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Abstract

Unsupervised Environment Design (UED) formalizes the problem of autocur-
ricula through interactive training between a teacher agent and a student agent.
The teacher generates new training environments with high learning potential,
curating an adaptive curriculum that strengthens the student’s ability to handle
unseen scenarios. Existing UED methods mainly rely on regret, a metric that
measures the difference between the agent’s optimal and actual performance, to
guide curriculum design. Regret-driven methods generate curricula that progres-
sively increase environment complexity for the student but overlook environment
novelty–a critical element for enhancing an agent’s generalizability. Measuring
environment novelty is especially challenging due to the underspecified nature of
environment parameters in UED, and existing approaches face significant limi-
tations. To address this, this paper introduces the Coverage-based Evaluation of
Novelty In Environment (CENIE) framework. CENIE proposes a scalable, domain-
agnostic, and curriculum-aware approach to quantifying environment novelty by
leveraging the student’s state-action space coverage from previous curriculum
experiences. We then propose an implementation of CENIE that models this cov-
erage and measures environment novelty using Gaussian Mixture Models. By
integrating both regret and novelty as complementary objectives for curriculum
design, CENIE facilitates effective exploration across the state-action space while
progressively increasing curriculum complexity. Empirical evaluations demonstrate
that augmenting existing regret-based UED algorithms with CENIE achieves state-
of-the-art performance across multiple benchmarks, underscoring the effectiveness
of novelty-driven autocurricula for robust generalization.

1 Introduction

Although recent advancements in Deep Reinforcement Learning (DRL) have led to many successes,
e.g., super-human performance in games [26, 9] and reliable control in robotics [2, 3], training
generally-capable agents remains a significant challenge. DRL agents often fail to generalize well
to environments only slightly different from those encountered during training [21, 63]. To address
this problem, there has been a surge of interest in Unsupervised Environment Design (UED; [56, 23,
57, 28, 27, 37, 33, 7]), which formulates the autocurricula [32] generation problem as a two-player
zero-sum game between a teacher and a student agent. In UED, the teacher constantly adapts training
environments (e.g., mazes with varying obstacles and car-racing games with different track designs)
in the curriculum to improve the student’s ability to generalize across all possible levels.

To design effective autocurricula, researchers have proposed various metrics to capture learning
potential, enabling teacher agents to create training levels that adapt to the student’s capabilities.
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The most popular metric, regret, measures the student’s maximum improvement possible in a level.
While regret-based UED algorithms [23, 27, 28] are effective in producing levels at the frontier of the
student’s capability, they do not guarantee diversity in the student’s experiences, limiting the training
of generally-capable agents especially in large environment design spaces. Another line of work
in UED recognizes this limitation, leading to methods exploring the prioritization of novel levels
during curriculum generation [56, 57, 33]. This strategic shift empowers the teacher to introduce
novel levels into the curriculum such that the student agent can actively explore the environment
space and enhance its generalization capabilities.

To more effectively evaluate environment novelty, we introduce the Coverage-based Evaluation
of Novelty In Environment (CENIE) framework. CENIE operates on the intuition that a novel
environment should induce unfamiliar experiences, pushing the student agent into unexplored regions
of the state space and introducing variability in its actions. Therefore, signals about an environment’s
novelty can be derived by modeling and comparing its state-action space coverage with those of
environments already encountered in the curriculum. We refer to this method of estimating novelty
based on the agent’s past experiences as curriculum-aware. By evaluating novelty in relation to
the experiences induced by other environments within the curriculum, CENIE prevents redundant
environments—those that elicit similar experiences as existing ones—from being classified as novel.
Curriculum-aware approaches ensure that levels in the student’s curriculum collectively drive the
agent toward novel experiences in a sample-efficient manner.

Our contributions are threefold. First, we introduce CENIE, a scalable, domain-agnostic, and
curriculum-aware framework for quantifying environment novelty via the agent’s state-action space
coverage. CENIE addresses shortcomings in existing methods for environment novelty quantifi-
cation, as discussed further in Sections 3 and 4. Second, we present implementations for CENIE
using Gaussian Mixture Models (GMM) and integrated its novelty objective with PLR⊥[28] and
ACCEL[37], the leading UED algorithms in zero-shot transfer performance. Finally, we conduct
a comprehensive evaluation of the CENIE-augmented algorithms across three distinct benchmark
domains. By incorporating CENIE into these leading UED algorithms, we empirically validate that
CENIE’s novelty-based objective not only exposes the student agent to a broader range of scenarios
in the state-action space, but also contributes to achieving state-of-the-art zero-shot generalization
performance. This paper underscores the importance of novelty and the effectiveness of the CENIE
framework in enhancing UED.

2 Background

We briefly review the background of Unsupervised Environment Design (UED) in this section.
UED problems are modeled as an Underspecified Partially Observable Markov Decision Process
(UPOMDP) defined by the tuple:

⟨S,A,O, I, T ,R, γ,Θ⟩
where S, A and O are the sets of states, actions, and observations, respectively. Θ represents a
set of free parameters where each θ ∈ Θ defines a specific instantiation of an environment (also
known as a level). We use the terms “environments” and “levels” interchangeably throughout this
paper. The level-conditional observation and transition functions are defined as I : S ×Θ → O and
T : S ×A×Θ → ∆(S), respectively. The student agent, with policy π, receives a reward based on
the reward function R : S ×A → R with a discount factor γ ∈ [0, 1]. The student seeks to maximize
its expected value for each θ denoted by V θ(π) = Eπ[

∑T
t=0 R(st, at)γ

t]. The teacher’s goal is to
select levels forming the curriculum by maximizing a utility function U(π, θ), which depends on π.

Different UED approaches vary primarily in the teacher’s utility function. Domain Randomization
(DR; [53]) uniformly randomizes environment parameters, with a constant utility UU (π, θ) = C,
making it agnostic to the student’s policy. Minimax training [39] adversarially generates challenging
levels, with utility UM(π, θ) = −V θ(π), to minimize the student’s return. However, this approach
incentivizes the teacher to make the levels completely unsolvable, limiting room for learning. Recent
UED methods address this by using a teacher that maximizes regret, defined as the difference
between the return of the optimal policy and the current policy. Regret-based utility is defined as
UR(π, θ) = REGRETθ(π, π∗) = V θ(π∗)−V θ(π) where π∗ is the optimal policy on θ. Regret-based
objectives have been shown to promote the simplest levels that the student cannot solve optimally,
and benefit from the theoretical guarantee of a minimax regret robust policy upon convergence in the
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two-player zero-sum game. However, since π∗ is generally unknown, regret must be approximated.
Dennis et al. [23], the pioneer UED work, introduced a principled level generation based on the
regret objective and proposed the PAIRED algorithm, where regret is estimated by the difference
between the returns attained by an antagonist agent and the protagonist (student) agent. Later on,
Jiang et al. [27] introduced PLR⊥ which combines DR with regret using Positive Value Loss (PVL),
an approximation of regret based on Generalized Advantage Estimation (GAE; [48]):

PVLθ(π) =
1

T

T∑
t=0

max

(
T∑

k=t

(γλ)k−tδθk, 0

)
, (1)

where λ and T are the GAE discount factor and MDP horizon, respectively. δθk is the TD-error at time
step k for θ. The state-of-the-art UED algorithm, ACCEL [37], improves PLR⊥ [27] by replacing its
random level generation with an editor that mutates previously curated levels to gradually introduce
complexity into the curriculum.

3 Related Work

It is important to note that regret-based UED approaches provide a minimax regret guarantee at
Nash Equilibrium; however, they provide no explicit guarantee of convergence to such equilibrium.
Beukman et al. [10] demonstrated that the minimax regret objective does not necessarily align with
learnability: an agent may encounter UPOMDPs with high regret on certain levels where it already
performs optimally (given the partial observability constraints), while there exist other levels with
lower regret where it could still improve. Consequently, selecting levels solely based on regret can
lead to regret stagnation, where learning halts prematurely. This suggests that focusing exclusively
on minimax regret may inhibit the exploration of levels where overall regret is non-maximal, but
opportunities for acquiring transferable skills for generalization are significant. Thus, there is a
compelling need for a complementary objective, such as novelty, to explicitly guide level selection
towards enhancing zero-shot generalization performance and mitigating regret stagnation.

The Paired Open-Ended Trailblazer (POET; [56]) algorithm computes novelty based on environment
encodings—a vector of parameters that define level configurations. POET maintains a record of the
encodings from previously generated levels and computes the novelty of a new level by measuring the
average distance between the k-nearest neighbors of its encoding. However, this method for computing
novelty is domain-specific and relies on human expertise in designing environment encodings, posing
challenges for scalability to complex domains. Moreover, due to UED’s underspecified nature, where
free parameters may yield a one-to-many mapping between parameters and environments instances,
each inducing distinct agent behaviors, quantifying novelty based on parameters alone is futile.

