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This supplementary material provides additional details and extended experimental analyses to com-
plement and further support the results presented in the main paper. Specifically, it includes:

» Extended summary of polyhedral groups: their key geometric features, and additional rep-
resentative samples.

» Extended qualitative and quantitative evaluations of monocular 3D reconstruction methods
across various polyhedral categories.

* Detailed statistics and descriptions of dataset splits for the 3D symmetry detection task,
along with synthetic-to-wild generalization gaps across featurizers and symmetry types.

* Additional analyses and results from the Mental Rotation Test (MRT), covering both trivial
and challenging setups, along with example test pairs from the hard split.

» Expanded zero-shot polyhedron classification results across synthetic and real-world im-
ages, with additional qualitative examples highlighting common reasoning failures.

» Extended probing analysis comparing linear versus non-linear (MLP) heads for MRT and
Symmetry Detection, including results for three additional multi-view pretrained models
(VGGT, DUSt3R, MASt3R).

* Ablation studies on zero-shot classification, evaluating 3D-native VLMs (LLaVA-3D,
ShapeLLM, PointLLM) and the impact of Multi-View inputs and Chain-of-Thought
prompting strategies.

* Additional qualitative samples from the “Wild” dataset partition, illustrating the diversity
of indoor and outdoor environmental conditions.

1 EXPANDED CHARACTERIZATION OF THE POLYHEDRAL DOMAIN

To provide a more comprehensive understanding of the geometric domain covered by our GIQ
dataset, we present in Table [5] an extended summary of the polyhedral groups used in our study.
This table details families of polyhedra, from the well-known Platonic and Archimedean solids
to more complex groups like the Johnson solids and non-convex stellations. For each group, we
outline the defining geometric properties, specify the number of solids within that category, and
provide additional representative visual examples. Beyond this taxonomy, polyhedra exhibit many
further attributes—e.g., chirality, face-type distributions, stellation depth, or Rupert property—that
can be leveraged to design additional benchmarks, enabling targeted evaluation of geometric rea-
soning across tasks such as duality reasoning, convexity discrimination, component decomposition,
or face-type counting.

2 EXTENDED MONOCULAR 3D RECONSTRUCTION ANALYSES

This section provides additional quantitative and qualitative evaluations of state-of-the-art monocu-
lar 3D reconstruction methods, specifically Shap-E (Jun & Nichol, 2023)), Stable Fast 3D (Boss et al.,
2024])), and OpenLRM (He & Wangl [2023)), across diverse polyhedral categories. We qualitatively
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evaluate reconstructions using standard geometric similarity metrics: F-score (Tatarchenko et al.
2019), Chamfer Distance (Borgefors| [1986), and Hausdorff Distance (Aspert et al., [2002), which
jointly capture point-level accuracy and surface coverage. Results showed in Table [9 consistently
reveals low F-scores (below 0.6) across all tested methods and categories, underscoring the limita-
tions of current approaches in capturing the complex geometric intricacies inherent in polyhedral
structures. Additionally, qualitative assessments for selected shapes from Archimedean, compound,
and stellation groups (Table [8)) highlight clear deficiencies in preserving critical geometric details,
symmetry properties, and overall structural coherence, indicating significant scope for methodolog-
ical advancements.

3 DATASET SPLITS AND COMPOSITION FOR 3D SYMMETRY DETECTION

We provide a detailed description of the dataset structure and splits used for the 3D symmetry de-
tection experiments. To ensure robust evaluation, we employed a 5-fold cross-validation strategy.
In each fold, the test split exclusively contains views from 26 unique polyhedral shapes not present
in the training set, enabling rigorous evaluation of model generalization to unseen geometries. Ta-
ble[6] summarizes the distribution of positive and negative examples and their ratios for central point
reflection, 5-fold rotation, and 4-fold rotation symmetries for a representative fold (Fold 1).

