Dorny
75€5°0 L8LS'0 €00S°0 €620 88510 €285°0 97£9°0 16190 9e30133y [onuo) purydesq

8SOr F €S S6LITF6V8 659 F ['b11 1'9S F 61°2¢- 10SP T LT8T TI'OE T8O IL- 6£TS T OTSI S6'98 T 681 | ga-exoopreqrexremTepedrg
SFOF 1CCE STLTVLVT LIL'9 T 6I€E LYTT F 1'1TE SPETFTITE 6SITTFO8IT T688 FHSTE 97Tl FTSIE ga-zoxTeMTEpPadTg
I'1C6 T 82ST TEOI FOLET 6THT F 966 €€86 T TLY6 9708 F S80C $198 FS9TC T+Zl F 161 $°099 F 9097 za-A1quesse
9881 F998C TIE1 F0T9€ 6981 F TI8T Si6 T S'L8Y 6601 TOVEl LLPT T+99T Y€l T 00SE STTI T SO€P zA-TouRY
THOT T 96F1 920T F €0TC 1681 F 0S9¢€ TILT F TOES LO6T F LL6T LLOT FLOOS Svv1 FLIVT SVET T LETY za-osut-deens
vEOT F8STI SOPI T LSIT 0201 T Oppl €651 F 261 9071 F87C1 98PT T S8€C 0STI F TSI 9'TS6 F #1Tl ZA-UIn3-TeTPp
9T0L F¥'¥2S L6IT FTL6T 0L91 F 9TII TL61 T 9VT6 P8YO T 6L79 ¥106 F 1608 9011 F #'709 8€TI F 6°08L ZA-TTRqaeYSEq
9SS F16Tr 1611 FT0v €998 F bLSY 9'v0L F TLEY SPIT FToch €TE T TSsy SPITTF 0Lk TIL T ¥Ob zA-8sOTO-MmOpUTH
88Y1 FT98LT ISSI T v6TC €201 T 916€ 9z€1 F €'16b OSIT FTShe 9LVI F620€ ¥9LI F10ST SIST F 899T za-uado-moputs
€111 FSELT 1€T1 F890€ 9901 F TSST €PTI T 06€€ YOST FT60T 99%1 FT66T L'606 F 688T LTIT T OpLI za-yoes
ILSTI FL6TL LIS TFTIEVL SI1L6 F TSIV 8L'9L F 66'ST S0S6 FSTh 6'8T6 T 6LLL SOOI T 601€ 78T F I'161 za-ysnd
LTELF W69 TLY8 FTISH 8LE T 8691 19L°T F €55°S LSLy F10SL LTLOTE€60S SSETFSTIT SOI F6raTl ga-eoerd-yotd
TSLIFOPIT 11TI T86E€ 96LS T 8LIE TSSTF 8LEL 1611 Fesy SSSIFve0r LIVI FHIsk 69L1 F 92Tl za-opTs-11esutr-Sed
L811 F8H0T €9v1 F 0T8T 6181 F 9STT TP F L19T 1IST F1S6C L9¥I FOIST TehI FHLOP TITI T T9LT ga-uado-zomeIp
vT€l T 808y 88LI F8LIY 0951 F 0SLY 907T F 6£0€ SILI F€vLy 9161 F088€ SLSI T 9OLF 9TLI T 6€8P zA-9S0TO-TomeIp
6501 T €80v SSTI T 8I8E It6 T 956¢€ TSy F TETy 1'608 F ¥8LE SIvI F 1697 I€PI F88TP 9091 F 1L9¢€ za-uado-z00p
