
Appendix

Table of Contents
A Proofs 17

A.1 The SoftMax Location of Gumbel Distribution . . . . . . . . . . . . . . . . . . 17
A.2 Shifting the Value Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
A.3 The Difference between Two Gumbel Random Variables is a Logistic . . . . . . 18
A.4 Soft Q-Learning Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

B Further Theory and Derivations 19
B.1 Actor Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
B.2 Maximum-Entropy Reinforcement Learning . . . . . . . . . . . . . . . . . . . 20
B.3 Interpreting the Cross-Entropy as a Pessimism Factor . . . . . . . . . . . . . . . 20
B.4 Comparison between DoubleGum and XQL . . . . . . . . . . . . . . . . . . . 21

C A Discussion on The Convergence of DoubleGum 21
C.1 Tabular Q-Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
C.2 Deep Q-Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

D Further Empirical Evidence for Theoretical Assumptions 23
D.1 Noise Distributions in Deep Q-Learning . . . . . . . . . . . . . . . . . . . . . 23
D.2 Adjusting The Pessimism Factor . . . . . . . . . . . . . . . . . . . . . . . . . 23

E Further Experimental Details 23
E.1 Noise Distribution Discrepancy with Extreme Q-Learning . . . . . . . . . . . . 23
E.2 Continuous Control Benchmarks and Evaluation . . . . . . . . . . . . . . . . . 23
E.3 Discrete Control Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
E.4 Continuous Control Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
E.5 Compute Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

F Further Results 30
F.1 Adjusting the Pessimism of DoubleGum . . . . . . . . . . . . . . . . . . . . . 30
F.2 Adjusting the Pessimism of Baseline Algorithms . . . . . . . . . . . . . . . . . 30
F.3 Discrete Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
F.4 Continuous Control with Default Pessimism . . . . . . . . . . . . . . . . . . . 33
F.5 Continuous Control with Pessimism adjusted Per-Suite . . . . . . . . . . . . . . 33

16



A Proofs

A.1 The SoftMax Location of Gumbel Distribution

We refer to the log-sum-exp operator as the SoftMax operator. This is not the same-named operator
in Bridle (1989, 1990), which we suggest should be (re-)named SoftArgMax.
Theorem 1.

max
i

[αi + gi] = β log
∑
i

exp

(
αi
β

)
+ g, where g, gi ∼ G (0, β)

where G is a Gumbel distribution. A Gumbel random variable g ∼ G(α, β) specified by location
α ∈ R and spread β > 0 has PDF p(g) = 1

β exp(−z − exp(−z)) with z = (g − α)/β and CDF
P (g) = 1

β exp(− exp(−z)) (Gumbel, 1935).

Proof. First note

αi + gi, gi ∼ G (0, β) =⇒ αi + gi ∼ Gi (αi, β)
Then, denoting y = maxi[αi + gi]

P (X ⩽ y) =
∏
i

Pi(X ⩽ y)

=
∏
i

Gi(X ⩽ y)

=
∏
i

exp

(
− exp

(
−x− αi

β

))

= exp

(
−
∑
i

exp

(
−x− αi

β

))

= exp

(
− exp

(
−x
β

)∑
i

exp

(
αi
β

))

= exp

(
− exp

(
−x
β
+ log

∑
i

exp

(
αi
β

)))

= exp

(
− exp

(
− 1

β

(
x− β log

∑
i

exp

(
αi
β

))))

= G
(
β log

∑
i

exp

(
αi
β

)
, β

)

= β log
∑
i

exp

(
αi
β

)
+ g, where g ∼ G (0, β)

When applied to discrete Q-Learning, we produce

max
A

[Qθ(s, a) + gθ,a(s)] = βθ(s) log

∫
As

exp

(
Qθ(s, a)

βθ(s)

)
da+ gθ(s) (10)

where gθ,a(·), gθ(·) ∼ G (0, βθ(·)) , for all a ∈ A.

We assume that the same result holds for the continuous case if |A| <∞, an assumption first used
in Lemma 1, Appendix B.1, Page 11 of Haarnoja et al. (2018a) to ensure boundedness. Here, we
require the output of the max-operator to be bounded, which cannot be the case when the number of
its arguments is∞.

17



A.2 Shifting the Value Function

Theorem 2.

β log
∑
i

exp

(
αi + g

β

)
= β log

∑
i

exp

(
αi
β

)
+ g

Proof.

β log
∑
i

exp

(
αi + g

β

)
= β log

∑
i

exp

(
αi
β

+
g

β

)
(11)

= β log exp

(
g

β

)∑
i

exp

(
αi
β

)
(12)

= β log exp

(
g

β

)
+ β log

∑
i

exp

(
αi
β

)
(13)

= β log
∑
i

exp

(
αi
β

)
+ g (14)

A.3 The Difference between Two Gumbel Random Variables is a Logistic

Theorem 3.

x1, x2 ∼ G(0, β) =⇒ z = x1 − x2, z ∼ L(0, β)
where L is a logistic distribution. A logistic random variable l ∼ L(α, β) with location α and spread
β has PDF exp (−(l−α)/β)

β(1+exp (−(l−α)/β))2 and CDF 1
1+exp (−(l−α)/β) .

Proof. First, construct the convolution based on the joint PDF

L(z) = P (Z ⩽ z)

= P (X1 −X2 ⩽ z)

= P (X1 ⩽ z + x2)

=

∫ ∞

−∞

∫ z+x2

−∞
g(x1) g(x2) dx1 dx2

=

∫ ∞

−∞
G(z + x2) g(x2) dx2 .

Rewriting x2 as x yields

L(z) =
∫ ∞

−∞
G(z + x) g(x) dx

=

∫ ∞

−∞
exp

(
exp−z + x

β

)
exp

(
−x
β
− exp−x

β

)
dx

=

∫ ∞

−∞
exp

(
−e− x

β

(
1 + e−

z
β

))
e−

x
β dx

=

∫ ∞

0

1

β
exp

(
−u
(
1 + e−

z
β

))
du, where u = e−

x
β , du = − 1

β
e−

z
β dx

=
1

β

1

1 + e−
z
β
e

(
−u

(
1+e

− z
β
))∣∣∣∣∞

0

=
1

1 + e−
z
β
.

which is the CDF of L(0, β).

18



A.4 Soft Q-Learning Identity

Theorem 4. For an arbitrary p(x)

β log

∫
exp

(
E(x)

β

)
dx = E

x∼p(·)
[E(x)] + β C[p || p⋆], where p⋆(x) =

exp E(x)
β∫

exp E(x)
β dx

Proof.

E
p(x)

[E(x)] + β C[p || p⋆] = E
p(x)

[E(x)]− β

∫
p(x) log

exp E(x)
β∫

exp E(x′)
β dx′

dx

= β

∫
p(x) log

∫
exp

E(x′)

β
dx′ dx

= β log

∫
exp

E(x)

β
dx

When applied to Q-Learning, the following identity produces

β(s) log

∫
exp

(
Qθ(s, a)

β(s)

)
da = E

πϕ(a′|s′)
[Qθ(s, a)] + β(s)C[πϕ || pθ]

where pθ(a | s) =
exp Qθ(s,a)

β(s)∫
exp Qθ(s,a′)

β(s) da′

B Further Theory and Derivations

B.1 Actor Loss

The actor losses used in DoubleGum, SAC, and DDPG are all derived from the same principle. For a
given s, the actor loss function should minimizes the following (reverse) KL-Divergence, previously
presented in Equation 7.

min
ϕ
β DKL[πϕ || pθ], where pθ(a | s) =

expQnew
θ (s, a)/β∫

expQnew
θ (s, a′)/β da′

.

This simplifies as

min
ϕ
β DKL[πϕ || pθ] = min

ϕ
β

∫
πϕ(a | s) log

πϕ(a | s)
pθ(a | s)

da

= max
ϕ

[
βH[πϕ] + β

∫
πϕ(a | s) log

expQnew
θ (s, a)/β∫

expQnew
θ (s, a′)/β da′

da

]

= max
ϕ

[
βH[πϕ] + β

∫
πϕ(a | s)

Qnew
θ (s, a)

β
da

]
which is then estimated by Monte-Carlo samples from πϕ as

max
ϕ

E
πϕ(a|s)

[Qnew
θ (s, a)− β log πϕ(a | s)] . (15)

SAC (Haarnoja et al., 2018a,b) has a policy with learned variance and state-independent β. DDPG
(Lillicrap et al., 2015) has a fixed-variance policy which removes the second term in Equation 15 as it
is constant with respect to the maximization. DoubleGum has a state-dependent β(s), but uses the
same actor loss as DDPG because DoubleGum uses a DDPG fixed-variance policy.

19



B.2 Maximum-Entropy Reinforcement Learning

SACv1 (Haarnoja et al., 2018b) is a special case of DoubleGum and DDPG (Lillicrap et al., 2015) is
a special case of SAC. All three continuous control algorithms have an actor and critic loss derived
from the same principle. Section B.1 shows this for the actor losses of DoubleGum, SAC, and DDPG.
We now relate the critic losses to each other, starting from the most general case, DoubleGum. In
continuous control, DoubleGum uses the following noise model, formed from substituting Equation
7 into Equation 5:

Qnew
θ (s, a) + lθ,a(s) = E

p(s′|s,a)

[
r + γ E

πϕ(a′|s′)
[Qnew

θ (s′, a′)] + γβθ(s)C[πϕ || pθ]
]
. (16)

Here, lθ,a(·) ∼ L(0, βθ(·)) is a logistic distribution and pθ(a | s) ∝ exp
Qnew
θ (s,a)
βθ(s)

. The DoubleGum
critic loss is derived from this noise model by approximating the RHS with Equation 8 and learning θ
with moment matching in Section 3.2.

The SAC noise model is derived from Equation 16 in three ways. First, SAC approximates lθ,a(s) ∼
L(0, βθ(·)) as nθ,a ∼ N (0, σ), motivated by the fact that both distributions have the same mean/mode.
Secondly, SAC approximates the DoubleGum state-dependent logistic spread βθ(s) as temperature
parameter β learned not as a part of the critic but by itself with Lagrangian dual gradient descent.
Thirdly, SAC breaks down C[πϕ || pθ] = H[πϕ] + DKL[πϕ || pθ] before assuming that the KL-
Divergence is negligible, given that it is minimized by the actor loss. These three approximations
yield the SAC noise model as

Qnew
θ (s, a) + nθ,a = E

p(s′|s,a)

[
r + γ E

πϕ(a′|s′)
[Qnew

θ (s′, a′) + β log πϕ(a
′ | s′)]

]
. (17)

MLE of θ wrt the above noise model yields the MSBE critic loss.