Enhanced POET (EPOET; [57]) improves upon its predecessor by introducing a domain-agnostic
approach to quantify a level’s novelty. EPOET is grounded in the insight that novel levels offer
new insights into how the behaviors of agents within them differ. EPOET evaluates both active
and archived agents’ performance in each environment, converting their performance rankings into
rank-normalized vectors. The level’s novelty is then computed by measuring the Euclidean distance
between these vectors. Despite addressing POET’s domain-specific limitations, EPOET encounters
its own challenges. The computation of rank-normalized vectors only works for population-based ap-
proaches as it requires evaluating multiple trained student agents and incurs substantial computational
costs. Furthermore, EPOET remains curriculum-agnostic, as its novelty metric relies on the ordering
of raw returns within the agent population, failing to directly assess whether the environment elicits
rarely observed states and actions in the existing curriculum.

Diversity Induced Prioritized Level Replay (DIPLR; [33]), calculates novelty using the Wasserstein
distance between occupancy distributions of agent trajectories from different levels. DIPLR maintains
a level buffer and determines a level’s novelty as the minimum distance between the agent’s trajectory
on the candidate level and those in the buffer. While DIPLR incorporates the agent’s experiences
into its novelty calculation, it faces significant scalability and robustness issues. First, relying on
the Wasserstein distance is notoriously costly. Additionally, DIPLR requires pairwise distance
computations between all levels in the buffer, causing computational costs to grow exponentially with
more levels. Finally, although DIPLR promotes diversity within the active buffer, it fails to evaluate
whether state-action pairs in the current trajectory have already been adequately explored through
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past curriculum experiences, making it arguably still curriculum-agnostic. Further discussions on
relevant literature can be found in Appendix B.

4 Approach: CENIE

The limitations of prior approaches to quantifying environment novelty underscore the need for a more
robust framework, motivating the development of CENIE. CENIE quantifies environment novelty
through state-action space coverage derived from the agent’s accumulated experiences across previous
environments in its curriculum. In single-environment online reinforcement learning, coverage within
the training distribution is often linked to sample efficiency [59], providing inspiration for the CENIE
framework. Given UED’s objective to enhance a student’s generalizability across a vast and often
unseen (during training) environment space, quantifying novelty in terms of state-action space
coverage has several benefits. By framing novelty in this way, CENIE enables a sample-efficient
exploration of the environment search space by prioritizing levels that drive the agent towards
unfamiliar state-action combinations. This provides a principled basis for directing the environment
design towards enhancing the generalizability of the student agent. Additionally, a distinctive benefit
of this approach is that it is not confined to any particular UED or DRL algorithms since it solely
involves modeling the agent’s state-action space coverage. This flexibility allows us to implement
CENIE atop any UED algorithm.

CENIE’s approach to novelty quantification through state-action coverage introduces three key
attributes, effectively addressing the limitations of previous methods: (1) domain-agnostic, (2)
curriculum-aware, and (3) scalable. CENIE is domain-agnostic, as it quantifies novelty solely
based on the state-action pairs of the student, thus eliminating any dependency on the encoding of the
environment. CENIE achieves curriculum-awareness by quantifying novelty using a model of the
student’s past aggregated experiences, i.e., state-action space coverage, ensuring that the selection of
environments throughout the curriculum is sample-efficient with regards to expanding the student’s
state-action coverage. Lastly, CENIE demonstrates scalability by avoiding the computational burden
associated with exhaustive pairwise comparisons or costly distance metrics.

Figure 1: An overview of the CENIE framework. The teacher will utilise environment regret and
novelty for curating student’s curriculum. Γ contains past experiences and τ is the recent trajectory.

4.1 Measuring the Novelty of a Level

To evaluate the novelty of new environments using the agent’s state-action pairs, the teacher needs to
first model the student’s past state-action space coverage distribution. We propose to use GMMs as
they are particularly effective due to their robustness in representing high-dimensional continuous
distributions [14, 5]. A GMM is a probabilistic clustering model that represents the underlying
distribution of data points using a weighted combination of multivariate Gaussian components. Once
the state-action distribution is modeled using a GMM, we can leverage it for density estimation.
Specifically, the GMM allows us to evaluate the likelihood of state-action pairs induced by new
environments, where lower likelihoods indicate experiences that are less represented in the student’s
current state-action space. This likelihood provides a quantitative measure of dissimilarity in state-
action space coverage, enabling a direct comparison of novelty between levels. It is important to note
that CENIE defines a general framework for quantifying novelty through state-action space coverage;
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GMMs represent just one possible method for modeling this coverage. Future research may explore
alternatives to model state-action space coverage within the CENIE framework (see Section C in the
appendix for more discussions).

Before detailing our approach, we first define the notations used in this section. Let lθ be a particular
level conditioned by an environment parameter θ. We refer to lθ as the candidate level, for which we
aim to determine its novelty. The agent’s trajectory on lθ is denoted as τθ, and can be decomposed
into a set of sample points, represented as Xθ = {x = (s, a) ∼ τθ}. The set of past training levels is
represented by L and Γ = {x = (s, a) ∼ τL} is a buffer containing the state-action pairs collected
from levels across L. We treat Γ as the ground truth of the agent’s state-action space coverage, against
which we evaluate the novelty of state-action pairs from the candidate level Xθ.

To fit a GMM on Γ, we must find a set of Gaussian mixture parameters, denoted as λΓ =
{(α1, µ1,Σ1), ..., (αK , µK ,ΣK)}, that best represents the underlying distribution. Here, K denotes
the predefined number of Gaussians in the mixture, where each Gaussian component is character-
ized by its weight (αk), mean vector (µk), and covariance matrix (Σk), with k ∈ {1, ...,K}. We
employ the kmeans++ algorithm [12, 4] for a fast and efficient initialization of λΓ. The likelihood of
observing Γ given the initial GMM parameters λΓ is expressed as:

P (Γ | λΓ) =
J∏

j=1

K∑
k=1

αkN (xj | µk,Σk) (2)

where xj is a state-action pair sample from Γ. N (xj | µk,Σk) represents the multi-dimensional
Gaussian density function for the k-th component with mean vector µk and covariance matrix Σk.
To optimise λΓ, we use the Expectation Maximization (EM) algorithm [22, 43] because Eq. 2 is
a non-linear function of λΓ, making direct maximization infeasible. The EM algorithm iteratively
refines the initial λΓ to estimate a new λ′

Γ such that P (X | λ′
Γ) > P (X | λΓ). This process is

repeated iteratively until some convergence, i.e., ∥ λ′
Γ − λΓ∥ < ϵ, where ϵ is a small threshold.

Once the GMM is fitted, we can use λΓ to perform density estimation and calculate the novelty of the
candidate level lθ. Specifically, we consider the set of state-action pairs from the agent’s trajectory,
Xθ, and compute their posterior likelihood under the GMM. This likelihood indicates how similar
the new state-action pairs are to the learned distribution of past state-action coverage. Consequently,
the novelty score of lθ is represented as follows:

NOVELTYlθ = − 1

|Xθ|
logL(Xθ | λΓ) = − 1

|Xθ|

T∑
t=1

log p(xt | λΓ) (3)

where xt is a sample state-action pair from Xθ. As shown in Eq. 3, we take the negative mean
log-likelihood across all samples in Xθ to attribute higher novelty scores to levels with state-action
pairs that are less likely to originate from the aggregated past experiences, Γ. This novelty metric
promotes candidate levels that induce more novel experiences for the agent during training. More
details on fitting GMMs are explained in Appendix D.1.

Design considerations for the GMM First, we specifically designate the state-action coverage
buffer, i.e., Γ, as a First-In-First-Out (FIFO) buffer with a fixed window length. By focusing on a
fixed window rather than the entire history of state-action pairs, our novelty metric avoids bias toward
experiences that are outdated and have not appeared in recent trajectories. This design choice helps
reduce the effects of catastrophic forgetting prevalent in DRL. Next, it is known that by allowing the
adaptation of the number of Gaussians in the mixture, i.e., K in Eq. 2, any smooth density distribution
can be approximated arbitrarily close [24]. Therefore, to optimize the GMM’s representation of the
agent’s state-action coverage distribution, we fit multiple GMMs with varying numbers of Gaussians
within a predefined range at each time step and select the best one based on the silhouette score [45],
an approach inspired by Portelas et al. [40]. The silhouette score evaluates clustering quality by
measuring both intra-cluster cohesion and inter-cluster separation. This approach enables CENIE to
construct a pseudo-online GMM model that dynamically adjusts its complexity to accommodate the
agent’s changing state-action coverage distribution.