0611 TSE€8 €868 F¥rl 1988 F 8TII €11 F 99€1 996 F6'S€9 9101 F €601 9901 F 9616 THTI T 9€pT za-ssexd-uoaang
S'6E€ T 899S 9SO F 181 66TE T T091 T'E0L F 98TS V'Z0E F Iv2S 6709 F €20C v'€8L F SILT 1006 F S¥9S pA-pTOURUTY
PPy T 8P09 YI9L F SHTT $891 F TS9E €118 T 8065 P16 T SHOS 9TOE T 6'9L6 T996 F ##9v S'TSS F 9+09 pa-auy
T'LSE FOLTP 8068 F SOTT LY'6LTF LTSI 6011 F ¥68C I'€6S T898€ €OLF T 99K LTIT F961C 6EV1 T 8pIv pA-DPZIONTEM
8'8TE T OTHOT 9LYT F8¥16 I1LST T ¥696 0001 F TLIL 06ST F0T00T LSST FTSS6 vvOT T 8656 €809 T OTLOT pA-Ue399UDFTeH
9068 F €31 L'VSS F I¥91 L'TTI T 6816 €1 F Th6 T6£6 T68ST TOVL T 8PEl TOISF 11T 1'899 F 66€1 a-1eddoy
90°6 T P'PEC SSTCTSSST 9S°0T FS'6C CLLLOTFOLTS TTSTFT60T LITI F¥LLL 8S0TF 88ET vI'€T T 1'L81 unz-Sop
TCLYFTSHT 89LI FSLIT LT FT6II PETOT P9E8'0 SLTOTFIS6E 60STTF 9611 8STI T L696 9TI T STHI unz-proueuny
SI'T8 FSTI9 TIV9 F 866V S8PI T SSep SOET F ¥'$TT TOSI FLLY THOI FSIES 86T T H'€T9 8'LET T 6'809 GTIOUWNTAS - IOUWTAS
I'LITF86EL 6908 F¥TLL 9001 F 6°€hL L181 F LLY 9691 FTLLY SSL8TO9EL LE9LTFTSIS TI'S9 T I'SES unz-pednzpenb
T601 FISL 1967 T 6L 9PIT T S'SOL I'T1€ T 9°8€S €S6E T 969 6T8TTOSSL 98 ITTFLSLL L6'9T T 9°€8L unz-zeyTeM
6SESY TLIVL SYE9TF6S8L $T9S F €19L SEPY T 8'80L SLTSTSPL IEHPO T SH08 +SES T 67b8 1STT T I'€88 unI-ye1esyd
88ITFSLY SOPS FTS69 966 T L'TEI SIST F 6'7hE T TF6LIS PSPoTFTOIL 8979 FI'SSL S'8S T L'SLO WIAS-ySTF
ILISTOIl €T69TF €Y0E 1TS9 T 6'SEl L8SE0'0 F 800L000 LE69 T ¥'€Cl TI'08 FL'SOE bL'66 F €€IE 101 T L'90€ doy-zeddoy
6VCTI'PL6 TOELT EVT6 8V6S T T'LI6 1769 F S'1S6 ISSTF L'696 890S T 1606 ¥LLTFHSE6 1686 T 81€6 pIey wIng-I1e8uty
SI'STTFvTLe 98P T6TL6 90ST T 1°SL6 1TLT FTIL6 CIIET6'SL6 SL9TT L'SL6 S86'Y T 6'9L6 8T'HS T ¥'6L6 pIey-18ydesI
96'ST T #11'8 97’88 T L'9SE 1’16 T ¥8'8€ ¥91°9 F 8959 €SOTTFSIEL T6'96 T LYEE SLILTF 649 +i'6L T TOEE dnSutms-j0qoIoe
cqrIouLy 0daa-40 TOX-UIML OVS-uImy €aL 0ddd 0ddd-DOW wmodqnoq |