DDPG is a special case of SAC that assumes β → 0, removing the last term in Equation 17.
limβ→0 pθ(a | s) becomes deterministic, so πϕ may be modelled by a deterministic policy.

B.3 Interpreting the Cross-Entropy as a Pessimism Factor

In continuous control, Fujimoto et al. (2018) introduced Twin Networks, a method that improved
sample-efficiency with pessimistic bootstrapped targets computed by returning a sample-wise min-
imum from an ensemble of two Q-functions. Follow-up work selects a quantile estimate from an
ensemble (Kuznetsov et al., 2020; Chen et al., 2021; Ball et al., 2023), which we demonstrate is
equivalent to estimating V soft, new

θ,β .

Suppose there is an ensemble of n networks where the ith network follows Qθi(s, a) = Qθ(s, a) +
zi(s, a). Here, Qθ is an ‘ideal’ function approximator never instantiated nor computed and z is an
arbitrary noise source. When n is sufficiently large,

min
i

E
πϕ(a|s)

[Qθi(s, a)] = min
i

E
πϕ(a|s)

[Qθ(s, a) + zi(s, a)] = E
πϕ(a|s)

[Qθ(s, a)] + min
i
zi(s)

= E
πϕ(a|s)

[Qθ(s, a)]− g(s), where g(s) ∼ G(α(s), β(s)) .

A Gumbel random variable g ∼ G(α, β) has E[g] = α + γeβ, where γe is the Euler-Mascheroni
constant, so for a deterministic environment the bootstrapped targets become

r + γ E
πϕ(a′|s′)

[Qθ(s
′, a′)]− γα(s′)− γγeβ(s′) ,

recovering Equation 8, the DoubleGum continuous control targets, up to an additive term γα(s′),
while −γγeβ(s′) recovers the spread γcσθ(s′) up to a negative scaling factor, indicating that the
default c should be negative. Moskovitz et al. (2021) and Ball et al. (2023) showed that the appropriate
ensemble size and selected quantile changes the overestimation bias, so appropriate values would
ensure α(s′) = 0.

20



B.4 Comparison between DoubleGum and XQL

We present an explanation of Extreme Q-Learning (XQL) as presented in Appendix C.1 of Garg et al.
(2023). XQL can be derived from Soft Bellman Equation backups given by

Q(s, a)← E
p(s′|s,a)

[r(s, a, s′) + γV soft(s)], where V soft(s) = β log
∑
a′

exp

(
Q(s′, a′)

β

)
and β is a fixed hyperparameter. Computing the log-sum-exp of V soft is intractable in continuous
control, as the sum over a′ becomes an integral in continuous control tasks.

Garg et al. (2023) present a method of estimating its value using Gumbel regression. Given a
(potentially infinite) set of scalars x ∈ X , Gumbel regression provides a method to estimate the
numerical value of log-sum-expβ(x) = β log

∑
X expx/β. Gumbel regression assumes x ∼

G(α, β), where G is a homoscedastic Gumbel distribution, and β is a fixed (hyper)parameter. α
estimated by MLE tends towards log-sum-expβ(x). MLE is performed by numerically maximizing
the log-likelihood of a Gumbel distribution, which recovers the LINear-EXponential (LINEX) loss
function introduced by Varian (1975).

Garg et al. (2023) incorporate Gumbel regression into deep Q-Learning in two ways, which they
name X-SAC and X-TD3. X-SAC combines Gumbel regression to estimate the soft value function
used in SACv0 (Haarnoja et al., 2018a). The soft value function V soft

ρ (s) is a neural network whose
parameters ρ are learned by Gumbel regression from Qψ(s, a) ∼ G(Vρ(s), β), where ψ are target
network parameters. A neural network Qθ with parameters θ may then be learned by the MSE
between itself and Ep(s′|s,a)[r(s, a, s′) + γV soft

ρ (s)]. X-SAC is vastly different from DoubleGum,
because our algorithm does not estimate the soft value function with a separate neural network.

Gumbel regression is directly used to learn the Q-values in X-TD3. First, the bootstrapped targets are
thusly rewritten

ysoft(s, a) = E
p(s′|s,a)

[
r + γβ log

∑
a′

exp

(
Qϕ(s

′, a′)

β

)]

= E
p(s′|s,a)

[
γβ log

∑
a′

exp

(
r + γQψ(s

′, a′)−Qθ(s, a)
γβ

)]
In environments with deterministic environments, which comprise all environments considered by
Garg et al. (2023) and our paper, Lemma C.1 of Garg et al. (2023) provides a method of learning the
soft value function with Gumbel regression on ysoft(s, a) ∼ G(Qθ(s, a), γβ). The Gumbel regression
objective used in X-TD3 to learn θ is vastly different from the moment matching with the logistic
distribution DoubleGum uses to learn θ.

To motivate their use of Gumbel regression, Garg et al. (2023) derived a noise model which they use
to present empirical evidence of homoscedastic Gumbel noise. In contrast, we presented empirical
evidence of heteroscedastic logistic noise formed from a noise model with two heteroscedastic
Gumbel distributions.

C A Discussion on The Convergence of DoubleGum

To the best of our knowledge, there are two types of convergence analysis in Q-Learning: 1) operator-
theoretic analysis over tabular Q-functions, and 2) training dynamics of neural network parameters.
We believe the second is more appropriate for DoubleGum, because our theory addresses issues in
using neural networks (and not tables) for Q-learning. Nevertheless, for completeness, we discuss
convergence guarantees for the tabular setting and the function approximation setting. While we can
guarantee convergence for the former setting, we have no guarantees for the second.

C.1 Tabular Q-Functions

Appendices B.1 and B.2 present DoubleGum as a MaxEnt RL algorithm. When Q-functions are
tabular, Appendix A of Haarnoja et al. (2018a) shows that MaxEnt RL algorithms may be derived

21



Algorithm 2: DoubleGum Soft Policy Iteration

Input: Finite MDP (S,A, r, p), initial tables Q, β, ysoft, initial policy π
Output: Optimal Tabular Q-function Q⋆

1 for training iteration i do
2 for all s do
3 for all a do
4 ysoft(s, a)← E

p(s′|s,a)

[
r(s, a, s′) + γβi(s

′) log
∑
a′ exp

(
Qi(s

′,a′)
βi(s′)

)]
5 Qi+1(s, a)← ysoft(s, a)

6 βi+1(s)←
√
3
π

√
V

a∼π(a|s)
[ysoft(s, a)]

7 define π(a | s)← exp(Qi+1(s,a)/βi+1(s))∑
a′ exp(Qi+1(s,a′)/βi+1(s))

from soft policy iteration. We therefore present a convergence proof for DoubleGum with tabular
Q-functions based on soft policy iteration.

DoubleGum treats the return as coming from a logistic distribution and learns its location and spread.
In the tabular setting, two tables would need to be learned, Q(s, a) and β(s). An algorithm to learn
these tables in a finite MDP with soft policy iteration is presented in Algorithm 2. Policy evaluation
is done by Lines 4-6 while Line 7 performs policy improvement.

Proof of convergence of Algorithm 2 is similar to the SAC proof of convergence in Appendix B of
Haarnoja et al. (2018a). This should not be surprising, given that Appendix B.2 shows SAC as a
special case of DoubleGum. We first show that policy evaluation converges and that a new policy
found by policy improvement does not reduce the magnitude of the value function.
Lemma 5 (Soft Policy Evaluation). Consider the Soft Policy Evaluation operator given by

Qi+1(s, a)← E
p(s′|s,a)

[
r(s, a, s′) + γβi(s

′) log
∑
a′

exp

(
Qi(s

′, a′)

βi(s′)

)]
over all (s, a) pairs.

limi→∞Qi converges to the soft Q-value.

Proof. Following Appendix A.4

β(s) log
∑
a

exp

(
Q(s, a)

β(s)

)
= E
π(a|s)

[Qθ(s, a)] + β(s)C[π || p]

where p(a | s) = exp(Q(s, a)/β(s))∑
a′ exp(Q(s, a′)/β(s))

the bootstrapped targets may be thusly rewritten

E
p(s′|s,a)

[
r(s, a, s′) + γβ(s′) log

∑
a′

exp

(
Q(s′, a′)

β(s′)

)]

= E
p(s′|s,a)

[
r(s, a, s′) + γ E

π(a′|s′)
[Q(s′, a′)] + β(s′)C[π || p]

]
= E
p(s′|s,a)

[
r′(s, a, s′) + γ E

π(a′|s′)
[Q(s′, a′)]

]
where r′(s, a, s′) = r(s, a, s′) + β(s′)C[π || p].
Following Lemma 1 in Haarnoja et al. (2018a), Sutton and Barto (1998) gives convergence of
Qi+1(s, a)← Ep(s′|s,a)

[
r′(s, a, s′) + γEπ(a′|s′)[Qi(s′, a′)]

]
The proof of Soft Policy Improvement should be identical to SAC, given that Appendix B.1 shows
that DoubleGum and SAC use identical actor losses. As such, Lemma 5 can be used in place of
Lemma 1 in Theorem 1 of Haarnoja et al. (2018a), thus showing convergence of DoubleGum in the
tabular setting.

22



C.2 Deep Q-Functions

Parameters of the deep Q-function used by DoubleGum in Algorithm 1 are learned by a loss function
equivalent to that of heteroscedastic normal regression. Convergence of DoubleGum in the function
approximation setting would therefore rely on convergence of heteroscedastic normal regression.