Unlike the main paper, which reports only Wild performance, Table [/|reports balanced accuracies
for linear probes trained on synthetic images and evaluated on both synthetic and Wild inputs for
central point reflection, 5-fold rotation, and 4-fold rotation. As expected given the training domain,
accuracies are higher on synthetic inputs, while the synthetic-to-Wild generalization gap depends
on both featurizer and symmetry: for example, CLIP shows a minimal gap on 5-fold (0.80 —0.78),
DINO suffers large drops—especially on 4-fold (0.87 — 0.61) and also on 5-fold (0.88 — 0.71)
while DINOv2 generalizes strongly on 4-fold (0.96 — 0.93) and ties for best Wild 5-fold (0.85).

4 EMBEDDING STRATEGIES AND ADDITIONAL MENTAL ROTATION RESULTS

We provide additional analyses for the Mental Rotation Test (MRT), reporting results for both sim-
plified (trivial) and challenging (hard) experimental setups, with representative examples of the hard
split shown in Table[I2] Under the simplified scenario (Table [I0), synthetic image pairs with an
80%-20% train-test split are used. Most models achieve high accuracy (93%—98%) when employing
the absolute difference embedding method. In contrast, concatenation and raw subtraction embed-
ding methods, which include randomized embedding ordering during training, yield near-random
performance (50% accuracy). For the challenging scenario (Table [T), additional analyses using
raw subtraction and concatenation embeddings further confirm their consistently inferior perfor-
mance compared to the absolute difference embeddings.

5 ZERO-SHOT POLYHEDRON CLASSIFICATION: SYNTHETIC VS.
REAL-WORLD

Finally, we provide expanded analyses for the zero-shot polyhedron classification experiments pre-
sented in the main paper. Table [13] compares classification performance of four leading vision-
language models—ChatGPT 03, ChatGPT o4-mini-high, Gemini 2.5 Pro, and Claude 3.7 Son-
net—using both synthetic and real-world (“wild”) images. Results indicate only marginal per-
formance differences between synthetic and real-world inputs, confirming consistent capabilities
across these domains. However, polyhedral categories such as Catalan solids, Johnson solids, com-
pound structures, stellations and uniform non-convex polyhedra remain particularly challenging,
underscoring persistent limitations in geometric reasoning within current frontier vision-language
models.

To further illustrate these challenges, Figure [T] presents additional qualitative examples of the mod-
els’ reasoning processes. These cases reveal a recurring failure mode: models correctly detect local
cues (e.g., pentagonal faces and color/pattern) but miscompose them into the wrong global struc-
ture—hallucinating absent elements (hexagons), overlooking nonconvexity (e.g., labeling a noncon-
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vex solid as Archimedean, though all Archimedean solids are convex), misreporting face types, and
at times rationalizing the error by blaming viewpoint.

6 EXTENDED PROBING ANALYSIS: LINEAR VS. NON-LINEAR

In this section, we provide the complete results comparing linear versus non-linear (MLP) prob-
ing performance for both the Mental Rotation Test (MRT) and 3D Symmetry Detection tasks, as
summarized in Table[T] Additionally, we include results for the newly added multi-view pretrained
models: VGGT Wang et al.| (2025), DUSt3R |Wang et al.| (2024), and MASt3R |Leroy et al.| (2024).
Regarding the probing architectures, the linear probe consists of a single affine layer mapping the in-
put embedding dimension D to the target class dimension C. The non-linear probe is implemented
as a Multi-Layer Perceptron (MLP) with one hidden layer. Specifically, it maps the input D to a
hidden dimension H = min(1024, D), applies a ReLU activation function, and projects the result
to the output dimension C'. To ensure adequate convergence for the increased parameter count, non-
linear probes were trained for twice the number of epochs compared to the linear baselines. Our
results indicate that while non-linear probes yield significant gains for the Mental Rotation Test (en-
abling SigLIP to reach 69% accuracy), they offer negligible improvements for Symmetry Detection,
suggesting that symmetry cues are largely linearly separable. Furthermore, despite their native 3D
training, multi-view models do not consistently outperform strong 2D baselines (e.g., DINOv2) on
these discriminative geometric tasks.

