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A APPENDIX: IMPLEMENTATION DETAILS

A.1 ADVERSARIAL PATCH CREATION PROCESS

Patch Attack Settings: We generate adversarial patches following the threat model of |Brown et al.
(2017), where a visible square patch is inserted into an input image to induce misclassification. In
our implementation, the patch occupies approximately 20% of the input image area by default (e.g.,
45%45 pixels on a 224x224 image). The patch is initialized with random values and is applied at
random locations within each image in a batch. For each image, we uniformly sample a top-left
coordinate that ensures the patch remains fully within frame. This placement strategy avoids trivial
occlusions of the main object, allowing humans to still recognize the object, while the model is
misled by the adversarial signal.

Attack Objective: We primarily generate targeted adversarial patches. The goal is to force the
classifier to consistently predict a chosen target class, regardless of the true label of the input. For a
model f with output logits f(x), the loss function for targeted attacks is defined as the cross-entropy
between f(x) and a fixed target label ¢: Ligrget () = CE(f(x),t).

Optimization Method: We adopt a gradient-based optimization procedure, directly updating the
patch pixels as learnable parameters. The patch tensor P € R3*"*% is initialized randomly and
optimized using the Adam optimizer with a learning rate of 5 x 10~2. At each training step:

* A batch of images x; is sampled from the dataset.
* The patch is applied at a random location within each image using a placement function,

. patched
producing x; .

The patched images are forwarded through the classifier to obtain logits f(2?"*).

e The loss L is computed according to the attack mode i.e. targeted.

 Gradients are backpropagated only to the patch tensor P, and the Adam optimizer updates
the patch values.

This process is repeated for 300 iterations, and the patch parameters are clipped to valid image
ranges after each step. Unlike L,-bounded perturbations, our patch is unconstrained in pixel norm
but restricted to its fixed spatial mask.

A.2 EXPERIMENTAL DESIGN AND IMPLEMENTATION DETAILS

A.2.1 BASE CLASSIFIER MODELS

For all experiments, we selected two widely used convolutional neural network architectures as the
victim classifiers: ResNet-50 and EfficientNet-B0O. Both models were pretrained on ImageNet and
fine-tuned on the datasets. ResNet-50 is a deep residual network with skip connections, offering
robust feature hierarchies, while EfficientNet-BO is a lightweight architecture designed via neural
architecture search with compound scaling, providing strong accuracy-efficiency trade-offs. Using
both allowed us to test whether our detector generalizes across architectures with different design
philosophies.

A.2.2 DATASETS AND HUMAN SALIENCY GROUND-TRUTH

We evaluated our detector on three benchmark datasets that provide human visual saliency data:
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* CAT2000 Borji & Itti| (2015): Contains 2,000 natural images spanning 20 categories.
Ground-truth saliency maps are derived from eye-tracking experiments, making this a reli-
able measure of human visual attention. Because CAT2000 includes categorical groupings,
we leveraged these to contextualize model predictions.

* FIGRIM |Bylinskii et al.| (2015): Contains images collected for memory and gaze studies,
with ground-truth saliency maps also obtained from eye-tracking.

e SALICON Jiang et al.| (2015): A large-scale dataset with 10,000 training and 5,000 vali-
dation images, originally derived from MS-COCO. Instead of eye-tracking, it uses mouse-
tracking approximations of human fixations, which, while less precise, correlate strongly
with real gaze behavior. Unlike CAT2000, SALICON does not include object category la-
bels. To enable classifier-based evaluation, we assigned categories by running a pretrained
ImageNet classifier on each image and selecting the top-1 predicted label if its confidence
exceeded a threshold. This ensured consistency across our pipeline, though we acknowl-
edge this introduces some label noise.

Together, CAT2000 and FIGRIM provide high-validity gaze-based ground truth, while SALICON
offers scale and category labels with slightly noisier attention maps.

A.2.3 SALIENCY MODEL TRAINING

Since experiments required predicted saliency maps, we trained human saliency prediction models
on each dataset. For training and validation, we followed an 80/20 split. We ensured that the
resulting saliency models achieved an AUC score greater than 0.75 on their respective test splits,
validating that predicted maps aligned sufficiently with human fixations. This quality check was
necessary to ensure downstream reliability in saliency alignment-based detection.