Zhang et al. (2023) introduces PAC-bounds for heteroscedastic normal regression, but on the condition
that the mean-estimate is close to the ground truth mean, as mentioned in Paragraph 1 of Section 4.
This is empirically achieved by Seitzer et al. (2022), who analyze heteroscedastic normal regression
and find that the mean-estimate frequently converges to an underfitting solution. This is because the
Negative Log-Likelihood (NLL) of a normal distribution is minimized when the variance becomes
large – in Equation 6, this term is denoted with σ2

θ . As such, changes in Qnew
θ will not change the

loss function much. To rectify this, Seitzer et al. (2022) multiplies the NLL of the normal with the
numerical value of the standard deviation, reducing the dominance of σθ on the loss function.

D Further Empirical Evidence for Theoretical Assumptions

D.1 Noise Distributions in Deep Q-Learning

Figure 6 presents graphs corresponding to Figure 1c for all environments considered in this paper.
Continuous control results were generated from DoubleGum with default pessimism (c = −0.1).

D.2 Adjusting The Pessimism Factor

Figure 7 presents graphs corresponding to Figure 2 for all continuous control environments considered
in this paper.

E Further Experimental Details

E.1 Noise Distribution Discrepancy with Extreme Q-Learning

In Appendix D.2 of Page 19, Garg et al. (2023) fitted a Gumbel distribution to the TD errors on
three continuous control environments. The Gumbel distribution was a good fit in two of the three
environments they benchmarked on. We could not reproduce this result and attribute the discrepancy
to experimental differences.

Garg et al. (2023) logged their batch of 256 TD errors once every 5,000 steps during training for
100,000 timesteps, producing ≈ 4000 samples which were aggregated. They also computed boot-
strapped targets with online parameters. In contrast, we sample 10,000 TD errors with bootstrapped
targets computed from target parameters at a single timestep instance, and we do not aggregate
samples across timesteps.

E.2 Continuous Control Benchmarks and Evaluation

As mentioned in Section 6.2, the evaluation metric in continuous control was the normalized IQM with
95% stratified bootstrap confidence intervals from Agarwal et al. (2021). Returns were normalized by
a minimum value computed from the mean of 100 rollouts sampled from a uniform policy and the
maximum possible return from the environment. When the maximum value was not specified, we
used the maximum value of any single rollout attained by any of the baselines.

We benchmarked on four continuous control suites: DeepMind Control (Tassa et al., 2018; Tun-
yasuvunakool et al., 2020), MuJoCo (Todorov et al., 2012; Brockman et al., 2016), MetaWorld
(Yu et al., 2020), and Box2D (Brockman et al., 2016). These environments were selected to
be as extensive as possible. DeepMind Control and MetaWorld were chosen because of their
diversity of tasks, while the MuJoCo and Box2D environments are popular benchmarks within
the common interface of OpenAI Gym (Brockman et al., 2016), now Gymnasium (Farama
Foundation, 2023). No citation exists for Gymnasium as of writing this paper, and we link to
their GitHub repository https://github.com/Farama-Foundation/Gymnasium as suggested in
https://github.com/Farama-Foundation/Gymnasium/issues/82.

23

https://github.com/Farama-Foundation/Gymnasium
https://github.com/Farama-Foundation/Gymnasium/issues/82


0.0 0.5 1.0
−0.8

0.0

0.8

1.6

2.4

CartPole-v1

0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5
Acrobot-v1

0.0 0.5 1.0

−1.5

0.0

1.5

3.0

MountainCar-v0

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.00

0.25

0.50

0.75

1.00

N
L

L

(a) Discrete Control

0.0 0.5 1.0
1.2

1.5

1.8

2.1

2.4

2.7
acrobot-swingup

0.0 0.5 1.0

1.4

1.6

1.8

2.0

2.2
reacher-hard

0.0 0.5 1.0
1.2

1.5

1.8

2.1

2.4

2.7
finger-turn hard

0.0 0.5 1.0
1.2

1.5

1.8

2.1

2.4

2.7
hopper-hop

0.0 0.5 1.0
1.3

1.4

1.5

1.6

1.7

fish-swim

0.0 0.5 1.0

1.4

1.6

1.8

2.0

cheetah-run

0.0 0.5 1.0

1.35

1.50

1.65

1.80

walker-run

0.0 0.5 1.0
1.3

1.4

1.5

1.6

1.7

1.8
quadruped-run

0.0 0.5 1.0

1.35

1.50

1.65

1.80

swimmer-swimmer15

0.0 0.5 1.0
1.36
1.44
1.52
1.60
1.68
1.76

humanoid-run

0.0 0.5 1.0

1.4
1.6
1.8
2.0
2.2
2.4

dog-run

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

N
L

L

(b) DeepMind Control

0.0 0.5 1.0
1.2

1.6

2.0

2.4

2.8
Hopper-v4

0.0 0.5 1.0

1.36

1.44

1.52

1.60

1.68

1.76
HalfCheetah-v4

0.0 0.5 1.0

1.4

1.6

1.8

2.0

2.2

Walker2d-v4

0.0 0.5 1.0

1.4

1.6

1.8

2.0

2.2

Ant-v4

0.0 0.5 1.0

1.4

1.6

1.8

2.0

2.2

Humanoid-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.00

0.25

0.50

0.75

1.00

N
L

L

(c) MuJoCo

0.0 0.5 1.0

1.2

1.4

1.6

1.8

2.0
button-press-v2

0.0 0.5 1.0

1.2

1.6

2.0

2.4

door-open-v2

0.0 0.5 1.0

1.0

1.5

2.0

2.5

3.0

drawer-close-v2

0.0 0.5 1.0

1.2

1.5

1.8

2.1

2.4

drawer-open-v2

0.0 0.5 1.0
1.00

1.25

1.50

1.75

2.00

2.25
peg-insert-side-v2

0.0 0.5 1.0
1.2

1.5

1.8

2.1

2.4

2.7
pick-place-v2

0.0 0.5 1.0
1.2

1.4

1.6

1.8

2.0

2.2
push-v2

0.0 0.5 1.0
1.0

1.5

2.0

2.5

3.0

reach-v2

0.0 0.5 1.0

1.2

1.5

1.8

2.1

2.4
window-open-v2

0.0 0.5 1.0

1.2

1.5

1.8

2.1

2.4
window-close-v2

0.0 0.5 1.0
1.25

1.50

1.75

2.00

2.25

2.50
basketball-v2

0.0 0.5 1.0

1.25

1.50

1.75

2.00

2.25

dial-turn-v2

0.0 0.5 1.0
1.2

1.4

1.6

1.8

2.0

2.2
sweep-into-v2

0.0 0.5 1.0

1.25

1.50

1.75

2.00

2.25

hammer-v2

0.0 0.5 1.0

1.2

1.4

1.6

1.8

2.0

2.2
assembly-v2

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

N
L

L

(d) MetaWorld

0.0 0.5 1.0

1.0

1.5

2.0

2.5

3.0

3.5
BipedalWalker-v3

0.0 0.5 1.0
1.2

1.6

2.0

2.4

2.8

3.2

BipedalWalkerHardcore-v3

Homo-Normal
Hetero-Logistic (expected)
Moment-Matched Hetero-Normal

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.00

0.25

0.50

0.75

1.00

N
L

L

(e) Box2D

Figure 6: Negative Log-Likelihoods (NLLs) of the noise in Deep Q-Learning under different
distributions throughout training (lower is better). Mean calculated per-task ± standard deviation.
The legend for all graphs is in Figure 6e.

24



0.0 0.5 1.0
0

300

600

900

1200

1500
acrobot-swingup

0.0 0.5 1.0

0

25

50

75

100

reacher-hard

0.0 0.5 1.0
0

25

50

75

100

finger-turn hard

0.0 0.5 1.0
0

10

20

30

40

50
hopper-hop

0.0 0.5 1.0
0

15

30

45

60

75
fish-swim

0.0 0.5 1.0
0

20

40

60

80

cheetah-run

0.0 0.5 1.0
0

20

40

60

80
walker-run

0.0 0.5 1.0

20

40

60

80

100
quadruped-run

0.0 0.5 1.0

30

45

60

75

swimmer-swimmer15

0.0 0.5 1.0
0

10

20

30

40

humanoid-run

0.0 0.5 1.0
0

60

120

180

240

300
dog-run

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ni
tu

de

(a) DeepMind Control

0.0 0.5 1.0
0

300

600

900

1200

1500
Hopper-v4

0.0 0.5 1.0
0

250

500

750

1000

HalfCheetah-v4

0.0 0.5 1.0
0

800

1600

2400

3200

4000
Walker2d-v4

0.0 0.5 1.0
0

100

200

300

400

500

Ant-v4

0.0 0.5 1.0

400

800

1200

1600

Humanoid-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ni
tu

de

(b) MuJoCo

0.0 0.5 1.0
0

400

800

1200

1600
button-press-v2

0.0 0.5 1.0
0

250

500

750

1000

1250
door-open-v2

0.0 0.5 1.0
0

250

500

750

1000

1250
drawer-close-v2

0.0 0.5 1.0

200

400

600

800

1000

drawer-open-v2

0.0 0.5 1.0

0

300

600

900

1200

peg-insert-side-v2

0.0 0.5 1.0
−250

0

250

500

750

1000

pick-place-v2

0.0 0.5 1.0

0

300

600

900

1200

push-v2

0.0 0.5 1.0

200

400

600

800

1000
reach-v2

0.0 0.5 1.0
0

400

800

1200

1600

2000
window-open-v2

0.0 0.5 1.0
0

250

500

750

1000

1250

window-close-v2

0.0 0.5 1.0
0

250

500

750

1000

basketball-v2

0.0 0.5 1.0
0

250

500

750

1000

1250
dial-turn-v2

0.0 0.5 1.0
0

300

600

900

1200

sweep-into-v2

0.0 0.5 1.0
0

250

500

750

1000

hammer-v2

0.0 0.5 1.0
0

250

500

750

1000

1250
assembly-v2

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ni
tu

de

(c) MetaWorld

0.0 0.5 1.0

0

150

300

450
BipedalWalker-v3

0.0 0.5 1.0

−300

0

300

600

900

BipedalWalkerHardcore-v3
c =−0.5
c =−0.1 (Default)
c = 0.0
c = 0.1
c = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ni
tu

de

(d) Box2D

Figure 7: The effect of changing pessimism factor c on the target Q-value in continuous control. IQM
calculated per-task ± standard deviation. The legend for all graphs is in Figure 7d.