(oyenrdoidde aroym uonerasp prepuels F NQOI) sdorsowny A 18 2100§

JSEL/o1ng

‘sdoysown | Joyje 2109s s1ajowerediodAy wstuissad Jnejop Yam [01U0d SNONUIUOD) :/ J[qR],

34

acrobot-swingup reacher-hard finger-turn_hard hopper-hop fish-swim cheetah-run

1000
A
450 1000 00 800 i
Wl s 300 600 i
500 200 400
250 100 200
0 01 0
s 0.0 0.5 1.0 0.0 0.5 Lo 0.0 0.5 1.0 0.0 0.5 Lo 0.0 0.5 10
g walker-run quadruped-run swimmer-swimmer15
750
600
450
3001 g
1501 A0
0 50
0.0 0.5 1.0 0.0 0.5 1.0
Timesteps (in millions)
(a) DeepMind Control
Hopper-v4 HalfCheetah-v4 Walker2d-v4 Ant-v4 Humanoid-v4
4000 7500
3200 10000 54500 6000
= 2400 7500 2000 4500
O 1600 50001 7 3000
=
800 25001 | 1500 1500
0 0 01’ 01/
0.0 0.5 1.0 00 05 1.0
Timesteps (in millions)
(b) MuJoCo
button-press-v2 000 drawer-close-v2 6000 drawer-open-v2 4505)eg—msert»51de—v2 0 pick-place-v2
2400 6000 l 4500
4500 i ‘ 3000 1200
1600 4000 " 3000] [600 ul
3000 2000 " 3 1500 | ‘&M&
800 i 0
off 1500 of! 1500 ! o] -2 L
—800 0 ~2000 0 ~1500 ~1200
0.0 05 1.0 0.0 05 1.0 0.0 05 1.0 0.0 05 1.0 0.0 05 1.0
push-v2 reach-v2 window-open-v2 window-close-v2 basketball-v2 dial-turn-v2
4000
2400 5000 6000
4500 4500
3000
1600 4000 4500 2000
5 3000 3000 2000 o 3000
L 1500
= 20001 1500 o 1500
—800 1000 0
01’ ~1000 01’
—1600 0 —~1500
0.0 05 1.0 00 05 1.0 0.0 05 1.0 0.0 05 1.0 00 05 1.0 00 05 1.0
6000 sweep-into-v2 6000
4500 4500
3000 3000
1500 1500
0l-
~1500 0
0.0 05 1.0
Timesteps (in millions)
(c) MetaWorld
BipedalWalker-v3 BipedalWalkerHardcore-v3
50
—— DoubleGum, ¢ = —0.1 (Ours) ===+ Twin-SAC
= —— MoG-DDPG ---- Twin-XQL
<4 —— DDPG —— QR-DDPG
--—. TD3 FinerTD3

—150

Timesteps (in millions)

(d) Box2D
Figure 18: Continuous control with default pessimism hyperparameters, per-task IQM = standard

deviation. Methods that default to use Twin Networks are dashed. The legend for all graphs is in
Figure 18d.