4.2 State-Action Space Coverage Directed Training Agent
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Algorithm 1 ACCEL-CENIE
Input: Level buffer size N , Component range [Kmin, Kmax], FIFO window size W , level generator G
Initialize: Student policy πη , level buffer B, state-action buffer Γ, GMM parameters λΓ

1: Generate N initial levels by G to populate B
2: Collect πη’s trajectories on each level in B and fill up Γ
3: while not converged do
4: Sample replay decision, ϵ ∼ U [0, 1]
5: if ϵ ≥ 0.5 then
6: Generate a new level lθ by G
7: Collect trajectories τ on lθ, with stop-gradient η⊥
8: Compute novelty score for lθ using λΓ (Eq.3 and Eq.4)
9: Compute regret score for l′θ (Eq.1 and Eq.4)

10: Update B with lθ if Preplay(lθ) is greater than that of any levels in B (Eq.5)
11: else
12: Sample a replay level lθ ∼ B according to Preplay

13: Collect trajectories τ on lθ
14: Update πη with rewards R(τ)
15: Update Γ with τ and resize to W
16: for k in range Kmin to Kmax do
17: Fit a GMMk with k components on Γ and compute its silhouette score
18: end for
19: Select GMM parameters with the highest silhouette score to replace λΓ

20: Perform edits on lθ to produce l′θ
21: Collect trajectories τ on l′θ, with stop-gradient η⊥
22: Compute novelty score for l′θ using λΓ (Eq.3 and Eq.4)
23: Compute regret score for l′θ (Eq.1 and Eq.4)
24: Update B with l′θ if Preplay(l

′
θ) is greater than that of any levels in B (Eq.5)

25: end if
26: end while

With a scalable method to quantify the novelty of levels, we demonstrate its versatility and effective-
ness by deploying it on top of the leading UED algorithms, PLR⊥ and ACCEL. For convenience,
in subsequent sections, we will refer to this CENIE-augmented methodology of PLR⊥ and ACCEL
using GMMs as PLR-CENIE and ACCEL-CENIE, respectively. Both PLR⊥ and ACCEL utilize a
replay mechanism to train their students on the highest-regret levels curated within the level buffer.
To integrate CENIE within these algorithms, we use normalized outputs of a prioritization function to
convert the level scores (novelty and regret) into level replay probabilities (PS):

PS =
h(Si)

β∑
j h(Sj)β

(4)

where h is a prioritization function (e.g. rank) with a tunable temperature β that defines the prioriti-
zation of levels with regards to any arbitrary score S. Following the implementations in PLR⊥ and
ACCEL, we employ h as the rank prioritization function, i.e., h(Si) = 1/rank(Si), where rank(Si)
is the rank of level score Si among all scores sorted in descending order. In ACCEL-CENIE and
PLR-CENIE, we use both the novelty and regret scores to determine the level replay probability:

Preplay = α · PN + (1− α) · PR (5)

where PN and PR are the novelty-prioritized probability and regret-prioritized probability respectively,
and α allows us to adjust the weightage of each probability. The complete procedures for ACCEL-
CENIE are provided in Algorithm 1, and for PLR-CENIE in the appendix (see Algorithm 2). Key
steps specific to CENIE using GMMs are highlighted in blue.

5 Experiments

In this section, we benchmark PLR-CENIE and ACCEL-CENIE against their predecessors and a
set of baseline algorithms: Domain Randomization (DR), Minimax, PAIRED, and DIPLR. The
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technical details of each algorithm are presented in Appendix E. We empirically demonstrated
the effectiveness of CENIE on three distinct domains: Minigrid, BipedalWalker, and CarRacing.
Minigrid is a partially observable navigation task under discrete control with sparse rewards, while
BipedalWalker and CarRacing are partially observable continuous control tasks with dense rewards.
Due to the complexity of mutating racing tracks, CarRacing is the only domain where ACCEL
and ACCEL-CENIE are excluded. The experiment details are provided in Appendix D. Following
standard UED practices, all agents were trained using Proximal Policy Optimization (PPO; [49])
across the domains, and we present their zero-shot performance on held-out tasks. We also conducted
ablation studies to assess the isolated effectiveness of CENIE’s novelty metric (see Appendix A).

For reliable comparison, we employ the standardized DRL evaluation metrics [1], presenting the
aggregate inter-quartile mean (IQM) and optimality gap plots after normalizing the performance with
a min-max range of solved-rate/returns. Specifically, IQM focuses on the middle 50% of combined
runs, discarding the bottom and top 25%, thereby providing a robust measure of overall performance.
Optimality gap captures the amount by which the algorithm fails to meet a desirable target (e.g.,
95% solved rate), beyond which further improvements are considered unimportant. Higher IQM and
lower optimality gap scores are better. The hyperparameters for the algorithms in each experiment
are specified in the appendix.

5.1 Minigrid Domain

First, we validated the CENIE-augmented methods in Minigrid [23, 20], a popular benchmark due to
its ease of interpretability and customizability. Given its sparse reward signals and partial observability,
navigating Minigrid requires the agent to explore multiple possible paths before successfully solving
the maze and receiving rewards for policy updates. Therefore, Minigrid is an ideal domain to validate
the exploration capabilities of the CENIE-augmented algorithms.

Figure 2: Zero-shot transfer performance in eight human-designed test environments. The plots are
based on the median and interquartile range of solved rates across 5 independent runs.

Following prior UED works, we train all student agents for 30k PPO updates (approximately
250 million steps) and evaluate their generalization on eight held-out environments (see Figure
2). Figure 2 demonstrates that ACCEL-CENIE outperforms ACCEL in all testing environments.
Moreover, PLR-CENIE shows significantly better performance in seven test environments compared
to PLR⊥. This underscores the ability of CENIE’s novelty metric to complement the UED framework,
particularly in improving generalization performance beyond the conventional learning potential
metric, regret. Further empirical validation in Figure 3(a) confirms ACCEL-CENIE’s superiority
over ACCEL in both IQM and optimality gap. PLR-CENIE also outperforms its predecessor, PLR⊥,
by a significant margin. Notably, PLR-CENIE’s performance is able to match ACCEL’s, which
is significant considering PLR-CENIE uses a random generator while ACCEL uses an editing
mechanism to introduce gradual complexity to environments.

Beyond the normal-size testing mazes, we consider a more challenging evaluation setting. We
evaluate the fully-trained student policy of PLR⊥, PLR-CENIE, ACCEL, and ACCEL-CENIE on
PerfectMazeLarge (shown in Figure 3(b)), an out-of-distribution environment which has 51× 51
tiles and a episode length of 5000 timesteps – a much larger scale than training levels. We evaluate
the agents for 100 episodes (per seed), using the same checkpoints in Figure 2. ACCEL-CENIE and
ACCEL achieved comparable zero-shot transfer performance. Notably, PLR-CENIE achieved close
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(a) (b)

Figure 3: (a) Aggregate zero-shot transfer performance in Minigrid domain across 5 independent
runs. (b) Zero-shot test performance of PLR⊥, PLR-CENIE, ACCEL, and ACCEL-CENIE on
PerfectMazeLarge across 5 independent runs.

to 50% solved rate, matching ACCEL’s performance. This is a significant improvement from PLR⊥,
which had less than a 10% solved rate.

5.2 BipedalWalker Domain

Figure 4: Student’s generalization performance on 6 BipedalWalker testing environments during
training. Each curve is measured across 5 independent runs (mean and standard error).

We also evaluated the CENIE-augmented algorithms in the BipedalWalker domain [56, 37], which is
a partially observable continuous domain with dense rewards. We train all the algorithms for 30k
PPO updates (∼1B timesteps) and then evaluate their generalization performance on six distinct test
environments: BipedalWalker (default), Hardcore, Stair, PitGap, Stump, and Roughness (visualized
in Figure 6(a)). To monitor the student’s generalization performance evolution, we assess the student
policy every 100 PPO updates across six testing environments during the training period.

In Figure 4, ACCEL-CENIE outperforms ACCEL in five testing environments, with both achieving
parity in the Roughness challenge, establishing ACCEL-CENIE as the leading UED algorithm in
BipedalWalker. Similarly, PLR-CENIE consistently outperforms PLR⊥ across all testing instances,
except for the Stump challenge, where both algorithms exhibit similar performance. We present
the aggregate results after min-max normalization (with range=[0, 300] on all test environments)
in Figure 6(b). Both ACCEL-CENIE and PLR-CENIE exhibit better performance compared to
their predecessors in the IQM and optimality gap metrics. Notably, ACCEL-CENIE outperforms all
benchmarks by a substantial margin, achieving close to 55% of optimal performance.

Table 1: Coverage of state-action space across 30k PPO updates in the BipedalWalker domain.

PLR⊥ PLR-CENIE ACCEL ACCEL-CENIE

State-action
Space Coverage 43.4% 55.3% 42.5% 47.6%

Next, we tracked the evolution of state-action space coverage throughout training to evaluate the
impact of CENIE’s novelty objective on the curriculum’s exploration of the state-action space. During
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training, state-action pairs encountered by the agent were collected for both PLR⊥ and ACCEL,
along with their CENIE-augmented versions. To visualize the distribution of these high-dimensional
state-action pairs, we applied t-distributed Stochastic Neighbor Embedding (t-SNE; [54]) to project
them into a 2-D space. The resulting evolution plot and detailed implementation steps are provided
in Appendix A.2. Afterwards, we quantified state-action space coverage by discretizing the 2-D
scatterplot into cells and calculating the percentage of total cells occupied by each algorithm. As
shown in Table 1, CENIE drives ACCEL-CENIE and PLR-CENIE to achieve significantly broader
state-action coverage by the end of 30k PPO updates compared to their predecessors. This evidence
supports that the inclusion of CENIE’s novelty objective for level replay prioritization contributes to
broader state-action space coverage.

Figure 5: Difficulty composition of levels replayed by ACCEL and ACCEL-CENIE during training.