25



DeepMind Control (DMC) was designed to benchmark continuous control, over a broad range of
agent morphologies. We selected agent morphologies that could be trained from states with a broad
range of action spaces from 1 (acrobot) to 38 (dog). We did not benchmark on humanoid_CMU as
this environment was not intended to be solved with RL from scratch, unlike the other baselines. The
hardest task was selected from each of the agent morphologies. Properties of the 11 DMC tasks are
presented in Table 1a.

MetaWorld was designed to have a diverse range of tasks to evaluate the generalization ability of
learned policies. Each environment within MetaWorld is therefore made up of multiple tasks, all with
the same underlying structure of an MDP but with different numerical values of their parameters. We
follow the method of Seyde et al. (2022) to benchmark on a single MetaWorld task by first selecting
an environment and then randomly selecting a set of numerical parameters. Each new instantiation of
a MetaWorld task would result in a different set of hyperparameters. As such, we expect the error
bars in the aggregate statistics of MetaWorld to be substantially larger than the other environments.
We benchmark on tasks formed from the union of the ML1, MT10, and ML10 train tasks that a policy
in MetaWorld would be trained on, as well as the five environments benchmarked in Seyde et al.
(2022). Properties of the 15 MetaWorld tasks are presented in Table 1c.

MuJoCo was evaluated on the same tasks as SAC (Haarnoja et al., 2018b). These tasks were all
locomotion-based. Properties of the 5 MuJoCo tasks are presented in Table 1b.

Box2D was evaluated on all continuous control tasks from states. Properties of the 2 Box2D tasks are
presented in 1d.

E.3 Discrete Control Baselines

Discrete control algorithms were implemented as described in Section 3.4. Hyperparameters used in
discrete control algorithms are detailed in Tables 2 and 3. We provide explanations for these design
choices as follows.

DQN: The original DQN algorithm in Mnih et al. (2015) was designed for pixel inputs. We modified
DQN to use state inputs by using an architecture described in Section 3.4 we used in continuous
control that was popular for use with state inputs. Conversely to the continuous control architecture,
we found removing GroupNorm (Wu and He, 2018) was crucial to getting DQN to work. Similarly
to the continuous control architecture, we found that changing the initialization and target network
updating drastically improved performance. We also used the MSE and Adam (Kingma and Ba,
2014) optimizers as Ceron and Castro (2021) showed that this yielded improved performance
over the Huber Loss (Huber, 1992) and RMSProp (Hinton et al., 2012) of the original DQN. Our
implementation of DQN solves classic discrete control tasks that the CleanRL (Huang et al., 2022b)
reproduction of the original DQN paper at https://docs.cleanrl.dev/rl-algorithms/dqn/
#experiment-results_1 could not solve.

Dueling Double DQN (Dueling DDQN) was a baseline modified from Hessel et al. (2018) designed
to be as compatible with DoubleGum as possible. Rainbow evaluated six innovations to DQN: Double
DQN (Van Hasselt et al., 2016), Dueling DQN (Wang et al., 2016), noisy networks (Fortunato et al.,
2017), n-step returns, C51 distributional RL (Bellemare et al., 2017), and prioritized replay (Schaul
et al., 2016). We only used the first two of these six innovations in DoubleGum. We did not find
n-step returns effective in discrete domains we considered, nor prioritized replay. Distributional
RL was incompatible with DoubleGum, while Schwarzer et al. (2023) did not find noisy networks
advantageous.

DoubleDQN was implemented following Van Hasselt et al. (2016) by computing bootstrapped targets
of Qnew

ψ (s,maxaQ
new
θ (s, a)). Dueling DQN was implemented following Wang et al. (2016), with the

advantage and value heads having two layers with a hidden layer of size 256 and ReLU activations.
The stability of Dueling DQN was greatly improved by setting the biases of both dueling heads to 0.

DoubleGum was implemented as Dueling DDQN with an additional variance head described in
Section 3.4.

26

https://docs.cleanrl.dev/rl-algorithms/dqn/#experiment-results_1
https://docs.cleanrl.dev/rl-algorithms/dqn/#experiment-results_1


Table 1: Properties of Continuous Control Environments

(a) DeepMind Control

Environment Task Action Dimension Maximum Return Minimum Return

acrobot swingup 1 1000 3.252
reacher hard 2 1000 8.547
finger-turn hard 2 1000 67.78
hopper hop 4 1000 0.07236
fish swim 5 1000 70.99
cheetah run 6 1000 3.647
walker run 6 1000 22.96
quadruped run 12 1000 108.2
swimmer swimmer15 14 1000 157
humanoid run 21 1000 0.877
dog run 38 1000 4.883

(b) MuJoCo

Task Action Dimension Maximum Return Minimum Return

Hopper-v4 3 3572 18.52
HalfCheetah-v4 6 11960 -283.4
Walker2d-v4 6 5737 2.753
Ant-v4 8 6683 -60.06
Humanoid-v4 17 6829 122.5

(c) MetaWorld

Task Action Dimension Maximum Return Minimum Return

button-press-v2 4 10000 187.5
door-open-v2 4 10000 277.1
drawer-close-v2 4 10000 842.5
drawer-open-v2 4 10000 631.8
peg-insert-side-v2 4 10000 8.083
pick-place-v2 4 10000 5.449
push-v2 4 10000 30.62
reach-v2 4 10000 776.1
window-open-v2 4 10000 230.3
window-close-v2 4 10000 306.7
basketball-v2 4 10000 10.2
dial-turn-v2 4 10000 125.6
sweep-into-v2 4 10000 63.41
hammer-v2 4 10000 395.1
assembly-v2 4 10000 226.3

(d) Box2D

Task Action Dimension Maximum Return Minimum Return

BipedalWalker-v3 4 300 -99.97
BipedalWalkerHardcore-v3 4 300 -107.9

27



Table 2: Shared Hyperparameters of Benchmarked Algorithms
Hyperparameter Value

Evaluation Episodes 10
Evaluation Frequency Maximum Timesteps / 100
Discount Factor γ 0.99
n-Step Returns 1 step
Replay Ratio 1
Replay Buffer Size 1,000,000
Maximum Timesteps 1,000,000

Table 3: Hyperparameters for Discrete Control
Hyperparameter Value

Starting Timesteps 2,000
Maximum Timesteps 100,000
Exploration Policy Churn
Optimizer Adam
Learning rate 3e-4
Number of groups in network GroupNorm 0
Network structure Linear(256), ReLU, Linear(256), ReLU

Table 4: Hyperparameters for Continuous Control
Hyperparameter Value

Starting Timesteps 10,000
Maximum Timesteps 1,000,000
Exploration Noise 0.2
Policy Noise in Critic Loss 0.1
Policy Noise in Actor Loss 0.1
Actor optimizer Adam
Actor learning rate 3e-4
Critic optimizer Adam
Critic learning rate 3e-4
Number of groups in Actor GroupNorm 16
Number of groups in Critic GroupNorm 16
Critic target networks EMA ηϕ 5e-3
Actor target networks EMA 1

Critic structure
Linear(256), GroupNorm, ReLU
Linear(256), GroupNorm, ReLU

Actor structure
Linear(256), GroupNorm, ReLU
Linear(256), GroupNorm, ReLU

Table 5: Pessimism Hyperparameters in Continuous Control

Algorithm
Pessimism Hyperparameter

Default DeepMind Control MuJoCo MetaWorld Box2D

DoubleGum (ours) −0.1 −0.1 −0.5 0.1 −0.1
DDPG/TD3 Twin Single Twin Single Twin
SAC Twin Single Twin Single Twin
XQL Twin (β = 5) Single (3) Single (5) Twin (2) Twin (5)
QR-DDPG Single Single Twin Single Twin
FinerTD3 1 1 3 3 1

28



E.4 Continuous Control Baselines

Continuous control algorithms were implemented as described in Section 3.4. Hyperparameters used
in continuous control algorithms are detailed in Tables 2 and 4. Pessimism hyperparameters are
presented in Table 5 and were found following results in Appendix F.2.

As mentioned, all implementations used networks with two hidden layers of width 256, with orthogo-
nal initialization (Saxe et al., 2013) and GroupNorm (Wu and He, 2018). Following Kostrikov (2021),
target network parameters were updated with an EMA of 5e− 3 in the critic and 0 in the actor. All
these design choices differ from their original implementations but improved aggregate performance.
We provide explanations for these design choices as follows.

DDPG was introduced in Lillicrap et al. (2015) and Fujimoto et al. (2018) updated the design
choices of DDPG to empirically improve its performance. In addition to the existing changes, our
implementation uses the noise clipping scheme in the actor specified by Laskin et al. (2021).

TD3 was implemented with three changes from Fujimoto et al. (2018). First, we update the actor once
per critic update – ie using a delay of 1. This is such that the only hyperparameter change between
our DDPG and TD3 is the use of Twin Networks. Secondly, we update the actor to maximize the
mean of two critics rather than a single critic, a design choice we found empirically reduced variance
between training runs. Thirdly, we do not compute the EMA of actor-network parameters. Removing
this EMA improves sample efficiency but at the cost of higher variance.

FinerTD3 (our introduced baseline) was implemented with the same hyperparameters as TD3 but
with an ensemble of 5 critic networks. We chose to use 5 networks because we tuned the pessimism
factor hyperparameter of DoubleGum over 5 values. The 5 critics in FinerTD3 enable five values of
pessimism to be used. Pessimism of FinerTD3 is adjusted in the bootstrapped targets. The 5 critic
values are sorted by decreasing positivity, and the ith smallest value is used as the target critic value
in the bootstrapped targets.

SAC was implemented with hyperparameters from Kostrikov (2021), which we found improved
performance. Kostrikov (2021) differs from Haarnoja et al. (2018b) in two additional ways from
those mentioned. The standard deviation in the actor was clipped to [−10, 2], and the target entropy
was the action dimension divided by 2 instead of just the action dimension.