35

6£TH0 Y26€°0 98.T°0 61LT0 6L6€0 60LE0 LoLr0 | 0eSaIssY IV
6L9L°0 109°0 6598°0 8599°0 YOTL'0 11680 16€6°0 30183y qexog
TWoT0 L10T°0 YOTI'0 S1S80°0 ¥061°0 €61°0 S0ST°0 91830188y pLHOMEIIN
S0€8°0 1908°0 €TYI0 $0£9°0 91LLO €99%°0 LIES"0 30158y 0o
1219°0 L8LS0 81650 9LY0 €850 97£9°0 1619°0 ae3a183y DN
8SOFFEES 6SOTFIVII 681 FrLIe- 1'9S F61C6- 10SPFLTST 66TS F9TSI S698 F 681 | £a-oroopreqrexTenTepedig
SO F 172 LIL9F6IEE LTSI FECIIE LOITFUICE €YETFTITE T688 FH'STE 97Tl F TSIE ga-TexTepTepedTg
LOST F 90T STOP F¥91 TEOT F 9LET €T6F FI'SIT ST98FS9TC I+2I F Iv61 °099 F 909T za-Arquesse
SITTF ISy LSET FT68I TIEl F 0T9€ 0S91 F 0811 LLYT F 99T v¥E1 F00SE SITI T S0€P ZA- Toumrey
vE61 F¥¥8T TSLI F 8001 920T F €07¢T 8ILI F 6'LYT LLOT F LOOS 8¥FI FLIFI SPEL F LETH za-oqut-deans
SSTIFI0TT 80KI F 0691 SOV F LSIT SLIT F TLy1 98FT T S8€T 0STI F ¢SSl 9°TS6 F ¥ITI ZA-uIn3-TRTP
1'656 T 8981 9'SYL F €866 L6TT T TLGT YCITF 266 ¥106 F1'608 9011 F 209 8€TI T 608L ZA-TTeq39¥SEq
09T F LTy €TECTF8LSH 1611 F TT0 SYOT F 000 CTVEFTSEY SPITTFOLSH TIL T vObb TA-9S0T>-MmOPUTA
SOST F#96T €181 FTLOT ISST F ¥6CC T€81 T LS61 9LPT T 620€ ¥9L1 T 10ST SIST F 899 za-uedo-moputa
6'TC6 FTOVT SKET F€8ST TETT F 890€ €61 F ¥L6T 99%1 FT66C L'606F 688T LTIT T 9pLI zA-yoesx
V'ESY F89ST TL'S6 FSE9L LLYS FTEVL ShL T 1806 6’876 T 6'LLL SO0T F 6'01€ T8TI F I'161 za-ysnd
6'€96 F¥'10S SLLY F899C TLYSFTISy €L81TF I8y LTLIFE60S SSEFSTIT SOl Fo6ral za-eoerd-¥o1d
6691 FT601 T9¥I F 8001 11TI FS6EE 6TETTE696 SSSI F+'20F LIVI FYIEr 69LT T 9TTT zA-opTs-119suT-Sad
€EST F 8091 T8ET FTL6T €9v1 F 0T8T PIST F O1LI LOYI FOIST Tehl FvLOP CTITI F T9LT za-uedo-TemeIp
LEOT F I¥LE THOT T 88Sy SSLI F SLIY 6S€1 T 6L 9161 T 088 SLSI F90Lv 9ZLI T 6€8% TA-9S0TO-ToMeIp
8'€S6 F 89Tk LSET FTISE $STI F SIS 9911 F +11€ SIVI T 1697 TI€PI T88F 9091 F 1L9€ za-uedo-100p
TSSLTF 9801 LKOT T90ST €868 F ¥Tvl €8TLF SS9 9101 T €601 9901 F 9616 I¥TI F 9¥I za-ssead-uo3ang
S'6EE T 899S 66TE T TO91 I'SYCFTSYS TEOLTF98TS ¥'T0E FIveS v E€8LFSILT L'091 F S9SS yA-pTOURUMY
PYOr T 8P09 S891 T 7S9€ €'89T T S8T19 €118 F 8065 YI6F SY9S T996 F v¥9v 891F F 189S pA-2Uy
I'LSE FOLTY LV'6LF LTSI 796 F LTOF 6011 F ¥68C 1'66S F898€ LTIT F961C L'€OF F ILSP yA-pgIevTep
8'87€ T OTHOT 1LST T ¥696 €TET T SS86 0001 F ILIL 06S1 F 0TOOI #¥OI F 86€6 ¥'L66 T ¥L86 YA-Te109UDITeH
9'068 F €81T LTTI T 6816 ¥'9¥6 F 86€T €SE1 F Th6 T6£6 F685T TOIETFIITI 1678 F 062€ ya-zoddoy
LYTEFISLS LESTFESHT SSTCFSSST SL9STFE€9TT LITI FHLLL 8S0TF 8'SET PI'ET F I'L8T unz-gop
ST8OF 0SS vY9'6 F+'Tcl 89LI FSLIT 96¥10 F L¥960 60°STF 9611 8STI FL696 9TI T STHI unI-proveuny
¥'901 FT09S TOVI FLTSS CTIVOF866F STOIFSLEY 1H0I FSIES 86 I8 FHE€T9 8LET F 6809 GTIOUWTAS - TOUMTAS
YLT6 FYVIL OLYS FSLL 6908 F +'TLL 9679 F vLL 8S'L8F9EL LEOLTFTSIS TI'S9 T I'SE8 unz-pednipenb
LTVFLLL 9YPTF86SL 1967 F 6'€hL ¥'661 F TEL 60STF9SSL 98TTTFLSLL L6'9T F 9°€8L unI-I0YTEM
LIPS F669 €T6OTFII6L SHEOT6SSL SSHLFSHIL IEPYOFSH0S +SESF6'vr8 ISTC T T'€E88 unI-ye3esyd
STTP F9T9L €L8EFSS0L SOVSFTS69 9T F¥919 vSH6 FTOIL 8979 F I'SSL S'8S F L'SLY WIMS-USTF
LY FS6IS SOTT8OVE €769 FEY0E 8195 F 1S9L000 TI'08 FL'SOE ¥L'66 F €€I€ 101 F L'90€ doy-zseddoy
VL F 4956 T6'S9OF9TS6 TOELFEVL6 €SSTFHTL6 890S F 1606 FLLFVSE6 1686 F 81€6 prey uiny-IoSuty
SLLTTFEIL6 1TEI T¥SL6 98Vl F6TL6 8S9S T TOL6 SLOTTFLSL6 SS6Y T 69L6 STPS T +6L6 pIey-Isyoeet
6L68S FE€EST TIEIFLSTT 9TSSFLOISE SHEI F 99T T6'96 F LYEE SL'ILTF 649€ +'6L F TOEE dnButms-q0qo1oe
€QLIouL] 0dad-10 10X ovs €aL/Odad DJAQ-DOW wmoaqnoq |