A.2.4 CLASSIFIER TRAINING

To enable classifier-based evaluation, we did two things:

* Category label assignment: Because SALICON lacks object class labels, we used a pre-
trained ImageNet classifier to assign a pseudo-label to each image. Specifically, we took
the classifier’s top-1 predicted class for each image, conditioned on the prediction confi-
dence exceeding a threshold. These pseudo-labels allowed us to align SALICON images
with ImageNet categories and evaluate patch attacks in a comparable manner to CAT2000
and FIGRIM.

* Train/test split: We created a stratified 80/20 split of the FIGRIM dataset across its scene
categories, ensuring that both training and test subsets preserved the dataset’s distribution.

This setup ensured that all three datasets were usable in a unified experimental framework, while
acknowledging FIGRIM’s limitations (pseudo-labels rather than human-provided categories).

A.2.5 DETECTOR TRAINING PROTOCOL

For each dataset, we constructed paired datasets of benign and patched images. For each dataset, we
sampled a pool of images and generated adversarial patch variants. In each case, we maintained a
50/50 class balance (clean vs attacked) to avoid bias.

A.3 PROBE MODULES AND FEATURE EXTRACTION

A.3.1 NON-INTRUSIVE PROBES

We attach lightweight probes to the base classifier using forward hooks on its convolutional blocks.
These probes record intermediate activations and gradients but do not alter the forward inference of
the model. Thus, the classifier remains frozen and unaffected, while the probes provide analytical
signals for downstream detection.
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A.3.2 GRADIENT STATISTICS

For each input image, we compute the gradient of the model’s predicted class logit with respect to
the input pixels. Specifically, let yprea = arg maxc fe(Zciean) be the model’s top-1 prediction on
the clean image. We then calculate g = V,.f,, . (x) both for the clean and patched versions of
the image. This ensures that gradients are always referenced to the classifier’s original (intended)
prediction. From g, we extract four statistics — mean, standard deviation, maximum, and minimum
gradient values — as scalar features. These statistics capture how gradients become sharper and
more localized under adversarial patches, in contrast to the smoother, more distributed gradients of
clean images.

A.3.3 LAYER-WISE SENSITIVITY

We measure the robustness of the classifier to perturbations at different layers using noise injection
hooks. For each convolutional block ¢, we store the clean activation norms, then inject Gaussian
noise into that layer’s activations and compute the effect on the output confidence distribution: V, =

[softmax(f(x)) — softmazx(f(2per:(£)))l|2

where x}(,ﬁzt denotes the forward pass with perturbed activations at layer £. The resulting sensitivity

vector (Ay,As, ..., AL) is scaled by the original activation norms, providing a set of sensitivity
features. Intuitively, adversarial patches induce spiky sensitivities at specific layers (often high-level
layers dominated by patch patterns), whereas clean images yield more stable, diffuse sensitivities.

Saliency Alignment (PatchSAGE): We compute the alignment between model saliency and human
saliency maps.

* For the model, we use Grad-CAM on the final convolutional layer with respect to Ypreq.

* For the human reference, we use ground-truth or predicted saliency maps (e.g., from trained
saliency models).

Both maps are normalized to probability distributions. We then compute:

 Pearson correlation (p): Measures linear correspondence between maps.

* Intersection-over-Union (IoU): Obtained by thresholding the top 20% salient pixels in each
map and computing overlap.

To make the alignment discriminative, we calculate the IoU difference 1 — IoU as a feature (higher
when model focus diverges from human focus). In patched images, Grad-CAM highlights the ad-
versarial patch while human saliency remains on the true object, resulting in near-zero IoU and weak
correlation. Clean images show moderate positive correlation and partial overlap.

Feature Fusion and Detector Training: We construct a feature vector for each image by concatenat-
ing:

* Layer sensitivities (per-block deltas x activation norms)

¢ Gradient statistics (4 scalars)

* Saliency alignment (IoU difference)

These are combined using a weighted scheme (e.g., 0.85x sensitivity features + 0.1x gradient
features + 0.05x IoU difference). The resulting feature vectors are used to train per-class binary
Random Forest classifiers (10 estimators, scikit-learn default hyperparameters). Each classifier dis-
tinguishes clean from patched samples within its class. Before training, features are standardized
using z-score normalization.

We evaluate detection using precision, recall, F1-score, and AUC, reporting both per-class and aver-
age performance across categories. To ensure reproducibility, we save trained classifiers along with
their feature scalers as serialized .pkl objects.

A.4 REPRODUCIBILITY ADDENDUM

Environment:
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Python 3.10; PyTorch 2.x; torchvision 0.15+; scikit-learn 1.3+; OpenCV-python 4.x; pytorch-grad-
cam 1.4+. Experiments run on a single NVIDIA GPU (e.g., V100/A100/RTX). We fix torch, numpy,
and dataloader seeds to 42 and enable deterministic flags where applicable.