XQL Garg et al. (2023) presents two off-policy algorithms: X-TD3 and X-SAC. We use X-TD3 to be
consistent with the DDPG fixed-variance actor of DoubleGum and refer to it throughout as XQL.
XQL tunes two hyperparameters per task: the use of twin networks/not and scalar hyperparameter β.
We swept over the same β-values as Garg et al. (2023): 1, 2, 5 without Twin Critics and 3, 4, 10 and
20 with Twin Critics. β was tuned in the same way as pessimism – we found a default β value and a
β tuned per-suite. β values are presented in Table 5 and were found following results in Appendix
F.2.

MoG-DDPG is formed by combining a Mixture-of-Gaussians (MoG) critic with DDPG. The MoG
critic was introduced in Appendix A of Barth-Maron et al. (2018) and improved by Shahriari et al.
(2022). The latter paper combines the MoG critic with DDPG with distributed training, but we
remove the distributed training component because we do not use it in DoubleGum.

QR-DDPG (our introduced baseline) combines the quantile regression method of Dabney et al.
(2018b) with a DDPG actor. Although Ma et al. (2020); Wurman et al. (2022) and Teng et al. (2022)
have combined quantile regression with SAC, we combine it with DDPG because DoubleGum is
built on top of DDPG. Like Dabney et al. (2018b), we use 201 quantiles, but these are initialized
with orthogonal initialization and are optimized with the MSE, rather than the Huber loss. QR
was developed for discrete control and uses the Huber loss with the RMSProp optimizer popular in
discrete control methods. We found better performance with the MSE and Adam optimizer, perhaps
confirming the result of Ceron and Castro (2021) in distributional RL for continuous control.

DoubleGum was implemented as DDPG with a variance head described in Section 3.4.

E.5 Compute Requirements

A single training run for discrete control may take up to 3 to 5 minutes on a laptop with an Intel Core
i9 CPU, NVIDIA 1050 GPU and 31.0 GiB of RAM. On the same system, a single training run for
continuous control takes 1 - 2 hours.

29



Table 6: Discrete Control Numerical Results

Task
Score at 100K timesteps (IQM over 12 seeds)

DoubleGum (ours) DQN DuelingDDQN

CartPole-v1 500 ± 113.4 475 ± 105.5 496.9 ± 89.1
Acrobot-v1 -62.78 ± 1.775 -73.52 ± 5.191 -64.12 ± 17.15
MountainCar-v0 -98.17 ± 2.45 -99.37 ± 5.914 -98.75 ± 30.73

The overwhelming majority of our experiments were run on private infrastructure. This cluster had a
mixture of Intel Broadwell, Skylake, Cascade Lake, AMD Rome, AMD Milan CPUs, and NVIDIA
P100s, V100s, and A100s GPUs. Benchmarking continuous control took roughly ten times longer
than benchmarking discrete control. Multi-threaded experiments for continuous control running
twelve seeds in parallel took 5 - 8 hours. 8 algorithms (DoubleGum, DDPG, TD3, MoG-Critics,
SAC, XQL, QR-DDPG, FinerTD3) were benchmarked over 33 continuous control environments, and
there were further runs for hyperparameter sweeps (4 for DoubleGum, 1 for SAC, 6 for XQL, 1 for
QR-DDPG and 4 for FinerTD3), yielding 24 runs in total. These algorithms were run at least 10 times
for development and hyperparameter tuning. This yields a lower bound of 8× 33× 24× 10 = 63360
hours (7.23 years) of computation.

Assuming that all experiments were run on Tesla V100-SXM2-16GB (TDP of 250W), the cluster it
was run on had a carbon efficiency of 0.0006 kgCO2eq/kWh (that of the surrounding power grid)
and that there were 63360 hours of cumulative computation, the total emissions were 9.51 kgCO2eq,
equivalent to driving 36km in an average car. Estimations were conducted using the MachineLearning
Impact calculator presented in Lacoste et al. (2019).

F Further Results

F.1 Adjusting the Pessimism of DoubleGum

Figure 8 shows that sample efficiency is sensitive to the pessimism factor c adjusting pessimism per
suite greatly impacts sample efficiency. The best performing c was c = −0.1, and was thus set as the
default pessimism factor value.

Figure 9 shows that the performance of DoubleGum may be improved when the degree of pessimism
is changed per suite. This graph was used to determine what pessimism factor to use in each suite,
whose values are reported in Table 5.

F.2 Adjusting the Pessimism of Baseline Algorithms

This section presents graphs used to determine which pessimism values to use for baseline algorithms.
All final values are reported in Table 5.

Figure 10 shows that sample efficiency is sensitive to the use of pessimism determined by the use
of Twin Networks/not. In aggregate, each method was improved by using Twin Networks. Twin
networks were therefore set as the default pessimism option for all baseline algorithms apart from
QR-DDPG, because Twin Networks was not used with quantile regression in (Dabney et al., 2018b).
Figure 11 was used to determine whether to use Twin Networks/not on a per suite basis.

Similarly, Figures 14 and 15 were respectively used to determine pessimism hyperparameters for
FinerTD3. In these two graphs, numbers refer to the ith smallest value returned by the ensemble
of target critics. Finally, Figures 12 and 13 were respectively used to determine pessimism and β
hyperparameters for XQL.

F.3 Discrete Control

Table 6 presents results for discrete control at 100K timesteps.

30

https://mlco2.github.io/impact#compute
https://mlco2.github.io/impact#compute


0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

−0.04 −0.02 0.00 0.02 0.04
Timesteps (in millions)

−0.04

−0.02

0.00

0.02

0.04

IQ
M

c =−0.5
c =−0.1 (Default)
c = 0
c = 0.1
c = 0.5

Figure 8: Adjusting the pessimism factor c in DoubleGum, IQM normalized score over 33 tasks in 4
suites with 95% stratified bootstrap CIs.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.15

0.30

0.45

0.60

DMC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

MuJoCo

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.06

0.12

0.18

0.24

0.30
MetaWorld

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Box2D

−0.04 −0.02 0.00 0.02 0.04
Timesteps (in millions)

−0.050

−0.025

0.000

0.025

0.050

IQ
M

c =−0.5 c =−0.1 (Default) c = 0 c = 0.1 c = 0.5

Figure 9: Adjusting pessimism in DoubleGum, per-suite IQM with 95% stratified bootstrap CIs.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.08

0.16

0.24

0.32

0.40

−0.04 −0.02 0.00 0.02 0.04
Timesteps (in millions)

−0.04

−0.02

0.00

0.02

0.04

IQ
M

DDPG
SAC
XQL
QR-DDPG

TD3
Twin-SAC
Twin-XQL
Twin-QR-DDPG

Figure 10: Adjusting pessimism of baseline algorithms with the use of Twin Networks/not, IQM
normalized score over 33 tasks in 4 suites with 95% stratified bootstrap CIs. Methods that default to
use Twin Networks are dashed.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.15

0.30

0.45

0.60
DMC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8
MuJoCo

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.06

0.12

0.18

0.24

MetaWorld

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Box2D

−0.04 −0.02 0.00 0.02 0.04
Timesteps (in millions)

−0.050

−0.025

0.000

0.025

0.050

IQ
M

DDPG
TD3

SAC
Twin-SAC

XQL
Twin-XQL

QR-DDPG
Twin-QR-DDPG

Figure 11: Adjusting pessimism of baseline algorithms with the use of Twin Networks/not, per-suite
IQM normalized score with 95% stratified bootstrap CIs. Methods that default to use Twin Networks
are dashed.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.06

0.12

0.18

0.24

0.30

Untuned

−0.04 −0.02 0.00 0.02 0.04
Timesteps (in millions)

−0.050

−0.025

0.000

0.025

0.050

IQ
M

β = 3
β = 4
β = 10
β = 20

β = 1
β = 2
β = 5

Figure 12: Adjusting pessimism of XQL, IQM normalized score over 33 tasks in 4 suites with 95%
stratified bootstrap CIs. Methods that use Twin Networks are dashed.

31



0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.15

0.30

0.45

0.60
DMC

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.04

0.08

0.12

0.16

MuJoCo

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25
MetaWorld

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Box2D

−0.04 −0.02 0.00 0.02 0.04
Timesteps (in millions)

−0.050

−0.025

0.000

0.025

0.050

IQ
M

β = 3
β = 4

β = 10
β = 20

β = 1
β = 2

β = 5

Figure 13: Adjusting pessimism of XQL, per-suite IQM normalized score with 95% stratified
bootstrap CIs. Methods that use Twin Networks are dashed.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.08

0.16

0.24

0.32

0.40

−0.04 −0.02 0.00 0.02 0.04
Timesteps (in millions)

−0.04

−0.02

0.00

0.02

0.04

IQ
M

Pessimism 0
Pessimism 1 (Default)
Pessimism 2
Pessimism 3
Pessimism 4

Figure 14: Adjusting pessimism of FinerTD3, IQM normalized score over 33 tasks in 4 suites with
95% stratified bootstrap CIs.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.15

0.30

0.45

0.60

DMC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

MuJoCo

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25
MetaWorld

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

Box2D

−0.04 −0.02 0.00 0.02 0.04
Timesteps (in millions)

−0.050

−0.025

0.000

0.025

0.050

IQ
M

Pessimism 0
Pessimism 1 (Default)

Pessimism 2
Pessimism 3

Pessimism 4

Figure 15: Adjusting pessimism of FinerTD3, per-suite IQM normalized score with 95% stratified
bootstrap CIs.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.15

0.30

0.45

0.60

DMC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

MuJoCo

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.06

0.12

0.18

0.24

MetaWorld

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Box2D

−0.04 −0.02 0.00 0.02 0.04
Timesteps (in millions)

−0.050

−0.025

0.000

0.025

0.050

IQ
M

DoubleGum, c =−0.1 (Ours)
MoG-DDPG

DDPG
TD3

Twin-SAC
Twin-XQL

QR-DDPG
FinerTD3

Figure 16: Continuous control with default parameters, per-suite IQM normalized score with 95%
stratified bootstrap CIs. Methods that default to use Twin Networks are dashed.

32



0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.15

0.30

0.45

0.60

DMC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

MuJoCo

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.06

0.12

0.18

0.24

0.30
MetaWorld

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Box2D

−0.04 −0.02 0.00 0.02 0.04
Timesteps (in millions)

−0.05

0.00

0.05

IQ
M

DoubleGum, best c, (Ours)
MoG-DDPG (untuned)
best of DDPG/TD3

SAC (best w/wo Twin)
XQL (best of β w/wo Twin)

QR-DDPG (best w/wo Twin)
FinerTD3 (best pessimism)

Figure 17: Continuous control with the best pessimism hyperparameters tuned per suite, per-suite
IQM normalized score with 95% stratified bootstrap CIs.