To understand ACCEL-CENIE’s improvement over ACCEL, we analyzed the difficulty composition
of replayed levels at various training intervals across five seeds, as shown in Figure 5. Level difficulty
is assessed based on environment parameters such as stump height and pit gap width, using metrics
adapted from Wang et al. [56] (details in Appendix A.2). It is evident that ACCEL predominantly
favors “Easy” to “Moderate” difficulty levels, whereas ACCEL-CENIE progressively incorporates
“Challenging” levels into its replay selection throughout training.

The disparity in level difficulty distribution between ACCEL and ACCEL-CENIE is a critical factor
in understanding their observed performance differences. ACCEL’s training curriculum tends to
remain within a comfort zone, consistently selecting a limited subset of simpler levels where the agent
experiences high regret. However, this can be problematic when considering the regret stagnation
problem. Specifically, in the event where the easier levels exhibit irreducible regret, it can restrict
the agent’s exposure to more complex scenarios, thereby constraining its generalization potential.
In contrast, ACCEL-CENIE’s integration of a novelty objective actively selects challenging levels,
pushing the agent beyond its comfort zone into unfamiliar, complex environments. This novelty-based
regularization fosters the exploration of under-explored regions in the state-action space, even if
regret levels are low, thereby enhancing the agent’s generalization capabilities. Furthermore, with a
mutation-based approach like ACCEL, this environment selection strategy may generate or mutate
new levels with high learning potential, further enriching the training curriculum.

(a) (b)

Figure 6: (a) BipedalWalker domain and (b) Aggregate zero-shot transfer performance in Bipedal-
Walker.

5.3 CarRacing Domain

Finally, we evaluated the effectiveness of CENIE by implementing it on PLR⊥ within the CarRacing
domain [16, 27]. In this domain, the teacher manipulates the curvature of racing tracks using Bézier
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curves defined by a sequence of 12 control points, while the student drives on the track under
continuous control with dense rewards. We train the students in each algorithm for 2.75k PPO updates
(∼5.5M steps), after which we test the zero-shot transfer performance of the different algorithms on
20 levels replicating real-world Formula One (F1) tracks introduced by Jiang et al. [27]. These tracks
are guaranteed to be OOD as their configuration cannot be defined by Bézier curves with only 12
control points. The middle image in Figure 6b shows a track generated by domain randomization and
the rightmost image shows a bird’s-eye view of the F1-USA benchmark track.

(a) (b)

Figure 7: (a) CarRacing domain and (b) Aggregate zero-shot transfer performance in CarRacing.

The aggregate performance after min-max normalization of all algorithms is summarized in Figure 7b.
Note that the min-max range varies across F1 tracks due to different specifications on the maximum
episode steps (see Table 5 in the appendix for more details). Once again, the CENIE-augmented
algorithm, PLR-CENIE, achieves the best generalization performance in both IQM and optimality gap
scores. Table 3 in the appendix shows the zero-shot transfer returns on all 20 F1 tracks. PLR-CENIE
consistently outperforms or matches the best-performing baseline on all tracks.

Figure 8: Total regret in level replay
buffer for PLR⊥ and PLR-CENIE
over training in CarRacing.

Figure 8 presents the total regret in the level replay buffer
for both PLR⊥ and PLR-CENIE throughout the training pro-
cess. Interestingly, PLR-CENIE maintains comparable, or even
slightly higher, levels of regret across the training distribution,
despite not directly optimizing for it. This outcome suggests
that CENIE’s novelty objective synergizes with the discovery
of high-regret levels, providing counterintuitive evidence that
optimizing solely for regret is not the only, nor necessarily the
most effective, strategy for identifying levels with high learning
potential (as approximated by regret). Intuitively, value predic-
tions are inherently less reliable in regions of lower coverage
density–areas characterized by higher entropy or high uncer-
tainty regarding optimal actions–since these regions are less
frequently sampled for agent’s learning. These high-entropy re-
gions are prime candidates for high-regret outcomes, especially
when using a bootstrapped regret estimate, as in Eq. 1, due to
the value estimation error in such states. By pursuing novel
environments based on coverage, CENIE indirectly enhances
the discovery of high-regret states, highlighting that novelty-
driven autocurricula can effectively complement regret-based methods in uncovering diverse and
challenging training scenarios.

6 Conclusion

In this paper, we introduced Coverage-based Evaluation of Novelty In Environment (CENIE), a
scalable, domain-agnostic, and curriculum-aware framework for quantifying environment novelty
in UED. We then proposed an implementation of CENIE that models this coverage and measures
environment novelty using Gaussian Mixture Models. By incorporating CENIE with existing UED
algorithms, we validated the framework’s effectiveness in enhancing agent exploration capabilities and
zero-shot transfer performance across three distinct benchmark domains. This promising approach
marks a significant step towards unifying novelty-driven exploration and regret-driven exploitation
for training generally capable RL agents. We encourage motivated readers to refer to the appendix
for further studies and discussions on CENIE.
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A Extended Experiment Details and Ablation Studies

In this section, we present extended experiment details regarding the results presented in the main
body of the paper. To isolate the individual effects of regret and novelty, we conduct an ablation study
in which only novelty is used to prioritize levels in the level buffer. We denote the CENIE-augmented
versions of the PLR⊥ and ACCEL, which use only novelty for level prioritization (set α = 1 in
Equation 5), as PLR-CENIE† and ACCEL-CENIE†, respectively.

Interestingly, we observed that in several instances, the ablation models, PLR-CENIE† and ACCEL-
CENIE†, demonstrated comparable or even superior zero-shot transfer performance compared to
their regret metric counterparts, PLR⊥ and ACCEL. This finding suggests that, in specific scenarios,
prioritizing training levels based on novelty alone can effectively shape curricula. This is especially
notable because our GMM-based novelty metric, unlike regret, does not rely on predefined domain-
specific reward structures; rather, it is derived solely from the agent’s trajectory data across different
levels.

However, it is important to note that these ablation results do not imply that regret should be entirely
replaced by novelty-based level selection. Novelty alone may encounter limitations in extremely
large state-action spaces where a balance with regret is essential for effective exploration. By
combining novelty and regret in CENIE to shape the training curriculum, we significantly enhance
the agent’s generalization capabilities beyond those of previous algorithms, as shown in our main
experiments. This finding highlights the powerful synergy between CENIE’s novelty metric and
traditional regret-based approaches, resulting in a more robust and effective training paradigm.

A.1 Minigrid Domain

After training all the student agents for 30k PPO updates (∼250M steps), we evaluate their transfer
capabilities on eight held-out testing environments (see the first row in Figure 9). We summarize all
the results in Figure 9. In addition to the zero-shot transfer evaluation, we summarize the students’
aggregate zero-shot transfer performance, i.e., IQM and Optimality Gap, in Figure 10.

In Figure 9, PLR-CENIE† outperforms PLR⊥ in most of the testing environments (6 out of 8),
indicating that the novelty metric plays a more significant role compared to regret in the Minigrid
domain for the PLR⊥ algorithm. In contrast, ACCEL shows a marginal performance advantage over
ACCEL-CENIE† in the testing environments, with two wins, four losses, and two ties. Importantly,
for both cases – PLR-CENIE and ACCEL-CENIE – the combination of both regret and novelty yields
the strongest performance, outperforming their individual metric counterparts. This finding supports
the assertion that the CENIE framework effectively complements the regret metric, helping UED
algorithms achieve better performance.

Figure 9: Zero-shot transfer performances in Minigrid. The plots are based on the median and
interquartile range of solved rates across 5 independent runs. All student models are evaluated after
30k student PPO updates.

The aggregate IQM and Optimality Gap results shown in Figure 10 further validates the above
conclusion. ACCEL-CENIE and PLR-CENIE outperform their counterparts – (ACCEL, ACCEL-
CENIE†) and (PLR⊥, PLR-CENIE†) – in terms of both IQM and Optimality Gap. In particular,
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within the PLR⊥ framework, the novelty-driven level selection strategy (PLR-CENIE†) significantly
surpasses the regret-based approach (PLR⊥) in performance.

Figure 10: IQM and Optimality Gap ablations in Minigrid domain. Results are measured across 5
independent runs.

We also provide a qualitative analysis of the effect of the novelty metric on the level replay buffer of
PLR-CENIE in Minigrid for the experiments detailed under Section 5.1 in the main body. Specifically,
we highlight levels that feature the lowest regret (bottom 10) yet exhibit the highest novelty (top 10);
these are showcased in the first row of Figure 11. Conversely, levels that score within the lowest 10
for both regret and novelty are displayed in the second row of the same figure. Visually, we observe
that levels with high novelty and low regret present complex and diverse scenarios that challenge
the student. In contrast, the levels displayed in the second row, characterized by low regret and low
novelty, often resemble simple, empty mazes that offer limited learning opportunities. While it is not
feasible to present every example level here, the contrast between the two groups is stark. Levels
selected based on low regret but high novelty are significantly more varied and intricate than those
chosen for their low novelty, despite both groups having low regret scores. This demonstrates that
incorporating novelty alongside regret in the selection process enhances the ability to identify levels
that present more interesting trajectories (experiences) for the student to learn from.

Figure 11: Levels in the level replay buffer of PLR-CENIE. X-axis: number of student PPO updates.