Datasets & splits: CAT2000 (eye tracking): we use the official train/test split (no cross-split mix-
ing). FIGRIM (eye tracking): lacks class labels and official splits. We pseudo-label each image with
the top-1 prediction of a pretrained ImageNet classifier (confidence ;= 0.5) and perform a stratified
80720 split by pseudo-class. SALICON (mouse tracking): class labels are taken from the corre-
sponding MS-COCO annotations (image—category mapping). We use the official train/val split.

All images are resized to 224x224 and normalized with ImageNet mean/std. We release the exact
file lists (train/val/test) used in our runs.

Base classifiers: Backbones: ResNet-50 and EfficientNet-BO (ImageNet-pretrained). For each
dataset we fine-tune the last classifier head (and, when noted in configs, the last conv stage) with
SGD (momentum 0.9, weight decay le-4) or Adam; batch size 64; 30 epochs; cosine LR schedule
(base LR 1e-3 for the head, 1e-4 when unfreezing one conv stage). We provide the exact config used
per (dataset, backbone).

Human saliency (ground truth & prediction): Ground truth: CAT2000/FIGRIM use eye-tracking
maps; SALICON uses mouse-tracking maps. Predicted saliency (for alignment features):
DeepLabV3-ResNet50 with a 1-channel head (BCEWithLogits). Train/val split 80/20 within each
dataset; input 224x224; Adam (LR le-4), batch 16, 20 epochs, light aug (flip, color jitter). We
require AUC ;= 0.75 on the held-out split before using a checkpoint for detection features. Check-
points are released.

Adversarial patches: Form: visible square patch applied at a random valid location per image. Size:
side S = floor(0.20 x 224) = 45 px. Objective: targeted CE toward a fixed ImageNet class; universal
patch optimized over batches. Optimizer: Adam, LR Se-2, 300 steps; values clipped to normalized
bounds after each step. We ensure no image used to optimize a universal patch appears in the
detector test set.

Feature extraction (probes): The code can be found here: https://anonymous.4open.
science/r/patch_sage-D444/train_figrim res50.1ipynb Gradients: for the clean
image’s top-1 class, compute input-gradient map and store mean, std, max, min. Layer sensitivity:
register forward hooks on conv blocks; for each block, add Gaussian noise (¢=0.1) to the activa-
tion and record the difference. Multiply the difference by the clean activation norm of that block.
Saliency alignment (PatchSAGE): Grad-CAM on the final conv layer (predicted class) vs. human
saliency; both normalized to probability maps. Features: IoU of top-20% pixels (we use 1-IoU).

Detector & evaluation For each (dataset, backbone) and (optionally) per pseudo-class, we z-score
features and train a RandomForest (number of estimators is 10, random state is 42). Class balance is
1:1 (clean vs. patched). We report precision/recall/F1/AUC on held-out data (default detector split
70/30, random state=42). We release scalers, trained RFs, and evaluation logs.

Baselines We provide code implementations of ProbeNet, SentiNet, and X-Detect (Grad-CAM layer,
segmentation/occlusion parameters) to make our Table-1 rows exactly reproducible: https://
anonymous.4open.science/r/patch_sage-D444/related_figrim_eff.ipynb

A.5 RELEVANT WORKS - NOT COMPARED AGAINST

On Detecting Adversarial Perturbations | Metzen et al.|(2017) introduced an early detection approach
wherein a small “detector” subnetwork is attached to a hidden layer of the classifier to distinguish
normal inputs from adversarially perturbed ones. We did not include a separate comparison to this
method because our evaluation already contains ProbeNet|Rounds et al.| (2020), a baseline that is a
strict extension of Metzen’s idea. ProbeNet generalizes the single-layer detector by probing multiple
internal features, effectively subsuming the original approach. Including Metzen’s detector would
thus be redundant, as ProbeNet’s results represent the stronger version of that strategy.

Minority Reports Defense: The Minority Reports method McCoyd et al.|(2020) detects patch attacks
by systematically occluding different regions of the image and observing the classifier’s predictions.
If some occlusion placements fully cover an adversarial patch (revealed by a cluster of “correct” pre-
dictions that disagree with the majority), the system flags the input as attacked. While conceptually
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powerful — it can even provide certified robustness for bounded patch sizes — we found it impractical
to deploy in our setting. Achieving high detection fidelity with Minority Reports requires scanning
a large patch search space at fine stride, leading to enormous computational overhead. In fact, the
original authors report an inference cost roughly 900x higher than a normal forward pass on CIFAR-
10 when using a full occlusion grid. This makes real-time or large-scale evaluation infeasible, so we
exclude Minority Reports from direct comparison.