F.4 Continuous Control with Default Pessimism

Figures 16 and 18 respectively present aggregate per-suite and per-task results of DoubleGum
benchmarked against baseline algorithms with default pessimism values.

Table 7 presents the performance of all algorithms with default pessimism at 1 million timesteps.
This graph has six subsections. The first four subsections present per-task results from DeepMind
Control, MuJoCo, MetaWorld, and Box2D, respectively, corresponding to results from 18. The next
subsection presents per-suite aggregate results, corresponding to Figure 16, while the last subsection
presents aggregate results over all tasks and suites, corresponding to Figure 1. In aggregate results,
only the IQM is reported.

F.5 Continuous Control with Pessimism adjusted Per-Suite

Figures 17 and 19 respectively present aggregate per-suite and per-task results of DoubleGum
benchmarked against baseline algorithms with the best pessimism values adjusted per-suite.

Table 8 presents the performance of all algorithms with default pessimism at 1 million timesteps.
This graph has six subsections. The first four subsections present per-task results from DeepMind
Control, MuJoCo, MetaWorld, and Box2D, respectively, corresponding to results from 19. The next
subsection presents per-suite aggregate results, corresponding to Figure 17, while the last subsection
presents aggregate results over all tasks and suites, corresponding to Figure 1. In aggregate results,
only the IQM is reported.

33



Ta
bl

e
7:

C
on

tin
uo

us
co

nt
ro

lw
ith

de
fa

ul
tp

es
si

m
is

m
hy

pe
rp

ar
am

et
er

s
sc

or
e

af
te

r1
M

tim
es

te
ps

.

Su
ite

/T
as

k
Sc

or
e

at
1M

tim
es

te
ps

(I
Q

M
±

st
an

da
rd

de
vi

at
io

n
w

he
re

ap
pr

op
ri

at
e)

D
ou

bl
eG

um
M

oG
-D

D
PG

D
D

PG
T

D
3

Tw
in

-S
A

C
Tw

in
-X

Q
L

Q
R

-D
D

PG
Fi

ne
rT

D
3

ac
ro

bo
t-

sw
in

gu
p

33
0.

2
±

79
.4

4
36

4.
9
±

71
.7

5
33

4.
7
±

96
.9

2
7.

31
5
±

26
.5

3
6.

56
8
±

6.
16

4
38

.8
4
±

91
.4

1
35

6.
7
±

88
.2

6
8.

11
4
±

15
.9

6
re

ac
he

r-
ha

rd
97

9.
4
±

54
.2

8
97

6.
9
±

4.
98

5
97

5.
7
±

26
.7

8
97

5.
9
±

31
.1

3
97

6.
2
±

27
.2

1
97

5.
1
±

4.
50

6
97

2.
9
±

14
.8

6
97

2.
4
±

25
.1

5
fi

ng
er

-t
ur

n_
ha

rd
93

1.
8
±

98
.9

1
93

5.
4
±

77
.4

90
9.

1
±

50
.6

8
96

9.
7
±

28
.5

1
95

1.
5
±

63
.2

1
96

7.
2
±

59
.4

8
92

4.
3
±

73
.6

2
97

4.
1
±

24
.9

ho
pp

er
-h

op
30

6.
7
±

10
1

31
3.

3
±

99
.7

4
30

5.
7
±

80
.1

2
12

3.
4
±

69
.3

7
0.

00
70

08
±

0.
03

58
7

13
5.

9
±

65
.2

1
30

4.
3
±

69
.2

3
11

6
±

51
.7

1
fi

sh
-s

wi
m

67
5.

7
±

58
.5

75
8.

1
±

62
.6

8
71

0.
2
±

94
.5

4
51

7.
9
±

11
1.

2
34

4.
9
±

25
1.

5
63

2.
7
±

99
.6

4
69

5.
2
±

54
.0

8
67

5
±

11
8.

8
ch

ee
ta

h-
ru

n
88

3.
1
±

22
.5

1
84

4.
9
±

53
.5

4
80

4.
5
±

64
.3

1
74

5
±

52
.7

8
70

8.
8
±

44
.3

5
76

1.
3
±

56
.2

4
78

5.
9
±

63
.4

3
74

1.
7
±

43
.5

9
wa

lk
er

-r
un

78
3.

6
±

26
.9

7
77

8.
7
±

21
.8

6
75

5.
6
±

28
.2

9
69

6
±

39
.5

3
53

8.
6
±

31
1.

1
70

5.
5
±

11
4.

6
74

3.
9
±

29
.6

1
73

1.
4
±

10
9.

2
qu

ad
ru

pe
d-

ru
n

83
5.

1
±

65
.1

1
81

8.
2
±

76
.3

7
73

6
±

87
.5

8
67

7.
2
±

16
9.

6
67

7
±

18
1.

7
74

3.
9
±

10
0.

6
77

2.
4
±

80
.6

9
73

9.
8
±

11
7.

1
sw

im
me

r-
sw

im
me

r1
5

60
8.

9
±

13
7.

8
62

3.
4
±

81
.9

8
53

1.
5
±

10
4.

1
47

7.
8
±

13
9.

2
22

5.
4
±

13
0.

5
43

5.
5
±

14
8.

5
49

9.
8
±

64
.1

2
61

2.
5
±

82
.1

8
hu

ma
no

id
-r

un
14

2.
5
±

12
.6

96
.9

7
±

12
.5

8
11

9.
6
±

25
.0

9
39

.5
1
±

62
.7

8
0.

83
64

±
0.

23
4

11
9.

2
±

62
.1

7
11

7.
8
±

17
.6

8
1.

45
2
±

47
.3

2
do

g-
ru

n
18

7.
1
±

13
.1

4
13

8.
8
±

20
.5

8
17

7.
4
±

12
.1

7
20

9.
2
±

25
.2

2
5.

22
6
±

0.
77

72
22

9.
5
±

20
.5

6
15

5.
5
±

22
.5

5
23

4.
4
±

29
.0

6

Ho
pp

er
-v

4
13

99
±

66
8.

1
12

11
±

31
9.

2
13

48
±

74
0.

2
25

89
±

93
9.

2
94

2
±

13
5.

3
94

.8
9
±

12
2.

7
16

41
±

55
4.

7
21

83
±

89
0.

6
Ha

lf
Ch

ee
ta

h-
v4

10
71

0
±

60
8.

3
93

98
±

10
44

95
52

±
15

57
10

02
0
±

13
90

71
71

±
10

00
96

94
±

15
71

91
48

±
14

76
10

42
0
±

32
8.

8
Wa

lk
er

2d
-v

4
41

48
±

14
39

21
96

±
11

27
14

66
±

47
0.

3
38

68
±

59
3.

1
28

94
±

11
09

15
2.

7
±

79
.4

7
22

05
±

89
0.

8
42

76
±

35
7.

1
An

t-
v4

60
46

±
55

2.
5

46
44

±
96

6.
2

97
6.

9
±

30
2.

6
56

45
±

91
4

59
08

±
81

1.
3

36
52

±
16

85
22

45
±

76
1.

4
60

48
±

46
4.

4
Hu

ma
no

id
-v

4
56

45
±

90
4.

1
17

15
±

78
3.

4
20

23
±

60
4.

9
52

41
±

30
2.

4
52

86
±

70
3.

2
16

0.
2
±

32
.9

9
18

14
±

46
5.

6
56

68
±

33
9.

5

bu
tt

on
-p

re
ss

-v
2

14
36

±
12

41
91

9.
6
±

10
66

10
93

±
10

16
63

5.
5
±

56
6

13
66

±
11

33
11

28
±

88
6.

1
14

24
±

89
8.

3
83

5
±

11
90

do
or

-o
pe

n-
v2

36
71

±
16

06
42

88
±

14
31

26
91

±
14

15
37

84
±

80
9.

1
42

32
±

45
4.

2
39

56
±

94
1

38
18

±
12

58
40

83
±

10
59

dr
aw

er
-c

lo
se

-v
2

48
39

±
17

26
47

06
±

15
78

38
80

±
19

16
47

43
±

17
18

30
39

±
22

06
47

50
±

15
60

41
78

±
17

88
48

08
±

13
24

dr
aw

er
-o

pe
n-

v2
27

62
±

12
12

40
74

±
14

21
25

10
±

14
67

29
51

±
15

11
26

17
±

16
42

22
56

±
18

19
28

20
±

14
63

20
48

±
11

87
pe

g-
in

se
rt

-s
id

e-
v2

12
26

±
17

69
43

1.
4
±

14
17

40
2.

4
±

18
55

43
2
±

11
91

7.
37

8
±

2.
55

2
31

7.
8
±

57
9.

6
33

9.
8
±

12
11

21
46

±
17

52
pi

ck
-p

la
ce

-v
2

12
.4

9
±

11
0.

5
21

2.
5
±

35
5

50
9.

3
±

67
2.

7
7.

50
1
±

47
8.

7
5.

55
3
±

2.
76

1
16

.9
8
±

37
8

45
1.

2
±

84
7.

2
6.

94
2
±

73
2.

7
pu

sh
-v

2
19

1.
1
±

12
82

31
0.

9
±

10
05

77
7.

9
±

92
8.

9
42

.5
±

93
0.

5
25

.9
9
±

76
.7

8
41

5.
2
±

97
1.

5
74

.3
2
±

84
7.

7
72

9.
7
±

15
71

re
ac

h-
v2

17
46

±
11

27
28

89
±

90
9.

7
29

92
±

14
66

20
92

±
13

04
33

90
±

12
43

25
52

±
10

66
30

68
±

12
31

27
35

±
11

13
wi

nd
ow

-o
pe

n-
v2

26
68

±
15

15
25

01
±

17
64

30
29

±
14

76
34

52
±

11
50

49
1.

3
±

13
26

39
16

±
10

23
22

94
±

15
51

27
86

±
14

88
wi

nd
ow

-c
lo

se
-v

2
44

04
±

71
2

45
20

±
21

4.
5

43
52

±
34

2.
3

42
02

±
11

45
43

72
±

70
4.