A.2 BipedalWalker Domain

We closely tracked the evolution of state-action space coverage during the training to reveal how the
incorporation of a novelty objective affected the curriculum generation. State-action pairs encountered
by the agent during training are collected for PLR⊥, ACCEL, PLR-CENIE, and ACCEL-CENIE.
Given the high-dimensionality of the state-action pairs in the BipedalWalker domain, we employed
t-distributed Stochastic Neighbor Embedding (t-SNE; [54]), a nonlinear dimensionality reduction
technique, to project the state-action pairs onto a more manageable two-dimensional manifold. t-
SNE captures much of the local structure of the high-dimensional data, while also revealing global
structures, such as the presence of clusters at several scales [54, 58]. The resulting embedded
state-action pairs are mapped onto a 2-D scatterplot, allowing us to visualize the exploration of the
state-action space by each algorithm as the number of policy updates increases. The evolution is
illustrated in Figure 12.

Furthermore, we quantified the occupancy of the 2-D scatterplot by each method. To achieve this,
we discretized the scatterplot into cells and computed the percentage of total cells occupied by data
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points generated by each method. Table 1 in the main paper presents the state-action space coverage
percentages for each method. Notably, both PLR-CENIE and ACCEL-CENIE exhibit significantly
broader coverage of the state-action space compared to their predecessors. This evidence supports
the assertion that the outperformance of CENIE-augmented algorithms is associated with the broader
coverage of the state-action space. Note that although the PLR-based algorithms exhibit higher
state-action space coverage, they show poorer transfer performance compared to ACCEL-based
algorithms. This discrepancy is likely because ACCEL initiates the curriculum with “easy” levels,
and gradually introducing complexity via minor mutations, whereas PLR relies on DR, which lacks
the fine-grained control over difficulty progression that ACCEL’s mutation-based method offers. As
a result, while CENIE enhances state-action space coverage for both ACCEL and PLR, it is likely
that ACCEL’s gradual complexity introduction mechanism capitalizes on this enhancement more
effectively.

Figure 12: Evolution of the state-action space coverage of ACCEL-CENIE, ACCEL, PLR-CENIE,
and PLR for a seed. The checkpoints are 1k, 10k, 20k, and 30k policy updates during the training.

To plot the level difficulty composition of the replayed levels by ACCEL and ACCEL-CENIE in
Figure 5 of the main paper, we adapted the difficulty thresholds originally defined in Wang et al.
[56]. This is because their thresholds were designed for a smaller 5-D encoding BipedalWalker
environment, whereas our setting uses an 8-D encoding, which allows for higher complexity of
levels to be generated. Specifically, we introduced an additional threshold for maximum stairs
height, as shown in Table 2. A level is classified as Easy if it meets none of the thresholds, and as
Moderate, Challenging, Very Challenging, or Extremely Challenging if it meets one, two, three, or
four thresholds, respectively.

Note that our Figure 5 differs from Figure 12 in Parker-Holder et al. [37] which shows the difficulty
distribution of the levels generated and added into the buffer, but not the actual levels selected
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Table 2: Environment encoding thresholds for 8D BipedalWalker.

Stump Height (High) Pit Gap (High) Ground Roughness Stairs Height (High)
≥ 2.4 ≥ 6 ≥ 4.5 ≥ 5

by the teacher for the student to replay/train on. Also, their figure is defined for the 5D encoding
setting. On that note, this also demonstrates that CENIE remedies an inefficiency in the original
ACCEL algorithm, where mutation-based generation is capable of producing high complexity levels
but are not selected for student training due to solely depending on regret for level prioritization.

Figure 13: Zero-shot transfer return ablations in BipedalWalker domain. The plot is based on mean
and standard error over 5 independent runs.

Figure 14: IQM and Optimality Gap ablations in BipedalWalker domain. Results are measured across
5 independent runs.

In addition to the state-action space coverage, we also conduct the ablation study in the BipedalWalker
domain. We repeat the same experiment settings as in the Minigrid domain, where both ACCEL-
CENIE† and PLR-CENIE† utilize only novelty to prioritize replay levels, and ACCEL-CENIE and
PLR-CENIE integrate both novelty and regret for prioritization. We assess the algorithm performance
with the same evaluations as in the main paper, providing both the transfer performance during
training (Figure 13) and IQM and Optimality Gap (Figure 14).

Summarizing the observations from both Figure 13 and Figure 14, we observe that novelty-driven
level replay selection exhibits a similar effect as regret on PLR⊥ but is not as effective as regret
on ACCEL. PLR-CENIE† performs on par with the regret metric counterpart (i.e., PLR⊥) while
ACCEL-CENIE† is outperformed by ACCEL and ACCEL-CENIE in this domain. The observations
differ from the ablation studies conducted in the Minigrid domain. This discrepancy is possibly due to
the greater importance of exploration in Minigrid, which features a sparse reward setting, compared
to the dense reward, continuous control domain of BipedalWalker.

A.3 CarRacing Domain

To monitor the evolution of the students’ transfer performance, we evaluate the students every 100
PPO updates on four racing tracks throughout the training period and plot the results in Figure 15.
PLR-CENIE outperforms both its predecessor, PLR⊥, and the state-of-the-art algorithm, DIPLR, in
the CarRacing domain.
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Since both DIPLR and PLR-CENIE achieve near-optimal performance on the four testing tracks, we
conduct a more extensive and rigorous evaluation by measuring the students’ transfer performance
on 20 human-designed F1 racing tracks from Jiang et al. [27]. We also include the ablation model,
PLR-CENIE† which uses novelty alone to prioritize replay levels, in our evaluation. The detailed
results of each algorithm are listed in Table 3. For better visualization and straightforward comparison,
we plotted the IQM and Optimality Gap performances in Figure 16.

Table 3: Test returns of each method on all the CarRacing F1 benchmarks. Results are measured
across 5 runs at 2.75k PPO updates and 50 trials per track. Bold indicates being within one standard
error of the best mean. Observe that PLR-CENIE consistently outperforms the other algorithms or
matches the best-performing algorithm. PLR-CENIE† is the ablation model.

Track DR Minimax PAIRED DIPLR PLR⊥ PLR-
CENIE

PLR-
CENIE†

Australia 304±133 107±97 224±173 715±50 574±69 745±32 616±45
Austria 299±118 152±106 159±160 587±49 458±44 566±38 496±46
Bahrain 208±136 44±101 118±159 514±48 377±75 537±58 453±38
Belgium 225±104 131±87 110±100 440±31 362±36 500±41 436±35
Brazil 192±106 57±61 147±124 451±39 368±42 485±27 312±40
China -35±57 -29±80 -71±63 93±102 -23±28 278±100 281±52
France 124±111 48±129 8±126 487±75 311±98 564±65 435±97
Germany 172±105 94±100 2±97 477±59 358±35 512±80 500±82
Hungary 319±155 133±113 139±161 686±50 597±72 678±40 604±70
Italy 267±114 204±89 198±135 676±30 559±63 708±26 588±34
Malaysia 142±107 39±94 51±104 404±30 265±44 469±79 338±22
Mexico 331±199 193±123 102±169 675±24 570±76 674±51 602±57
Monaco 80±78 100±94 34±111 369±122 139±112 641±46 476±96
Netherlands 143±109 104±95 42±77 540±34 400±61 558±59 403±84
Portugal 174±118 39±94 88±153 412±22 353±27 495±66 394±43
Russia 343±151 118±105 204±163 609±60 644±31 594±58 550±60
Singapore 209±108 75±93 88±153 479±78 423±51 530±48 454±55
Spain 296±133 181±110 249±157 619±39 517±41 588±43 499±39
UK 303±127 187±101 194±156 558±49 443±45 562±26 506±36
USA 173±95 -2±84 2±161 191±110 155±90 416±143 363±61

Mean 214±115 99±92 105±132 499±20 392±28 553±32 465±42

From both Table 3 and Figure 16, we observe that the ablation model, PLR-CENIE†, outperforms
PLR⊥ by a significant margin, indicating that novelty is more important for level replay prioritization
than the regret metric in PLR⊥ for the CarRacing domain. Moreover, PLR-CENIE surpasses DIPLR
and achieves state-of-the-art transfer performance in the CarRacing domain by effectively combining
the strength of both novelty and regret.

B Extended Related Work

Curiosity-driven Approaches in RL CENIE and curiosity-driven RL [47, 50] share a conceptual
similarity in leveraging novelty or unfamiliarity to guide learning. However, they differ significantly
in their application and theoretical foundations. Curiosity-driven learning seeks to quantify “curiosity"
as an intrinsic reward for the agent such that it learns to prioritize the exploration of interesting
experiences within a static environment [38], or across a set of predefined tasks [18]. In contrast,
CENIE is an autocurricula approach that focuses on curating environments interesting or useful for the
agent’s learning, shaping the learning curriculum itself rather than the exploration reward signal. This
distinction is analogous to the difference between Prioritized Experience Replay [46] in traditional
RL and Prioritized Level Replay [28] in UED. The former is an “inner-loop” method prioritizing past
experiences for training, while the latter is an “outer-loop” method using past experiences to inform
the collection/generation of future experiences. Similarly, curiosity-driven learning prioritizes novel
experiences for policy updates, whereas CENIE focuses on generating and curating levels that induce
these novel experiences. This fundamental difference in purposes makes theoretical and empirical
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Figure 15: Complete training process of each algorithm on four CarRacing test environments. Plots
show mean and standard error over 5 independent runs, with an evaluation interval of 100 PPO
updates.

