
A Appendix477

A.1 Ethical considerations478

DataMUX has the potential to provide great computational efficiency when used in real production479

systems, where queries across different users can be aggregated to get simultaneous predictions for480

different users. However, this also present potential risks and scope for misuse. First, the multiplexing481

layer might ‘leak’ data between different users, which could potentially lead to privacy concerns.482

Second, the output of an instance might be influenced by other instances in the multiplexing batch,483

which may present the possibility of black-box attacks to manipulate information, especially in the484

multi-user setting. Finally, DataMUX models predictions could be harder to interpret with current485

techniques since the model’s internal representations depend on the set of instances it was multiplexed486

with.487

We believe these are important and interesting research problems to solve technically and may also488

require careful policy development for deploying these models (e.g. restricting multiplex batches to489

single users).490

A.2 Limitations491

Here, we list some of the limitations of this work:492

• Convergence time increases with increasing number of instances: Training multiplexed493

models with large number of instances takes larger number of iterations for convergence as494

increasing number of instances increases the difficulty of multiplexing and demultiplexing.495

We hope that future work can explore different multiplexing and demultiplexing strategies496

to improve rate of convergence during training.497

• Multiplexing on CNNs and MLPs not as strong as that of the Transformer: While we498

demonstrate non-trivial multiplexing capabilities for the CNN and MLP architectures with499

our approach, the results are not as strong as that of the Transformer architecture. We hope500

future work will develop better multiplexing approaches for these architectures.501

A.3 Theoretical construction of multiplexing transformer502

Following the same notations defined in Section 4.4, assume that the components of a multiplexed503

input, u(1)
t

, . . . , u(N)
t

, all approximately lie in N linearly independent subspaces D1, . . . ,DN .504

Equation 6 is realizable when eigenvectors of W V

i

>
W V

i
can be grouped into N non-overlapping505

subsets {r(1)
1 , . . . , r(1)

m }, · · · , {r(N)
1 , . . . , r(N)

m }, where r(k)
`

are orthonormal vectors (since the506

Gramian is real symmetric), and span the same input subspaces. In this case, the vector after linear507

transformation W V

i
can be expressed as a superposition of N vectors in N independent subspaces508

D1
V

, . . . ,DN

V
. We now verify this statement.509

Proof. Since eigenvectors of W V

i

>
W V

i
span the same subspaces, we can write each component of510

w1:N
t

as a linear combination of the corresponding subset of eigenvectors,511

w1:N
t

=
X

k

u(k)
t

=
X

k,`

↵(k)
`,t

r(k)
`

. (9)

Let W V

i
= L⌃R>be the singular decomposition of W V

i
, where L 2 RdV ⇥dV , R 2 Rd⇥d are two512

orthogonal matrices, and ⌃ is a dV ⇥ d rectangular diagonal matrix with non-negative real numbers513

on the diagonal. For each column of R that contributes to input subspaces, e.g., r(k)
`

, we denote514

the dual left singular vector at the corresponding column of L as l(k)
`

, and the singular value at the515

corresponding column and row �(k)
`

516

vi,t = W V

i
w1:N

t
= L⌃R>

X

k,`

↵(k)
`,t

r(k)
`

(10)

=
NX

k=1

X

`

↵(k)
`,t

�(k)
`

l(k)
`

!
. (11)

A1

Since l(k)
`

are columns of L that are orthogonal to each other, vi,t above is a superposition of N517

vectors v(k)
i,t

in independent subspaces, and each subspace is defined by518

DV

k
⇠= span{l(k)

`
}. (12)

⌅519

In addition to decompress-able value vectors, we can set the linear transformations for queries and520

keys to have the same singular space structures to prevent complicated interference. More specifically,521

assume that WQ

i
and WK

i
have some subsets of right and left singular vectors such that522

Dk
⇠= span{rQ

`

(k)
} ⇠= span{rK

`

(k)}, (13)
and523

DK

k
⇠= span{lQ

`

(k)
} ⇠= span{lK

`

(k)}. (14)

The inner product between the query and keys can be rewritten as524
�
WK

i
w1:N

t0
�>

WQ

i
w1:N

t
(15)

=

0

@
X

k,`

�(k)
`,t0�

K

`

(k)
lK
`

(k)

1

A
>0

@
X

k,`

�(k)
`,t

�Q

`

(k)
lQ
`

(k)

1

A (16)