6
45

74
±

86
6.

3
40

22
±

11
91

42
91

±
55

6
ba

sk
et

ba
ll

-v
2

78
0.

9
±

12
38

60
2.

4
±

11
06

80
9.

1
±

90
1.

4
62

7.
9
±

64
8.

4
9.

24
6
±

19
7.

2
11

26
±

16
70

19
72

±
11

97
52

4.
4
±

70
2.

6
di

al
-t

ur
n-

v2
12

14
±

95
2.

6
15

52
±

12
50

23
85

±
14

86
12

28
±

12
06

21
92

±
15

93
14

46
±

10
20

21
57

±
14

65
12

58
±

10
34

sw
ee

p-
in

to
-v

2
42

37
±

13
48

14
17

±
14

48
30

07
±

16
77

19
77

±
19

07
53

0.
2
±

17
12

36
50

±
15

91
22

03
±

20
26

14
96

±
20

42
ha

mm
er

-v
2

43
08

±
12

15
35

00
±

13
44

26
64

±
14

77
13

40
±

10
99

48
7.

5
±

94
5

28
12

±
18

69
36

20
±

13
11

28
66

±
18

86
as

se
mb

ly
-v

2
26

06
±

66
0.

4
19

41
±

12
41

22
65

±
86

1.
8

20
85

±
80

1.
6

94
7.

2
±

98
3.

3
43

9.
6
±

14
29

23
76

±
10

32
15

28
±

92
1.

1

Bi
pe

da
lW

al
ke

r-
v3

31
5.

2
±

12
.2

6
32

5.
4
±

8.
89

2
21

8.
6
±

11
5.

9
32

1.
2
±

2.
34

3
32

1.
1
±

21
.6

7
33

1.
9
±

6.
71

7
24

7.
4
±

72
.5

32
2.

1
±

6.
48

Bi
pe

da
lW

al
ke

rH
ar

dc
or

e-
v3

18
9
±

86
.9

5
15

2.
6
±

52
.3

9
-7

1.
08

±
30

.1
2

18
.2

7
±

45
.0

1
-3

2.
19

±
56

.1
11

4.
1
±

65
.9

-8
4.

9
±

17
.9

5
53

.3
±

40
.5

8

D
ee

pM
in

d
C

on
tr

ol
A

gg
re

ga
te

0.
61

91
0.

63
26

0.
58

23
0.

45
88

0.
29

3
0.

50
03

0.
57

87
0.

53
52

M
uJ

oC
o

A
gg

re
ga

te
0.

81
8

0.
46

63
0.

30
77

0.
77

16
0.

63
04

0.
14

23
0.

40
79

0.
83

05
M

et
aW

or
ld

A
gg

re
ga

te
0.

20
9

0.
19

3
0.

19
04

0.
14

9
0.

09
02

7
0.

18
81

0.
20

17
0.

18
67

B
ox

2D
A

gg
re

ga
te

0.
93

91
0.

89
11

0.
31

9
0.

72
04

0.
66

58
0.

86
59

0.
37

64
0.

76
79

A
ll

A
gg

re
ga

te
0.

42
8

0.
37

09
0.

30
26

0.
33

58
0.

22
6

0.
28

02
0.

32
55

0.
39

34



0.0 0.5 1.0

0

150

300

450

acrobot-swingup

0.0 0.5 1.0

0

250

500

750

1000

reacher-hard

0.0 0.5 1.0

0

250

500

750

1000

finger-turn hard

0.0 0.5 1.0

0

100

200

300

400
hopper-hop

0.0 0.5 1.0

0

200

400

600

800
fish-swim

0.0 0.5 1.0
0

200

400

600

800

1000
cheetah-run

0.0 0.5 1.0

0

200

400

600

800

walker-run

0.0 0.5 1.0
0

200

400

600

800

quadruped-run

0.0 0.5 1.0
0

150

300

450

600

750
swimmer-swimmer15

0.0 0.5 1.0
−50

0

50

100

150

humanoid-run

0.0 0.5 1.0
0

50

100

150

200

250

dog-run

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

(a) DeepMind Control

0.0 0.5 1.0
0

800

1600

2400

3200

4000
Hopper-v4

0.0 0.5 1.0

0

2500

5000

7500

10000

HalfCheetah-v4

0.0 0.5 1.0
0

1500

3000

4500

Walker2d-v4

0.0 0.5 1.0
0

1500

3000

4500

6000

7500
Ant-v4

0.0 0.5 1.0
0

1500

3000

4500

6000

Humanoid-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

(b) MuJoCo

0.0 0.5 1.0
−800

0

800

1600

2400

button-press-v2

0.0 0.5 1.0
0

1500

3000

4500

6000
door-open-v2

0.0 0.5 1.0
−2000

0

2000

4000

6000

drawer-close-v2

0.0 0.5 1.0

0

1500

3000

4500

6000
drawer-open-v2

0.0 0.5 1.0
−1500

0

1500

3000

4500
peg-insert-side-v2

0.0 0.5 1.0
−1200
−600

0
600

1200
1800

pick-place-v2

0.0 0.5 1.0
−1600

−800

0

800

1600

2400
push-v2

0.0 0.5 1.0
0

1000
2000
3000
4000
5000

reach-v2

0.0 0.5 1.0
−1500

0

1500

3000

4500

window-open-v2

0.0 0.5 1.0

0

1500

3000

4500

6000
window-close-v2

0.0 0.5 1.0

−1000
0

1000
2000
3000
4000

basketball-v2

0.0 0.5 1.0

0

1500

3000

4500

dial-turn-v2

0.0 0.5 1.0

−1500
0

1500
3000
4500
6000

sweep-into-v2

0.0 0.5 1.0

0

1500

3000

4500

6000
hammer-v2

0.0 0.5 1.0

−1000
0

1000
2000
3000
4000

assembly-v2

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

(c) MetaWorld

0.0 0.5 1.0

−150

0

150

300

450
BipedalWalker-v3

0.0 0.5 1.0

−80

0

80

160

240

BipedalWalkerHardcore-v3

DoubleGum, c =−0.1 (Ours)
MoG-DDPG
DDPG
TD3

Twin-SAC
Twin-XQL
QR-DDPG
FinerTD3

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

(d) Box2D

Figure 18: Continuous control with default pessimism hyperparameters, per-task IQM ± standard
deviation. Methods that default to use Twin Networks are dashed. The legend for all graphs is in
Figure 18d.

35



Ta
bl

e
8:

C
on

tin
uo

us
co

nt
ro

lw
ith

th
e

be
st

pe
ss

im
is

m
hy

pe
rp

ar
am

et
er

s
ad

ju
st

ed
pe

rs
ui

te
af

te
r1

M
tim

es
te

ps

Su
ite

/T
as

k
Sc

or
e

at
1M

tim
es

te
ps

(I
Q

M
±

st
an

da
rd

de
vi

at
io

n
w

he
re

ap
pr

op
ri

at
e)

w
ith

be
st

pe
ss

im
is

m

D
ou

bl
eG

um
M

oG
-D

D
PG

D
D

PG
/T

D
3

SA
C

X
Q

L
Q

R
-D

D
PG

Fi
ne

rT
D

3

ac
ro

bo
t-

sw
in

gu
p

33
0.

2
±

79
.4

4
36

4.
9
±

71
.7

5
33

4.
7
±

96
.9

2
22

6.
6
±

13
4.

5
35

6.
7
±

88
.2

6
22

5.
7
±

13
1.

1
28

3.
3
±

89
.7

9
re

ac
he

r-
ha

rd
97

9.
4
±

54
.2

8
97

6.
9
±

4.
98

5
97

5.
7
±

26
.7

8
97

6.
2
±

56
.5

8
97

2.
9
±

14
.8

6
97

5.
4
±

13
.2

1
97

6.
3
±

27
.7

8
fi

ng
er

-t
ur

n_
ha

rd
93

1.
8
±

98
.9

1
93

5.
4
±

77
.4

90
9.

1
±

50
.6

8
97

2.
4
±

25
.5

3
92

4.
3
±

73
.6

2
95

2.
6
±

65
.9

2
95

6.
4
±

74
.4

6
ho

pp
er

-h
op

30
6.

7
±

10
1

31
3.

3
±

99
.7

4
30

5.
7
±

80
.1

2
0.

00
76

51
±

56
.1

8
30

4.
3
±

69
.2

3
34

6.
8
±

10
5

51
9.

5
±

47
.0

2
fi

sh
-s

wi
m

67
5.

7
±

58
.5

75
8.

1
±

62
.6

8
71

0.
2
±

94
.5

4
61

6.
4
±

22
6.

4
69

5.
2
±

54
.0

8
70

8.
8
±

38
.7

3
76

1.
6
±

41
.1

5
ch

ee
ta

h-
ru

n
88

3.
1
±

22
.5

1
84

4.
9
±

53
.5

4
80

4.
5
±

64
.3

1
76

4.
5
±

74
.5

5
78

5.
9
±

63
.4

3
79

1.
1
±

69
.2

3
69

9
±

84
.1

7
wa

lk
er

-r
un

78
3.

6
±

26
.9

7
77

8.
7
±

21
.8

6
75

5.
6
±

28
.2

9
73

2
±

19
9.

4
74

3.
9
±

29
.6

1
75

9.
8
±

24
.4

6
77

7
±

12
.7

qu
ad

ru
pe

d-
ru

n
83

5.
1
±

65
.1

1
81

8.
2
±

76
.3

7
73

6
±

87
.5

8
77

4
±

62
.9

6
77

2.
4
±

80
.6

9
77

5
±

54
.7

6
72

4.
4
±

92
.7

4
sw

im
me

r-
sw

im
me

r1
5

60
8.

9
±

13
7.

8
62

3.
4
±

81
.9

8
53

1.
5
±

10
4.

1
43

7.
8
±

19
2.

5
49

9.
8
±

64
.1

2
55

2.
7
±

14
0.

2
56

0.
2
±

10
6.

4
hu

ma
no

id
-r

un
14

2.
5
±

12
.6

96
.9

7
±

12
.5

8
11

9.
6
±

25
.0

9
0.