Figure 16: IQM and Optimality Gap ablations on the full CarRacing benchmark (20 F1 tracks).
Results are measured across 5 independent runs after 2.75k PPO updates.

comparisons between curiosity-driven approaches and CENIE less direct. However, many of the
previous works in curiosity-driven RL provide inspiration for the CENIE framework. Specifically,
curiosity-driven RL methods often seek to represent the “visitation counts" of state-action to shape
the intrinsic reward. The use of GMMs to model state-action space coverage in CENIE is motivated
by successes in curiosity-driven RL approaches which have tackled the counting problem using
density models. Notably, density models have been flexibly used to model state-action visitations
for both large discrete state-action spaces (via pseudo-counts [8, 36]) and continuous state-action
spaces [62, 61].

Automatic Curriculum Learning UED is related to Automated Curriculum Learning (ACL;[42]),
which emcompasses a family of mechanisms that automatically adapt the distribution of training
data by selecting learning situations tailored to the capabilities of DRL agents. Many ACL methods
prioritize sampling of environment instances where the agent achieves high learning progress (LP).
A particular relevant method in this space is ALP-GMM, introduced by Portelas et al. [40]. ALP-
GMM operates by periodically fitting a Gaussian Mixture Model to a dataset of previously sampled
environment parameters, each associated with an Absolute Learning Progress (ALP) score. The
approach employs an EXP4 [6] bandit algorithm to select Gaussians as arms, with each Gaussian’s
utility defined by its ALP score. ALP-GMM’s approach to fitting multiple GMMs using different
number of Gaussian components and keeping the best one inspired our GMM approach. However,
they evaluate the GMM’s quality using the Akaike’s Information Criterion [15] (AIC). AIC introduces
a penalty for the number of parameters in the model (which increases with the number of Gaussian
components and dimensions of the data). This penalizes GMMs with more components, which may
not be ideal for accurately modeling well-separated clusters in the state-action space which is crucial
for identifying sparse regions and estimating novelty. To address this, our work uses the silhouette
score [45] instead, which better evaluates clustering quality by considering both intra-cluster cohesion
and inter-cluster separation, making it better suited for modeling novelty in state-action spaces.
Additionally, ALP-GMM uses GMMs to sample environment parameters that are likely to yield high
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ALP scores, aligning task difficulty with the agent’s progress. This approach contrasts with how
GMMs are used in the CENIE framework, where the goal is to model the novelty of an environment
based on state-action coverage, independent of specific environment parameters. ACL methods
like ALP-GMM generally assume a predefined target task distribution. This differs from the UED
framework which only requires only an underspecified task space, i.e. θ in the UPOMDP formalism.
UED seeks to directly maximize the student’s robustness over any possible environments, even
those that are out-of-distribution from training. Similarly, CENIE provides a general approach for
quantifying novelty using state-action coverage, without relying on any predefined task distribution.
Due to this generality, we believe the CENIE framework holds significant potential for crossover
applications in the ACL domain, providing a robust method for assessing and prioritizing environment
novelty to enhance curriculum learning.

Open-endedness and Novelty Search in Evolutionary Computation Long-running UED pro-
cesses in expansive UPDOMPs closely resemble continual learning in open-ended domains. As such,
UED is fundamentally connected to the fields of open-endedness [51] and evolutionary computation.
When the task space allows for unbounded complexity, autocurricula methods such as UED offer
promising pathways to open-endedness by co-evolving an adaptive, infinite set of tasks for the agent.
Traditionally, learning without extrinsic rewards or fitness functions has been studied in evolutionary
computation where it is referred to as ‘novelty search’ [30, 31]. In novelty search, the novelty of an
agent’s behavior is typically quantified by measuring the distance between a user-defined feature or
behavioral descriptor and its nearest neighbor in the population. Consistent with our findings, the
open-ended learning literature has long recognized that high-performing solutions often emerge not
through fitness optimization alone but through novelty-driven exploration. Despite these parallels,
novelty search in environment design remains underdeveloped. Early work such as POET [56]
and its successor [57] in open-ended RL have started drawing connections, linking environment
design with principles of open-ended exploration. However, these approaches rely on a population of
agents and distance-based novelty measures that lack curriculum-awareness; they do not adapt to the
specific experiences induced by the curriculum nor improve the agent’s sample efficiency in reducing
uncertainty across the state-action space. More recent work by Zhang et al. [60] proposed to leverage
foundation models to quantify human notions of “interestingness" (e.g. tasks that are both novel and
worthwhile) in order to narrow the environment search space. It is unclear how to combine the insights
from Zhang et al. [60] and this paper. Integrating these insights with our work presents an intriguing
challenge. On one hand, CENIE provides a principled, general approach to quantifying novelty
through state-action coverage, circumventing the need for subjective evaluations of “interestingness"
using foundation models. On the other hand, Zhang et al. [60] points out critical pitfalls in novelty
search, such as the potential for agents to exploit novelty measures, generating superficial variations
that fail to yield genuinely meaningful insights. This highlights numerous exciting research directions
for aligning novelty search with the concept of “interestingness," potentially combining the strengths
of principled coverage-based novelty measures with more nuanced assessments of task value.

C Future Work and Limitations

In this paper, we demonstrated the application of GMMs to quantify the novelty of environments
generated under the UED paradigm. We then validated the effectiveness of this novelty metric
in prioritizing levels. Nevertheless, our work has some limitations. First, while we demonstrated
the utility of the CENIE framework for novelty quantification and level prioritization, we did not
explore its potential for directly generating novel environments. We anticipate that with creative
manipulations, the GMM likelihood scores could directly inform level generation, either through a
principled level generator (as in PAIRED) or by guiding mutations (as in ACCEL). This approach
may lead to a more sample-efficient generation process, reducing the variance inherent in random
generation.

Second, we did not experiment with alternative weightings between regret and CENIE’s novelty
in level replay prioritization, as our experiments used a fixed 0.5-0.5 weighting (as in Eq.5). We
hypothesize that tuning these weights based on domain characteristics, such as the required level
of exploration or reward sparsity, could improve performance. Additionally, employing dynamic
weighting schemes, such as linearly decaying weight adjustments or adaptive strategies based on the
agent’s learning progress, may further enhance curriculum optimization.
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Third, GMM-based clustering may encounter challenges due to the curse of dimensionality in high-
dimensional state-action spaces. While our current CENIE-augmented algorithms demonstrated
significant improvements, future work could explore dimensionality reduction techniques, such
as Principal Component Analysis (PCA; [25]) or t-distributed Stochastic Neighbor Embedding
(t-SNE; [54]), to improve coverage representation in higher-dimensional settings. However, even
with dimensionality reduction, such representations may still struggle in environments where the
observations contain exogenous information irrelevant to the agent’s control. Specifically, although
our experiments showed strong empirical gains in simplified environments, the current approach is
vulnerable to the noisy TV problem [19], where novelty-driven level prioritization may focus on
unpredictable noise elements of the environment, rather than beneficial learning experiences. This
limitation highlights the importance of balancing level prioritization between novelty and regret to
ensure the agent focuses on genuinely novel environments rich in learning potential.

Furthermore, effective state representation is crucial for the CENIE framework. The CENIE frame-
work is not restricted to raw state inputs; it can operate on indirect encodings, such as latent-space
representations obtained from a generative model of the environment. This approach would allow
CENIE to capture action-relevant information and necessary temporal dependencies between states,
providing a more focused basis for novelty estimation. We expect that density-based novelty estima-
tion could improve further by using latent representations from more expressive generative models,
such as Variational Autoencoders (VAEs) [29], which can capture richer, more informative structures
in the state space.

Finally, while we used GMMs for environment novelty quantification, the CENIE framework is not
limited to this model, as mentioned in the main body of this paper. GMMs may face limitations in
capturing more complex distributions in real-world settings, and our choice of GMMs was primarily
intended to illustrate the empirical benefits of quantifying novelty using state-action coverage in
simpler environment settings. It is important to point out that fitting multiple GMM on the updated
state-action coverage distribution and selecting the best one every rollout can incur additional
computational costs. For future work aiming to replicate our approach, exploring periodic refitting
(similar to the strategy used in ALP-GMM) could be worthwhile, as it may achieve comparable
effectiveness while significantly reducing computational demands. Future work could also investigate
more advanced density models, such as Variational Gaussian Mixture Models [11], Deep Gaussian
Mixture Models [55], or Normalizing Flow Models [44]. Additionally, there may be alternative
approaches beyond density models for representing state-action coverage that could further enhance
CENIE’s effectiveness. We believe there are many promising directions for the CENIE framework,
and we leave these potential extensions to future work.