7 ABLATION STUDIES: MULTI-VIEW, COT, AND 3D-NATIVE MODELS

Here we provide detailed quantitative results for our additional ablation studies, including the eval-
uation of 3D-native VLMs (LLaVA-3D (2024), ShapeLLM (2024), PointLLM
[Guo et al|(2023)) and the comparison of Single-View (SV) vs. Multi-View (MV) inputs with Chain-
of-Thought (CoT) prompting.

For the prompting experiments, we defined the specific queries as follows:
Baseline Prompt: “What is the name of this polyhedron?”

Chain-of-Thought (CoT) Prompt: “Let’s identify this polyhedron by thinking step-by-step: Convex-
ity: First, analyze its overall shape. Is this a convex polyhedron or is it non-convex? Symmetry and
Rotation: Second, describe its symmetries. What rotational symmetries does it have? Does it have
planes of reflectional symmetry? Faces and Vertices: Third, describe its components. What is the
shape of each face, and how many faces meet at each vertex? Conclusion: Based on this analysis of
its convexity, symmetry, and components, what is the precise name of this polyhedron?”

As detailed in Table 2] 3D-native models did not exhibit a significant advantage over 2D-pretrained
VLMs. For instance, even with access to ground truth point clouds, PointLLM achieved only 40%
accuracy on Platonic solids and failed to classify most complex categories (e.g., 0% on Stellations
and Compounds). Furthermore, Table [3]indicates that Chain-of-Thought (CoT) prompting yielded
negligible gains and often degraded performance due to hallucinations. Multi-view inputs provided
a minor boost for low-symmetry shapes (e.g., Johnson solids), resolving projection ambiguities, but
failed to improve recognition for high-symmetry classes where the failure stems from reasoning
rather than viewpoint selection.

8 ADDITIONAL REAL-WORLD QUALITATIVE SAMPLES

To further illustrate the diversity and complexity of the real-world data distribution in GIQ, we pro-
vide expanded qualitative samples in Table [d] These images highlight the significant domain shift
introduced by the “Wild” split, encompassing diverse indoor environments with artificial lighting
(Rows 1-4) as well as outdoor settings featuring natural illumination, shadows, and varied back-
grounds (Rows 5-9).
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Featurizer Syn-Wild MRT | 4-fold rot. | 5-fold rot. | CPF
Linear probe
DINOv2 0.43 0.93 0.84 0.80
SigLIP 0.54 0.81 0.87 0.64
ConvNeXt 0.60 0.80 0.86 0.64
CLIP 0.39 0.74 0.78 0.70
DreamSim 0.49 0.74 0.78 0.65
DeiT III 0.41 0.69 0.74 0.71
DINO 0.54 0.71 0.81 0.56
SAM 0.42 0.66 0.75 0.58
MASt3R 0.48 0.64 0.70 0.58
DUSt3R 0.53 0.63 0.67 0.49
MAE 0.42 0.62 0.63 0.53
VGGT 0.47 0.51 0.56 0.49
Mean (linear) 0.478 0.69 0.75 0.62
Nonlinear probe
DINOv2 0.67 0.91 0.81 0.75
SigLIP 0.69 0.78 0.84 0.73
ConvNeXt 0.59 0.69 0.80 0.71
CLIP 0.53 0.69 0.77 0.68
DreamSim 0.60 0.62 0.60 0.68
DeiT III 0.50 0.71 0.72 0.68
DINO 0.63 0.67 0.70 0.66
SAM 0.52 0.62 0.71 0.59
MASt3R 0.57 0.56 0.56 0.52
DUSt3R 0.58 0.55 0.55 0.54
MAE 0.61 0.66 0.61 0.60
VGGT 0.52 0.54 0.53 0.50
Mean (nonlinear) 0.56 0.67 0.70 0.64