96
47

±
0.

14
96

11
7.

8
±

17
.6

8
12

2.
4
±

9.
64

4
85

.0
8
±

6.
82

5
do

g-
ru

n
18

7.
1
±

13
.1

4
13

8.
8
±

20
.5

8
17

7.
4
±

12
.1

7
22

.6
3
±

56
.7

5
15

5.
5
±

22
.5

5
14

5.
3
±

28
.3

7
87

.5
1
±

32
.4

7

Ho
pp

er
-v

4
32

90
±

82
9.

1
12

11
±

31
9.

2
25

89
±

93
9.

2
94

2
±

13
5.

3
23

98
±

94
6.

4
94

.8
9
±

12
2.

7
21

83
±

89
0.

6
Ha

lf
Ch

ee
ta

h-
v4

98
74

±
99

7.
4

93
98

±
10

44
10

02
0
±

13
90

71
71

±
10

00
98

55
±

13
23

96
94

±
15

71
10

42
0
±

32
8.

8
Wa

lk
er

2d
-v

4
48

71
±

40
3.

7
21

96
±

11
27

38
68

±
59

3.
1

28
94

±
11

09
40

27
±

96
2

15
2.

7
±

79
.4

7
42

76
±

35
7.

1
An

t-
v4

56
81

±
41

6.
8

46
44

±
96

6.
2

56
45

±
91

4
59

08
±

81
1.

3
61

85
±

16
8.

3
36

52
±

16
85

60
48

±
46

4.
4

Hu
ma

no
id

-v
4

55
65

±
16

0.
7

17
15

±
78

3.
4

52
41

±
30

2.
4

52
86

±
70

3.
2

54
52

±
24

3.
1

16
0.

2
±

32
.9

9
56

68
±

33
9.

5

bu
tt

on
-p

re
ss

-v
2

14
36

±
12

41
91

9.
6
±

10
66

10
93

±
10

16
64

5.
5
±

72
8.

3
14

24
±

89
8.

3
15

06
±

10
47

10
86

±
75

8.
2

do
or

-o
pe

n-
v2

36
71

±
16

06
42

88
±

14
31

26
91

±
14

15
31

14
±

11
66

38
18

±
12

58
35

12
±

13
87

42
68

±
95

3.
8

dr
aw

er
-c

lo
se

-v
2

48
39

±
17

26
47

06
±

15
78

38
80

±
19

16
47

49
±

13
39

41
78

±
17

88
45

88
±

20
42

37
41

±
20

37
dr

aw
er

-o
pe

n-
v2

27
62

±
12

12
40

74
±

14
21

25
10

±
14

67
17

10
±

15
14

28
20

±
14

63
29

72
±

13
82

16
08

±
13

33
pe

g-
in

se
rt

-s
id

e-
v2

12
26

±
17

69
43

1.
4
±

14
17

40
2.

4
±

18
55

9.
69

3
±

23
2.

9
33

9.
8
±

12
11

10
0.

8
±

14
62

10
92

±
16

99
pi

ck
-p

la
ce

-v
2

12
.4

9
±

11
0.

5
21

2.
5
±

35
5

50
9.

3
±

67
2.

7
4.

82
1
±

1.
87

3
45

1.
2
±

84
7.

2
26

.6
8
±

47
.7

3
50

1.
4
±

96
3.

9
pu

sh
-v

2
19

1.
1
±

12
82

31
0.

9
±

10
05

77
7.

9
±

92
8.

9
90

.8
1
±

74
5

74
.3

2
±

84
7.

7
76

.3
8
±

95
.7

2
25

6.
8
±

45
3.

4
re

ac
h-

v2
17

46
±

11
27

28
89

±
90

9.
7

29
92

±
14

66
29

74
±

13
93

30
68

±
12

31
25

83
±

13
45

24
02

±
92

2.
9

wi
nd

ow
-o

pe
n-

v2
26

68
±

15
15

25
01

±
17

64
30

29
±

14
76

19
57

±
18

32
22

94
±

15
51

16
72

±
18

13
29

64
±

13
65

wi
nd

ow
-c

lo
se

-v
2

44
04

±
71

2
45

20
±

21
4.

5
43

52
±

34
2.

3
40

00
±

10
45

40
22

±
11

91
45

28
±

23
2.

3
42

72
±

26
0

ba
sk

et
ba

ll
-v

2
78

0.
9
±

12
38

60
2.

4
±

11
06

80
9.

1
±

90
1.

4
9.

93
2
±

11
.2

4
19

72
±

11
97

99
.8

3
±

74
5.

6
18

68
±

95
9.

1
di

al
-t

ur
n-

v2
12

14
±

95
2.

6
15

52
±

12
50

23
85

±
14

86
14

72
±

11
78

21
57

±
14

65
16

90
±

14
08

11
01

±
12

55
sw

ee
p-

in
to

-v
2

42
37

±
13

48
14

17
±

14
48

30
07

±
16

77
24

7.
9
±

17
18

22
03

±
20

26
10

08
±

17
82

28
44

±
19

34
ha

mm
er

-v
2

43
08

±
12

15
35

00
±

13
44

26
64

±
14

77
11

80
±

16
50

36
20

±
13

11
18

92
±

13
87

41
51

±
11

15
as

se
mb

ly
-v

2
26

06
±

66
0.

4
19

41
±

12
41

22
65

±
86

1.
8

21
8.

1
±

49
2.

3
23

76
±

10
32

16
4
±

40
1.

5
20

67
±

15
07

Bi
pe

da
lW

al
ke

r-
v3

31
5.

2
±

12
.2

6
32

5.
4
±

8.
89

2
32

1.
2
±

2.
34

3
32

1.
1
±

21
.6

7
31

1.
3
±

18
.2

7
33

1.
9
±

6.
71

7
32

2.
1
±

6.
48

Bi
pe

da
lW

al
ke

rH
ar

dc
or

e-
v3

18
9
±

86
.9

5
15

2.
6
±

52
.3

9
18

.2
7
±

45
.0

1
-3

2.
19

±
56

.1
-3

1.
74

±
18

.9
11

4.
1
±

65
.9

53
.3

±
40

.5
8

D
M

C
A

gg
re

ga
te

0.
61

91
0.

63
26

0.
58

23
0.

47
62

0.
59

18
0.

57
87

0.
61

21
M

uJ
oC

o
A

gg
re

ga
te

0.
83

67
0.

46
63

0.
77

16
0.

63
04

0.
14

23
0.

80
61

0.
83

05
M

et
aW

or
ld

A
gg

re
ga

te
0.

25
05

0.
19

3
0.

19
04

0.
08

51
5

0.
12

04
0.

20
17

0.
20

42
B

ox
2D

A
gg

re
ga

te
0.

93
91

0.
89

11
0.

72
04

0.
66

58
0.

86
59

0.
60

1
0.

76
79

A
ll

A
gg

re
ga

te
0.

47
07

0.
37

09
0.

39
79

0.
27

19
0.

27
86

0.
39

24
0.

42
39

36



0.0 0.5 1.0
0

100

200

300

400

500
acrobot-swingup

0.0 0.5 1.0

0

250

500

750

1000

reacher-hard

0.0 0.5 1.0

0

250

500

750

1000

finger-turn hard

0.0 0.5 1.0

0

150

300

450

600
hopper-hop

0.0 0.5 1.0
0

200

400

600

800

fish-swim

0.0 0.5 1.0
0

200

400

600

800

1000
cheetah-run

0.0 0.5 1.0
0

200

400

600

800

walker-run

0.0 0.5 1.0
0

200

400

600

800

quadruped-run

0.0 0.5 1.0
0

150

300

450

600

750
swimmer-swimmer15

0.0 0.5 1.0

0

40

80

120

160
humanoid-run

0.0 0.5 1.0
−50

0

50

100

150

200

dog-run

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

(a) DeepMind Control

0.0 0.5 1.0

0

1000

2000

3000

4000

Hopper-v4

0.0 0.5 1.0

0

2500

5000

7500

10000

HalfCheetah-v4

0.0 0.5 1.0
0

1500

3000

4500

6000
Walker2d-v4

0.0 0.5 1.0
0

1500

3000

4500

6000

Ant-v4

0.0 0.5 1.0
0

1500

3000

4500

6000

Humanoid-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

(b) MuJoCo

0.0 0.5 1.0

0

800

1600

2400

button-press-v2

0.0 0.5 1.0

0

1500

3000

4500

6000
door-open-v2

0.0 0.5 1.0
−2000

0

2000

4000

6000

drawer-close-v2

0.0 0.5 1.0
0

1500

3000

4500

6000
drawer-open-v2

0.0 0.5 1.0
−1500

0

1500

3000

peg-insert-side-v2

0.0 0.5 1.0

−800

0

800

1600

2400
pick-place-v2

0.0 0.5 1.0
−1600

−800

0

800

1600

2400
push-v2

0.0 0.5 1.0

0
1000
2000
3000
4000
5000

reach-v2

0.0 0.5 1.0

0

1500

3000

4500

6000
window-open-v2

0.0 0.5 1.0
0

1500

3000

4500

6000
window-close-v2

0.0 0.5 1.0
−1000

0
1000
2000
3000
4000

basketball-v2

0.0 0.5 1.0

0

1500

3000

4500

dial-turn-v2

0.0 0.5 1.0
−1500

0
1500
3000
4500
6000

sweep-into-v2

0.0 0.5 1.0

0

1500

3000

4500

6000
hammer-v2

0.0 0.5 1.0
−1000

0
1000
2000
3000
4000

assembly-v2

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

(c) MetaWorld

0.0 0.5 1.0

−150

0

150

300

450
BipedalWalker-v3

0.0 0.5 1.0

−80

0

80

160

240

BipedalWalkerHardcore-v3 DoubleGum, best c, (Ours)
MoG-DDPG (untuned)
best of DDPG/TD3
SAC (best w/wo Twin)
QR-DDPG (best w/wo Twin)
XQL (best of β w/wo Twin)
FinerTD3 (best pessimism)

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

(d) Box2D

Figure 19: Continuous control with the best pessimism hyperparameters adjusted per suite, per-task
IQM ± standard deviation. The legend for all graphs is in Figure 19d.

37