D Implementation Details

In this section, we provide the details about the experiments and implementations, including do-
main properties and additional information about CENIE and the baseline algorithms. All of our
experiments are run with a single V100 GPU or GeForce 3090 GPU, using 10 Intel Xeon E5-2698
v4 CPUs. The baseline algorithms and evaluation environments are implemented using the DCD
codebase provided by Jiang et al. [27], Parker-Holder et al. [37]. The CENIE framework and our
current evaluations build upon and significantly extend a preliminary version of our work [52], where
the framework was initially named “GENIE." We have since enhanced the framework and opted to
rename it to CENIE, following the release of a similarly-named, related work by Bruce et al. [17],
which appeared around the same time. This change was made to distinguish our contributions clearly
and avoid confusion within the research community.

D.1 Fitting Gaussian Mixture Models

In this section, we provide more details about the GMM fitting process that was absent from the
main body. Given an initial buffer containing past state-action pairs, Γ, and a selected number of
Gaussians, K, we first use the k-means++ algorithm to perform a fast and efficient initialization of
the GMM parameters [12, 4], λΓ = {(α1, µ1,Σ1), ..., (αK , µK ,ΣK)}. We then optimize λΓ using
the Expectation Maximization (EM) algorithm [22, 43]. The EM algorithm uses the initial values
λΓ to estimate a new λ′

Γ such that P (X|λ′
Γ) > P (X|λΓ). This process is repeated iteratively until

some convergence threshold is fulfilled. Each iteration of the EM algorithm can be separated into the
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E-step and M-step. In E-step, the posterior probability for each component i generating the sample
point xt is denoted by wt,i,

wt,i = P (i|xt) =
αiN (xt|µi, σi)∑K
i αiN (xt|µi, σi)

where t = 1, 2, ..., N and i = 1, 2, ...,K. M-step computes the maximum likelihood estimation
(MLE) using wt,i following re-estimation formulas which are derived from the partial derivatives of
the log-likelihood functions and guarantee a monotonic increase in the model’s likelihood value.

αi =
1

N

N∑
i=1

wt,i, µi =

∑N
i=1 wt,i∑N
i=1 wt,i

xt

σi =

∑N
i=1 wt,i∑N
i=1 wt,i

(xt − µi)(xt − µi)
T

We iteratively apply the E-step and M-step until the parameters converge, i.e., ||λ′
Γ − λΓ|| < ϵ, where

ϵ is a small threshold.

As mentioned in the main paper, we deliberately employ a finite window for Γ to account for the
effects of catastrophic forgetting. This allows levels with state-action pairs encountered in the past
but subsequently forgotten by the agent’s policy to regain novelty and be included back in the agent’s
training curriculum. Furthermore, to ensure effectiveness in clustering the state-action space, we
utilized a semi-online GMM model that is able to adapt its number of Gaussians, i.e. K, to that of the
highest silhouette score.

We use the PyCave [13] Python library to fit the GMM using GPU acceleration, which also provides
an efficient abstraction for the Expectation-Maximization (EM) algorithm. We use the PyTorch
Adapt [35] Python library to calculate the silhouette scores. The hyperparameters for fitting the
GMM for all domains are shown in Table 7.

D.2 CENIE-Augmented Algorithms

Besides the algorithm for ACCEL-CENIE shown in the main paper under Algorithm 1, we also
provide the algorithm for PLR-CENIE here under Algorithm 2.

D.3 Minigrid Domain

In the Minigrid domain, the teacher creates maze instances consisting of a 15× 15 grid, where each
empty tile can be occupied by the agent, the goal, an obstacle (i.e. block), or an empty space that can
navigate through. The student is aware of its orientation and is limited by partial observability, i.e. it
only has a 5× 5 view in front of it. The student agent can only move forward and turn left/right, and
will stay in place if it hits an obstacle. The student agent is implemented based on PPO [49] with
an LSTM-based recurrent network structure to deal with partial observability. We use the LSTM
hidden states as representations within our GMM, allowing the density model to capture temporal
dependencies between states. The student agent receives a reward upon reaching the goal, where H
is the episode length and Hmax is the maximum length (set to 250 at training) for an episode. The
agent receives a reward of r = 1− (numstep/Hmax) when it reaches the goal position and 0 if it
fails to reach the goal. The collection of states in this domain depicts the scenarios the agent needs to
navigate through.

D.4 BipedalWalker Domain

In BipedalWalker, the teacher agent generates new levels by specifying the values of the eight
environment parameters (e.g., ground roughness, number of stair steps, pit gap width, etc). As for
the student agent, it needs to determine the torques applied on its joints and is constrained by partial
observability where it only knows its horizontal speed, vertical speed, angular speed, positions of
joints, etc. The student agent receives positive rewards as it walks towards the goal position and will
receive a large negative penalty if it falls down. The BipedalWalker domain is modified on top of
the BipedalWalkerHardcore environment from OpenAI Gym, introduced by [56] and improved by
[41, 37]. The student agent receives a 24-dimensional proprioceptive state corresponding to inputs
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Algorithm 2 PLR-CENIE
Input: Level buffer size N , Component range [Kmin, Kmax], FIFO window size W , random level
generator G
Initialize: Student policy πη , level buffer B, state-action buffer Γ, GMM parameters λΓ

1: Generate N initial levels by G to populate B
2: Collect πη’s trajectories on each level in B and fill up Γ
3: while not converged do
4: Sample replay decision, ϵ ∼ U [0, 1]
5: if ϵ ≥ 0.5 then
6: Generate a new level lθ by G
7: Collect trajectories τ on lθ, with stop-gradient η⊥
8: Compute novelty score for lθ using λΓ (Eq.3 and Eq.4)
9: Compute regret score for lθ (Eq.1 and Eq.4)

10: Update B with lθ if Preplay(lθ) is greater than that of any levels in B (Eq.5)
11: else
12: Sample a replay level lθ ∼ B according to Preplay

13: Collect trajectories τ on lθ
14: Update πη with rewards R(τ)
15: Compute novelty score for lθ using λΓ (Eq.3 and Eq.4)
16: Compute regret score for lθ (Eq.1 and Eq.4)
17: Update Preplay with novelty and regret scores
18: Update Γ with τ and resize to W
19: for k in range Kmin to Kmax do
20: Fit a GMMk with k components on Γ and compute its silhouette score
21: end for
22: Select GMM parameters with the highest silhouette score to replace λΓ

23: Collect trajectories τ on lθ, with stop-gradient η⊥
24: Update B with lθ if Preplay(lθ) is greater than that of any levels in B (Eq.5)
25: end if
26: end while

from its lidar sensors, angles, and contacts, which also form the state representation for our GMM.
The partial observability here means the agent does not have access to its positional coordinates.
The environment parameters and their corresponding ranges are shown in Table 4. Note, there will
be a singular value to specify Ground Roughness and the Number of Stair Steps, and a min and a
max value to define the PitGap Width, Stump Height, and Stair Height, and thus we will have eight
environment parameters in total.

Table 4: Environment parameters and their ranges in the BipedalWalker domain. To define PitGap,
StumpHeight, and StairHeight, we need a min and a max value. Hence, there are a total of eight
parameters.

Parameter Roughness Num of Stair Steps PitGap Width Stump Height Stair Height

Range [0,10] [1,9] [0,10] [0,5] [0,5]

D.5 CarRacing Domain

The CarRacing domain was introduced and customized by [27]. In CarRacing, the teacher creates
tracks by using Bézier curves by 12 control points within a fixed radius of the center of the playfield.
A track consists of a sequence of L polygons and L is fixed on the training tracks and varies on
different testing tracks. While driving on the tracks, the student receives a reward equal to 1000/L.
The student additionally receives a reward of −0.1 at each time step. The student observes an
RBG image of size (96x96x3), where (96x96) is the (height x width) of the observed image and
3 is the number of RGB channels. Consistent with previous UED literature, we employ a CNN
model to preprocess the raw image observations. The CNN extracts high-level features from the raw
images, reducing their dimensionality and capturing important spatial patterns that are crucial for
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Figure 17: Examples of testing levels in BipedalWalker domain. (a) BipedalWalker, (b) Hardcore, (c)
Stair, (d) PitGap, (e) Stump, and (f)Roughness.

understanding the environment’s dynamics. By feeding these feature representations into the GMM
model instead of the raw image input, we ensure that the density estimation focuses on meaningful
aspects of the state space rather than being overwhelmed by the complexity and noise of raw pixel
data.

The 20 testing F1 tracks by [27] have various track lengths and different maximum episode steps.
As such, different min-max normalization ranges are used for each track to produce the IQM and
Optimality Gap plots. We list the 20 test tracks and their corresponding min-max normalization
ranges in Table 5.

Table 5: Min-max ranges for different CarRacing F1 tracks that are used for IQM and Optimality
Gap plotting.

Track Episode Steps Min-Max Reward Range

Australia

1500 [-150, 850]
Austria
Belgium
Italy
Monaco

Brazil

2000 [-200, 800]

China
France
Germany
Hungary
Netherlands
Russia
Singapore
Spain
UK
USA

Bahrain
2500 [-250, 750]Malaysia

Portugal

Mexico 3000 [-300, 700]

E More Details On Baseline Algorithms

In this section, we provide more technical details on some of the baseline algorithms used in our
experiments, specifically Domain Randomization (DR), Minimax, PAIRED, PLR⊥, DIPLR, and
ACCEL. We summarize the key differences between the baseline algorithms in Table 6.