=
NX

k=1

2

4
X

`,`0

�(k)
`0,t0�

(k)
`,t

�K

`0
(k)

�Q

`

(k)
⇣
lK
`0

(k)
⌘>

lQ
`

(k)

3

5 (17)

=
NX

k=1

⌧ (k)
t,t0 (18)

where ⌧ (k)
t,t0 is a scalar only depending on the k-th input sequence (for simplification we omit head525

index i). Thus, the self-attention operation at each position can be seen as retrieving values based on526

the average of query-key similarity scores of N sequences.527

headi(t) :=
X

t0

2

4
exp

⇣P
k
⌧ (k)
i,t,t0/

p
dK

⌘

P
t00 exp

⇣P
k
⌧ (k)
i,t,t00/

p
dK

⌘
X

k

v(k)
i,t

3

5. (19)

The average retrieval by soft-max could be undesirable. However, this will not affect the quality of528

decompression at all. If we want perfect non-interference in retrieval, one always has an option to529

specialize each head to only focus on one input sequence, by setting ⌧ (k0)
i,t,t0 = 0 for all k0 6= k. This is530

easily achievable by controlling singular values of WQ

i
or WK

i
.531

Finally, we concatenate all heads and linearly project the output with WO 2 Rd⇥hdV to a d-532

dimensional space again. This step is exactly equivalent to having h projection matrices WO

i
2533

Rd⇥dV acting on different heads and aggregating resulting vectors.534

output(t) = WO
�
kh

i=1headi(t)
�

=
hX

i=1

WO

i
headi(t) (20)

Employing a similar structure for right singular vectors as W V

i
, we can make each WO

i
also preserves535

the independence of subspaces.536

A.4 Multiplexing with Hadamard + Ortho strategy trains consistently for different runs537

In Figure 7b we show MNLI performance for the Hadamard + Ortho multiplexing strategy with error538

bars across 3 random seeds. We observe that the value of N has no effect on variance in performance539

across seeds, with all values showing minimal variance. Since we use the same retrieval pre-trained540

weights, the random seed only affects the demultiplexer and classification head initializations.541

A.5 Alternate multiplexing strategies542

We experiment with different multiplexing strategies and use index embeddings for demultiplexing.543

For the Hadamard product, we try unfreezing the random Gaussian vectors and update through544

optimization (“Learned”). We also experiment with binary masking, where the ith binary vector545

selects the ith chunk of size d/N from the input representation of instance i (“Binary”). We first look546

A2

Figure 7: (Left) Evaluation on alternative superposition methods for multiplexing. Binary vectors fail to
multiplex beyond 10 instances, while unfreezing Gaussian vectors for multiplexing does not help. (Right) MNLI
accuracy results with error bar for the Hadamard + Ortho strategy across 3 different random seeds. Variance in
performance is minimal to none.

at the performance on the retrieval warm-up task. Figure 4b shows that the unfreezing the vectors547

does not significantly change performance. We also observe that binary vectors fails to multiplex for548

large N , suggesting the multiplexing is more capable than just concatenating multiple downsampled549

inputs of d/N dimension when N is large. We see similar trends for the MNLI and NER (illustrated550

in Figure 7a) with unfrozen vectors not impacting performance and binary vectors failing to multiplex551

for large N .552

Figure 8: Primary results for NLP tasks mirroring those shown in Figure 3. We additionally show results for
the MLP Demux. strategy. While MLP Demux. demultiplexing very works well for retrieval, shown in Figure
4b, we find that it typically performs slightly worse than the Index Embedding method and it leads to unstable
optimization. This method also leads to an increase in parameter size proportional to N , since we must now
train N independent MLPs for each input index.

A.6 MLP Demux Results553

We show our primary results for NLP tasks in Figure 3, though we’ve excluded models using the554

MLP Demux. demultiplexing method. We provide these results instead in Figure 8 to highlight555

the optimization instability encountered during training of models using the MLP Demux. method.556

Especially curious is the failure to converge at apparently arbitrary points for N , such as converging557

for N = 20 for MNLI yet not converging for N = 10 despite N = 10 being a presumably simpler558

setting.559

A.7 Smaller models achieve good performance across tasks560

For our evaluation tasks, our base model might be over-parametrized and smaller models might561

perform equally well. Figures 9 shows performance on MNLI and NER as we vary the hidden size562

and the number of layers in the transformer. We observe that smaller models are competitive on both563

tasks and in the following section explore the possibility of getting higher throughput by multiplexing564

smaller models.565

A3

Figure 9: Model performance for different hidden dimension sizes and number of layers.