wstwissad 3soq yim (eyerrdordde aroym uoneraap prepuels F NOI) sdojsown) N[1e 91005

JyseL/eNng

sdaysowny A 103y ans 1ad pasnfpe sigpowerediodAy wistwissad 1s9q 93 YIim [0IIUOD SNONURUO)) :§ [qe],

36

acrobot-swingup reacher-hard finger-turn_hard 600 hopper-hop fish-swim 1000 cheetah-run
00 1000
1000 450 800]
750 "
750 200 600
5 3
500 00 o 400
250 250 2007
0 0 0 ol/
2 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
g walker-run quadruped-run swimmer-swimmer15 o humanoid-run
750
800 — 600
600 450
400 300
200 1501 i
NL 0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Timesteps (in millions)
(a) DeepMind Control
Hopper-v4 Walker2d-v4 Ant-v4 Humanoid-v4
6000
6000
4500
4500
3000 3000{ |
1500 1500 y
ol e ol
00 05 1.0 0.0 0.5 1.0
Timesteps (in millions)
(b) MuJoCo
button-press-v2 drawer-close-v2 drawer-open-v2 eg-insert-side-v2 ick-place-v2
P 6000 6000 P peeg 2400, PIKP
6000
2400 4500 ‘n ! 4500 3000 1600
000 [TRENCTHRRTY
1600 3000 [W V‘”"W‘W 3000 1500 ik
800 1500 20001 S
0 ofl 1500 0
0 —2000 ol. ~1500
0.0 05 1.0 00 05 10 0.0 05 1.0 0.0 05 1.0 00 05 1.0 0.0 05 1.0
ush-v2 reach-v2 window-open-v2 window-close-v2
2400 P 5000 6000 P 6000 4000
1600 4000 4500 4500 s 3000
= 80 w20 lhoabaml 3000 3000{ J/ 2000
o st 5000 Y 1500 / 1000
1000 15001 0
~800 ol! o |
1600 0 ~1000
0.5 1.0 00 05 10 0.0 05 L0 0.0 05 1.0 00 05 1.0 0.0 05 1.0
sweep-into-v2 hammer-v2 assembly-v2
6000 6000 4000
4500 4500 e 3000 L
3000 W 3000 Mm 20000 il ‘w“l‘ﬂ'w',@ﬂ\zv
1500 it 1500 10001 £,
0 AJLJW\/'V\,“‘“”;&”M . o ALY W
—1500 —1000
0.0 05 1.0 00 05 10 0.0 05 1.0

Timesteps (in millions)

(c) MetaWorld

—— DoubleGum, best ¢, (Ours)
—— MoG-DDPG (untuned)
—— best of DDPG/TD3

—— SAC (best w/wo Twin)

—— QR-DDPG (best w/wo Twin)
—— XQL (best of B w/wo Twin)
0.0 05 1.0 0.0 05 1.0 FinerTD3 (best pessimism)

Timesteps (in millions)

(d) Box2D

Figure 19: Continuous control with the best pessimism hyperparameters adjusted per suite, per-task
IQM = standard deviation. The legend for all graphs is in Figure 19d.

37