A.5.1 EXPLANATION-DRIVEN DETECTORS

Several prior works approach adversarial detection through shifts in model explanations. [Schut &
Galintroduce a learned saliency model trained separately from the classifier, then detect attacks by
checking whether the explainer’s attribution disagrees with the classifier’s evidence. On MNIST and
CIFAR-10 this method surpasses raw gradient saliency as a detector. However, it requires training an
additional explainer and is designed mainly for small-norm perturbations rather than visible patches,
making it mismatched with our test-time, retraining-free, patch-focused setting.

Wang & Gong|(2022) (ML-SAFE) extract multi-layer saliency maps (e.g., Grad-CAM, guided back-
propagation at multiple depths) and aggregate them into features for a detector. They show that
adversarial and clean inputs diverge in deeper attributions. While effective for general adversar-
ial examples, ML-SAFE requires computing numerous explanation maps per image, introducing
significant overhead. By contrast, our approach fuses lightweight gradient/sensitivity cues with hu-
man-model alignment and directly targets patch attacks. Given this difference in threat model and
computational cost, we do not treat ML-SAFE as a direct baseline.

Sim & Song|(2025))) propose combining Grad-CAM with clustering metrics (e.g., silhouette scores)
to detect unusually concentrated attention as adversarial. Their study centers on CIFAR-10 clas-
sifiers and ensembles, and detection relies on unsupervised clustering over attribution maps. Our
setting diverges in several ways: ImageNet-scale backbones, human—model saliency alignment, and
patch-focused threats. Moreover, reproducing their clustering/ensemble pipeline would add sub-
stantial runtime overhead without aligning with our emphasis on single-pass features for large-scale
evaluation. We consider this line complementary rather than a direct comparison.

In summary, these explanation-based detectors are conceptually aligned with our use of saliency
but generally (i) focus on small-norm perturbations instead of visible patches, (ii) require extra
models or multiple saliency maps per input, or (iii) operate in small-dataset regimes. Our work
is distinguished by its emphasis on patch attacks, no retraining, human—-model alignment, and low
per-image overhead, which is why we do not position these methods as direct competitors.

A.6 ABLATION STUDIES AND FUTURE WORK

Completed Ablations We carried out ablation experiments focusing on the role of sensitivity and
gradient features, as well as their combination with saliency alignment:

* Sensitivity Only: Using only the layer perturbation sensitivity vector, we observed moder-
ate detection performance. Patched images often produced anomalous spikes in sensitivity
at higher layers, but certain clean images near decision boundaries were sometimes mis-
classified.

* Sensitivity + Gradient: Combining sensitivity with gradient statistics yielded stronger per-
formance than either alone. On CAT2000, this setup reached F1 scores around 90%,
confirming that the two cues are complementary. However, without saliency alignment,
some subtle or adaptive patches remained undetected.

* Sensitivity + Gradient + Saliency (Full Model): The complete feature set provided the
best results, with F1 scores near 98-99% on both CAT2000 and SALICON. Each feature
type addressed different aspects of adversarial behavior, and their fusion proved essential
for robustness. Excluding any one feature led to noticeable drops in both overall F1 and
performance at low false-positive rates, underscoring the critical role of saliency alignment
in particular.

Future Ablations Several additional ablation configurations remain to be explored, which we identify
as promising future work:
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* Gradients Only: While patched images often produce sharp gradient spikes, evaluating
this cue in isolation could quantify how much detection signal lies purely in first-order
sensitivity.

* Saliency Alignment Only: Since human—model saliency misalignment is highly discrimi-
native, testing it as a standalone signal would provide insights into its limits (e.g., in cases
where human and model focus diverge naturally).

* Gradient + Saliency: This combination may capture both internal perturbation footprints
and external focus misalignment, potentially rivaling the full model in power.

* Sensitivity + Saliency: Pairing internal robustness cues with saliency alignment could pro-
vide a strong alternative to gradient-based signals, especially against adaptive attacks.

We leave these ablations for future extensions, as they would further clarify the complementary roles
of each feature type.