A.8 Experiment details for computing throughput566

We compute throughput over 20000 samples on the MNLI task on a single Nvidia RTX 2080 machine.567

We use 4 batch sizes and take the maximum value.568

A.9 Implementation details for multiplexing Transformers569

We train all models to convergence. We use a learning rate of 2e � 5 and 5e � 5 for baselines and570

report the best performance. For multiplexed models, we use a learning rate of 5e � 5. However, for571

large N , we use 2e � 5 in case learning rate of 5e � 5 does not converge. We use a batch size of572

32 for the baselines and use slightly smaller batch sizes for multiplexing as multiplexing effectively573

increase our size of the batch and therefore we need to keep more input instances in memory, leading574

to a drop in batch size. For the language tasks, we report numbers on the validation split and do not575

perform any extensive hyper-parameter sweeps.576

A.10 Experiment Design details for CNNs and MLPs577

Each image is cropped as 20 ⇥ 20 pixels at the center and trained with standard stochastic gradient578

decent. We also do not apply weight decay or other regularization as these are orthogonal to the579

multiplexing setting.580

Principle component analysis on all 60000 training images indicates that 86.54% variance can be581

explained by top 50 principle components, suggesting that if we only keep the top 50 dimensions582

for each input image and project them into linearly independent subspaces, ideally we can multi-583

plex 8(d = 400/50) inputs as just one input without much information loss. We test the model584

performances with N = {1, 2, 4, 8, 16} multiplexed inputs.585

Our MLP consists of a hidden layer with 100 neurons, a demultiplexing layer that maps the 100 hidden586

neurons to 20 ⇥ N neurons, and a shared linear readout layer that maps each group of 20 neurons587

to 10 categories for classification. Our CNN is similar to the classic LeNet LeCun et al. (1989),588

consisting of three convolutional layers with 10 activation maps from 3x3 kernels, 16 activation maps589

from 4x4 kernels and 120 activation maps from 3x3 kernels, one linear layer maps to 84 hidden590

neurons, a demultiplexing layer that maps them to 84 ⇥ N neurons, and a shared linear readout layer591

that maps each group of 84 neurons to 10 categories for classification. The first two convolutional592

layers are followed by 2x2 max pooling. Every linear layer or convolution layer in our models is593

followed by a tanh activation. Labels are +1 for the correct digit and �1 for the incorrect digits.594

And we use the mean squared error (MSE) loss to train all our models.595

We train all our models with the standard stochastic gradient decent with fixed learning rates, and the596

batch size is 32.597

To generate the low-rank approximations (“LowRank” in Figure 6a), we divide d random orthogonal598

row vectors into N groups, and multiplying them by another d ⇥ d orthogonal matrix.599

A.11 Other multiplexing strategies for CNNs600

To make the multiplexing method more compatible with CNNs, we first tried some simple separation601

functions for images. 2D rotations (SO(2)) work much better than SO(d) when N  2. When602

N = 1, rotating inputs certainly does no harm to the performance. When N = 2, there is some603

unavoidable interference between two rotated images, while CNN can still easily distinguish inputs604

with decent accuracy. However, when N > 2, inputs are heavily overlapped, and CNN fails to605

A4

Figure 10: Averaged test accuracy for multiplexing CNN for N = {1, 2, 4, 8, 16} inputs on the MNIST
classification task, with different multiplexing strategies. Results are stable across multiple runs.

distinguish many digits. The accuracy among different inputs also varies largely, with std. at 10-24%606

when N � 8, indicating the permutation symmetry of inputs is hard to preserve during optimization.607

We also tried other simple 2D transformations like mosaic and downsampling so that all inputs are608

perfectly separated but get blurred. CNN can only answer one of the inputs correctly for this mosaic609

transformation, since we are only testing the vanilla convolutional architecture, which is not suitable610

for object detection without proposing bounding boxes.611

Figure 10 summarizes the performance of other separation functions we used for multiplexing CNN612

that can preserve spacial locality of images. During multiplexing, we can slide a 3x3 kernel over613

each input images before summing them up. This make CNN able to distinguish different inputs614

even with random initialized weights from N (0, 1) (CNN+Random Kernel). We also make the615

weights of all N multiplexing kernels learned but the difference is subtle (CNN+Learned Kernel),616

and the its performance is worse than a multiplexing CNN with 2D rotations. Also, we find that these617

multiplexing CNN can always answer at most two inputs correctly each time. This is because sliding618

a small kernel over image is a very constrained linear transformation that cannot do much to separate619

images, and the permutation symmetry has to be broken during the training dynamics to improve620

accuracy.621

To increase the expressibility of separation functions while keep it compatible with CNN, we apply622