The Domain Randomization (DR) teacher uniformly randomizes each dimension in the environment
parameter space to generate various environments.
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Table 6: Overview of the fundamental UED algorithms and CENIE-augmented algorithms.

Algorithm Generation
Strategy

Generator
Obj

Curation
Obj Setting

POET Mutation Minimax MCC Population
PAIRED RL Minimax Regret None Single-agent
PLR⊥ Random None Minimax Regret Single-agent

DIPLR Random None Minimax Regret +
Diversity Single-agent

ACCEL Random +
Mutation Minimax Regret Minimax Regret Single-agent

PLR-CENIE Random None Minimax Regret +
Novelty Single-agent

ACCEL-CENIE Random +
Mutation

Minimax Regret +
Novelty

Minimax Regret +
Novelty Single-agent

The PAIRED teacher estimates regret by leverage two agents: an antagonist agent and a protagonist
agent (student). In practice, PAIRED derives regret by taking the antagonist’s (A) maximum perfor-
mance and the protagonist’s (P ) average performance over several trajectories, allowing for more
accurate approximations. Let Uπ(τ) denote the total reward obtained by a trajectory τ produced by
policy π on the level θ. Regret is measured in PAIRED via:

REGRETθ(πA, πP , θ) = max
τA

Uθ(τA)− EτP [Uθ(τP )]

where πA and πP are the antagonist’s policy and the protagonist’s policy, respectively. PAIRED
teacher constantly creates levels that are slightly beyond the ability range of the protagonist and
within the ability range of the antagonist such that the regret is maximized. The pseudocode of the
PAIRED algorithm is given in Algorithm 3.

Algorithm 3 PAIRED
Input:Randomly initialize Protagonist πP , Antagonist πA, and teacher Λ
Initialize: replay buffers B

1: while not converge do
2: Use teacher to generate environment parameters: θ ∼ Λ. Use θ to create environments, lθ
3: Collect Protagonist trajectory τP in lθ. Compute Protagonist’s average return: Eθ[V (πP )]
4: Collect Antagonist trajectory τA in lθ. Compute Antagonist’s average return: Eθ[V (πA)]
5: Compute regret: REGRET = Eθ[V (πA)] - Eθ[V (πP )]
6: Train Protagonist policy πP with RL update and reward = -REGRET
7: Train Antagonist policy πA with RL update and reward = REGRET
8: Train teacher policy with RL update and reward = REGRET
9: end while

However, the PAIRED algorithm faces several drawbacks [34]. Both the antagonist and protagonist
policies are constantly updating, making the problem nonstationary. Furthermore, PAIRED suffers
from a long-horizon credit assignment problem since the teacher must fully specify an environment
before receiving a sparse reward in the form of feedback from the antagonist and protagonist agents.
PLR seeks to circumvent this issue through the use of regret for prioritized selection of levels for
replay rather than active generation. PLR uses Positive Value Loss (PVL), an approximation of regret
based on Generalized Advantage Estimation (GAE; [48]):

PVLθ(π) =
1

T

T∑
t=0

max

(
T∑

k=t

(γλ)k−tδθk, 0

)
,

where γ, λ and T are the MDP discount factor, GAE discount factor and MDP horizon, respectively.
δθk is the TD-error at time step k for θ. However, the use of PVL may introduce bias due to the
bootstrapped value target. An alternate heuristic score function is Maximum Monte Carlo (MaxMC),
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which replaces the bootstrapped value target with the highest return observed on the level during
training. By using this maximal return, the regret estimates become independent of the agent’s current
policy:

MAXMCθ(π) =
1

T

T∑
t=0

(
Rθ

max − U(τπ)
)
,

where Rθ
max is the maximal return of π on θ. We primarily focus on PVL because the original

implementations of ACCEL and PLR⊥ in Jiang et al. [27], Parker-Holder et al. [37] found better
success with the PVL scoring function for the experiments domains, i.e. Minigrid, BipedalWalker,
and CarRacing, used in this paper. Future research could explore the potential of using the MaxMC
scoring function to see if it yields different outcomes when combining ACCEL and PLR⊥ with
CENIE. The Diversity Induced Prioritized Level Replay (DIPLR [33]) algorithm extends PLR⊥ by
prioritizing level replay based on both regret and diversity. Here, diversity is quantified using the
Wasserstein distance between the agent’s trajectories across levels in the replay buffer. The limitations
of DIPLR are highlighted in the main body (see Section 3). The pseudocode of DIPLR is provided in
Algorithm 4.

Algorithm 4 DIPLR
Input: Level buffer size N , level generator G
Initialize: student policy πη , level buffer L, trajectory buffer Γ

1: Generate N initial levels by G to populate L
2: Collect trajectories on each replay level in L and fill up Γ
3: while not converged do
4: Sample replay-decision, ϵ ∼ U [0, 1]
5: if ϵ ≥ 0.5 then
6: Generate a new level lθi by G
7: Collect trajectories τi on lθi , with stop-gradient η⊥
8: Compute the regret, staleness and distance for lθi
9: else

10: Sample a replay level lθj ∈ L according to Preplay

11: Collect trajectories τj on lθj and update πη with rewards R(τj)
12: Compute the regret, staleness and distance for lj
13: end if
14: Flush Γ and collect trajectories on all replay levels to fill up Γ
15: Update regret, staleness, and distance for lθi or lθj
16: Update L with new level lθi if its replay probability is greater than any levels in L
17: Update replay probability Preplay

18: end while

Finally, the state-of-the-art UED algorithm, ACCEL, improves PLR⊥ by replacing its random level
generation with an editor that mutates previously curated levels to gradually introduce complexity into
the curriculum. ACCEL makes the key assumption that regret varies smoothly with the environment
parameters θ, such that the regret of a level is close to the regret of others within a small edit distance.
If this is the case, then small edits to a single high-regret level should lead to the discovery of entire
batches of high-regret levels – which could be an otherwise challenging task in high-dimensional
design spaces. An intriguing area for future exploration is the interaction between ACCEL’s editing
mechanism and the novelty-driven level prioritization introduced through CENIE. Specifically, it is
worth investigating whether the editing mechanism does synergize with CENIE to produce levels that
simultaneously maximize both novelty and regret, further enhancing the diversity and effectiveness
of the generated curriculum.

F Hyperparameters

In this section, we provide the hyperparameters we used for both CENIE-augmented and baseline
algorithms in our experiments. We employ the same set of CENIE parameters for both ACCEL-
CENIE and PLR-CENIE. We provide all the parameters for our implementations in Table 7.
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Table 7: Hyperparameters used for training PLR-CENIE and ACCEL-CENIE in Minigrid, Bipedal-
Walker and CarRacing domains. Note that the we inherit the original PLR⊥ and ACCEL hyperpa-
rameters and only adjust the CENIE hyperparameters.

Parameter Minigrid BipedalWalker CarRacing

PPO
γ 0.995 0.99 0.99
λGAE 0.95 0.9 0.9
PPO rollout length 256 2048 125
PPO epochs 5 5 8
PPO minibatches per epoch 1 32 4
PPO clip range 0.2 0.2 0.2
PPO number of workers 32 16 16
Adam learning rate 1e-4 3e-4 3e-4
Adam ϵ 1e-5 1e-5 1e-5
PPO max gradient norm 0.5 0.5 0.5
PPO value clipping yes no no
return normalization no yes yes
value loss coefficient 0.5 0.5 0.5
student entropy coefficient 0.0 1e-3 0.0

PLR⊥

Scoring function positive value loss positive value loss positive value loss
Replay rate, p 0.5 0.5 0.5
Buffer size, K 4000 1000 8000

ACCEL
Edit rate, q 1.0 1.0 N/A
Replay rate, p 0.8 0.9 N/A
Buffer size, K 4000 1000 N/A
Scoring function positive value loss positive value loss N/A
Edit method random random N/A
Number of edits 5 3 N/A
Levels edited batch batch N/A
Prioritization, β 0.3 0.1 N/A
Staleness coefficient, ρ 0.5 0.5 N/A

CENIE
Initialization strategy k-means++ k-means++ k-means++
Convergence threshold, ϵ 0.001 0.001 0.001
GMM components [6,15] [6,15] [6,15]
Covariance regularization 1e-2 1e-6 1e-1
Window size (no. of levels) 32 32 32
Novelty coefficient 0.5 0.5 0.5
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: We’ve described our claims and contributions clearly in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: We included the limitations and future directions of our paper under Section C
of the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA] .
Justification: In this paper, we prove our claims with extensive empirical results, instead of
theoretical proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: We provided all information, i.e. hyperparameters, libraries, and algorithms,
required to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No] .

Justification: At the time of submitting the camera-ready version of this paper, our code-
base is not yet prepared for open-sourcing. However, we have provided comprehensive
implementation details to ensure replicability.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: We provided full implementations and hyper-parameters in the code submission
and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: Our results are obtained across multiple independent runs, and we plotted the
results with variabce.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: We provided the hardware details (GPUs and CPUs) in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: We’ve read the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: The main application of our paper is to train generally capable RL agents.
Societal impacts are limited and thus we omitted this discussion in our paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: Our paper does not have such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: We’ve credited and cited the references and codebases properly in the paper.
The resources are all open-sourced.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: We don’t release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: Our research does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: Our paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

34

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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