A.7 LIMITATIONS AND FUTURE WORK
A.7.1 DEPENDENCE ON HUMAN SALIENCY DATA

Our approach relies on human saliency maps to measure alignment with model explanations. While
this signal proved powerful, it requires either ground-truth gaze data or high-quality saliency predic-
tions. Collecting eye-tracking data at scale is impractical, and mouse-based approximations such as
SALICON are noisier. We mitigated this by training saliency prediction models on each dataset, en-
suring AUC ¢ 0.75, but prediction errors remain a source of variability. Future work should explore
incorporating stronger saliency models into the detection pipeline, evaluating trade-offs between ac-
curacy and cost, and investigating which aspects of human attention (e.g., foveal vs. peripheral) are
most critical. Domain-specific or user-specific gaze priors may also help tailor detectors to special-
ized applications.

A.7.2 ABLATION COVERAGE

Our ablation analysis focused on sensitivity-only, sensitivity + gradient, and the full model (sensitiv-
ity + gradient + saliency). These confirmed that each feature type contributes unique information and
that their fusion yields the strongest results. However, we did not test gradients-only, saliency-only,
or the remaining pairwise combinations (e.g., gradient + saliency, sensitivity + saliency). Future
work should explore these systematically to better quantify the complementary roles of each feature
type, especially in adaptive attack settings.

A.7.3 GENERALITY TO OTHER ATTACKS

The detector is designed for visible, localized adversarial patches where model attention shifts away
from human focus. Other attack types—such as blended camouflage patches, distributed noise, or
temporal attacks in video—may not trigger the same alignment divergences. While gradient and
sensitivity features may still capture anomalies, our framework has not yet been extended to such
cases. Future work should adapt the approach to cover a broader range of threats, potentially by
adding global perturbation measures, temporal consistency checks, or multi-modal alignment cues.

A.7.4 TRANSFERABILITY ACROSS MODELS

While we evaluated our detector on two backbone architectures (ResNet-50 and EfficientNet-BO),
we did not explicitly study transferability across architectures. In practice, an adversary may attack
a surrogate model and deploy the patch against another unseen target model. Future work should
therefore assess whether detectors trained on one architecture generalize to different ones. This
experiment would clarify the robustness of probe-based detection under model mismatch and help
in designing universal detectors.

A.7.5 PHYSICAL-WORLD EVALUATION

Our experiments were conducted in the digital setting. However, adversarial patches can also be
printed and placed into physical scenes. These introduce new challenges, including lighting vari-



Under review as a conference paper at ICLR 2026

ation, viewpoint changes, and camera noise. Future work should evaluate the detector in such
physical-world scenarios, testing whether alignment features remain discriminative when patches
are subject to real-world transformations. This would strengthen the case for deployment in safety-
critical domains like surveillance or autonomous driving.

A.7.6 POST-DETECTION MITIGATION

Currently, the detector outputs a binary decision (clean vs. patched) without suggesting corrective
actions. In practice, mitigation may be desirable: e.g., removing or inpainting the suspected patch
region before reclassification. Although we do not explicitly localize patches, Grad-CAM often
highlights the patch region when an attack is detected. Leveraging this for patch removal or restora-
tion represents a promising detect-and-mitigate pipeline. Future experiments should quantify how
well such corrections restore classifier accuracy without harming clean images.

A.7.7 INTERPRETABILITY AND TRUST

An appealing feature of our approach is interpretability: the detector relies on saliency maps, gradi-
ent signals, and sensitivity measures that can be visualized and explained. Future work could deepen
this aspect by applying tools like LIME, SHAP, or ROAR to the detector’s features, showing which
cues drove its decision. This would help build user trust (e.g., highlighting that an image was flagged
because model focus diverged from human focus in an unusual region).

A.7.8 EFFICIENCY AND DEPLOYMENT

Our pipeline requires a backward pass to compute input gradients, plus a small number of additional
forward passes for layer perturbations; the overall cost scales with the number of probed layers. Fu-
ture work should profile runtime costs and explore optimizations such as distilling the detector into
a lightweight neural model, reducing redundant probe features, or applying the detector selectively
(e.g., only when quick heuristics flag an input as suspicious). Balancing robustness with efficiency
will be essential for deployment in latency-sensitive domains like autonomous driving.

A.7.9 BROADER APPLICABILITY

Finally, the principle of human—-model alignment extends beyond adversarial patch detection. We
anticipate its relevance in settings such as detecting data poisoning or backdoor triggers, where
misalignment between human and model focus may reveal hidden manipulations. Extending this
framework to multi-modal models (e.g., image—text systems) may also help identify incoherent or
adversarially crafted inputs.
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