N small convolutional nets with two layers of 16 3x3 kernels and tanh activation to input images,623

and sum up their activation maps (CNN+Nonlinear). A multiplexing CNN with this nonlinear624

separation function is similar to the MIMO approach in the previous study Ramé et al. (2021);625

Havasi et al. (2021), and we observe the performance changes consistent with the literature. When626

N  4, its test average test accuracy is above 80%, which is also better than multiplexing CNN with627

SO(d). However, when N > 4, the performance drops rapidly. The accuracy across inputs becomes628

stabler with std. at about 7% when N � 8. If we allow higher dimensionality of the multiplexed629

input over a single input, that is use 4 activation maps (CNN+Nonlinear(4x)) or 8 activation maps630

(CNN+Nonlinear(8x)) instead of using a single activation map, we can keep improving the accuracy631

for larger N while still providing improved throughput.632

A.12 Empirical analysis of interference among multiplexed instances633

To understand how the representation of an instance changes with respect to the other samples it634

is multiplexed with, we randomly select 10 samples, x1, x2, · · ·x10 from the MNLI dataset and635

multiplex the instance with 30 different sets of instances yi
1, y

i
2, · · · , yi

N�1 for i 2 [1 · · · 30]. This636

generates 30 different demultiplexed representations for each of the 10 selected samples. We then637

visualize the resulting 10 clusters by reducing the dimension of the resulting 768 dimensional638

demultiplexed representation to a 200 dimensional vector with PCA (F.R.S. (1901)) and then further639

reducing the dimension to 2 with t-SNE (van der Maaten and Hinton (2008)). Figure 11 visualizes640

these clusters for different value of N. We find that across different values of N, all the points in641

the clusters are very close to each other, which suggests that the representation of an instance is not642

significantly influenced by the set of instances it is multiplexed with. Interestingly, contrary to our643

prior intuition, the clusters for N = 20, 40 are very separable. Investigating further, we find that644

the pairwise cosine similarity between vectors in different clusters is close to 0 for high values of645

A5

Figure 11: T-SNE plots to understand how the demultiplexed representation of an instance changes with respect
to the set of instances it is multiplexed with. Across different N, we find that the demultiplexed representation of
an instance is not significantly impacted by the set of instances it is multiplexed with.

N, suggesting that the network is forcing the learned representations of different instances to be646

orthogonal to each other.647

A.13 Memory overhead for multiplexed models648

Figure 12: Memory overhead of multiplexed models during inference increases linearly with increasing N, with
a very gentle slope (Memory overhead for N = 40 is ⇠ 4x than N = 1).
We measure the memory overhead of various multiplexed models in Figure 12. We use a fixed649

minibatch size of 60 for all N and measure GPU memory during inference. We use the index650

demultiplexing strategy along with the Hadamard multiplexing strategy. We note that the memory651

increases linearly with increasing N as the number of inputs to the demultiplexing layers increases652

linearly with increasing N. However, the rate of growth is very gentle and the memory for N = 40653

grows only by a mere ⇠ 4x compared to the baseline model.654

A6

	Introduction
	Related Work
	Method
	Multiplexing
	Demultiplexing
	Retrieval warm-up for multiplexing

	Multiplexing for Transformers (T-MUX)
	Experimental setup
	Main results
	Analysis
	Theoretical construction for multiplexing in self-attention models

	Multiplexing for MLPs and CNNs
	Discussion
	Appendix
	Ethical considerations
	Limitations
	Theoretical construction of multiplexing transformer
	Multiplexing with Hadamard + Ortho strategy trains consistently for different runs
	Alternate multiplexing strategies
	MLP Demux Results
	Smaller models achieve good performance across tasks
	Experiment details for computing throughput
	Implementation details for multiplexing Transformers
	Experiment Design details for CNNs and MLPs
	Other multiplexing strategies for CNNs
	Empirical analysis of interference among multiplexed instances
	Memory overhead for multiplexed models