Table 1: Extended Probing Analysis (Linear vs. Nonlinear) with multi-view pretrained models. We
compare performance across standard 2D foundation models and newly added multi-view pretrained
models (VGGT, DUSt3R, MASt3R). Featurizers are sorted by the combined rank of accuracies.
Bold indicates the best result per column/section; underline indicates the second best.
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Method ‘ Plat. ‘ Arch. ‘ Cat. ‘ John. ‘ KP ‘ Stel. ‘ Comp. ‘ NonConv.
Simple prompt
LLaVA-3D (Syn) 20% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% 0.0%
LLaVA-3D (Wild) 20% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% 0.0%
ShapeLLM 40% | 7.6% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% 0.0%
PointLLM 40% | 7.6% | 7.6% | 1.0% | 25% | 0.0% | 0.0% 3.8%
CoT prompt

LLaVA-3D (Syn) 0% 0.0% | 0.0% | 1.0% | 0.0% | 0.0% | 0.0% 0.0%
LLaVA-3D (Wild) 20% | 7.6% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% 0.0%
ShapeLLM 20% | 7.6% | 0.0% | 1.8% | 0.0% | 0.0% | 0.0% 0.0%
PointBind & PointLLM | 0.0% | 15.3% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% 1.9%

Table 2: Zero-Shot Classification with 3D-aware VLMs.
thetic/wild images) and point-cloud-based models (ShapeLLM, PointLLM, utilizing ground truth
point clouds). Performance is reported for both Simple and Chain-of-Thought (CoT) prompting

We evaluate LLaVA-3D (using syn-

strategies.
Method ‘ Plat. ‘ Arch. ‘ Cat. ‘ John. ‘ KP ‘ Stel. ‘ Comp. ‘ NonConv.

Synthetic Images

Baseline Prompt
GPT-4o0 (SV) 80.0% | 7.6% | 0.0% | 0.0% | 50.0% | 0.0% | 10.0% 0.0%
GPT-40 (MV) 100.0% | 7.6% | 0.0% | 4.0% | 25.0% | 0.0% | 0.0% 1.9%
GPT-5-mini (SV) 60.0% | 76% | 0.0% | 1.4% | 0.0% | 0.0% | 0.0% 0.0%
GPT-5-mini (MV) 80.0% | 153% | 7.6% | 2.1% | 0.0% | 2.9% | 10.0% 0.0%

Chain-of-Thought (CoT) Prompt
GPT-40 (SV) 100.0% | 0.0% | 0.0% | 0.0% | 50.0% | 2.9% | 0.0% 0.0%
GPT-40 (MV) 100.0% | 0.0% | 0.0% | 2.9% | 25.0% | 2.9% | 0.0% 1.9%
GPT-5-mini (SV) 60.0% | 7.6% | 0.0% | 1.4% | 25.0% | 0.0% | 10.0% 0.0%
GPT-5-mini (MV) 100.0% | 23.0% | 153% | 5.0% | 25.0% | 2.9% | 10.0% 0.0%
Wild Images

Baseline Prompt
GPT-40 (SV) 20.0% | 7.6% | 0.0% | 2.7% | 50.0% | 0.0% | 16.7% 0.0%
GPT-40 (MV) 40.0% | 0.0% | 0.0% | 3.4% | 25.0% | 0.0% | 16.7% 1.9%
GPT-5-mini (SV) 20.0% | 23.0% | 7.6% | 0.0% | 0.0% | 0.0% | 0.0% 0.0%
GPT-5-mini (MV) 20.0% | 23.0% | 7.6% | 3.4% | 25.0% | 0.0% | 16.7% 0.0%

Chain-of-Thought (CoT) Prompt

GPT-40 (SV) 20.0% | 7.6% | 0.0% | 0.0% | 50.0% | 0.0% | 0.0% 0.0%
GPT-40 (MV) 40.0% | 153% | 0.0% | 2.7% | 25.0% | 0.0% | 16.7% 1.9%
GPT-5-mini (SV) 0.0% 00% | 7.6% | 2.0% | 25.0% | 0.0% | 0.0% 0.0%
GPT-5-mini (MV) 0.0% | 30.7% | 153% | 6.9% | 50.0% | 0.0% | 16.7% 0.0%

Table 3: Ablation Study on Input Modality and Prompting. We compare zero-shot classification ac-
curacy for ChatGPT-40 and ChatGPT-5-mini using Single-View (SV) vs. Multi-View (MV) inputs,
and Baseline vs. Chain-of-Thought (CoT) prompts across synthetic and wild domains.
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Table 4: Additional Real-World Examples. Selected samples from the Wild dataset demonstrating
diverse environmental conditions, including indoor, outdoor scenes, and varying lighting.
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Group # Key Features Examples from GIQ
. Congruent regular polygonal faces; Y
Platonic 5
vertex-transitive, face-transitive
. Vertex-transitive; faces are regular
Archimedean 13
polygons of different types
Duals of Archimedean solids; face-
Catalan 13
transitive, but not vertex-transitive
Convex polyhedron;
Johnson 92
regular polygonal faces
. Formed by extending faces or edges;
Stellations 48
Nonconvex
Regular star polyhedra; specific
Kepler-Poinsot 4 g POty P
stellations of Platonic solids
Symmetric combination of multiple
Compounds 10
polyhedra
. Nonconvex; regular polygonal faces,
Uniform non-convex | 53
vertex-transitive

Table 5: Extended summary of polyhedral groups in the GIQ dataset, with counts of 3D shapes, key
geometric features, and additional representative samples.

Symmetry Element Split  Positives Negatives  Pos./Neg. Ratio
Central point reflection  Train 1168 480 243
5-fold rotation Train 432 1216 0.36
4-fold rotation Train 1424 224 6.36
Central point reflection ~ Test 752 180 4.18
5-fold rotation Test 148 784 0.19
4-fold rotation Test 716 216 3.31

Table 6: Detailed composition of training and test dataset splits used for 3D symmetry detection
experiments (representative statistics from Fold 1 of the 5-fold cross-validation). For each consid-
ered symmetry element (central point reflection, 5-fold rotation, and 4-fold rotation), the number of
positive and negative samples, as well as the corresponding positive-to-negative ratio, is provided.
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Featurizer Central point reflection 5-fold rotation 4-fold rotation
Syn Wild Syn Wild Syn Wild
DINOvV2 0.85 0.73 0.97 0.85 0.96 0.93
CLIP 0.82 0.74 0.80 0.78 0.74 0.69
ConvNext 0.76 0.62 0.93 0.85 0.90 0.76
SigLip 0.69 0.59 0.86 0.79 0.78 0.74
MAE 0.70 0.66 0.82 0.71 0.74 0.71
DeiT 111 0.75 0.65 0.82 0.72 0.70 0.65
DreamSim 0.77 0.71 0.78 0.71 0.68 0.63
SAM 0.74 0.73 0.79 0.68 0.68 0.59
DINO 0.66 0.62 0.88 0.71 0.87 0.61

Table 7: Extension of main-paper figure: balanced accuracies (0.5 - % +0.5- %) for linear probes
trained on synthetic images and evaluated on both synthetic (Syn) and real-world (Wild) images
for central point reflection, 5-fold rotation, and 4-fold rotation. Including Syn results quantifies
the Syn—Wild generalization gap, which varies by featurizer and symmetry. Featurizers are sorted
by the combined rank of Wild-set accuracies across the three symmetry types. Bold indicates best
accuracy; underline indicates second best.

Input Frontier Model Reasoning

ChatGPT o4-mini-high: It has many faces that seem like
pentagons, but I also see some hexagons. The polyhedron in the
image seems like it could be a truncated icosahedron, due to its
faces resembling hexagons and pentagons, but something about
it doesn’t match exactly. It’s hard to tell without a clearer view

of its exact pattern.

Claude 3.7 Sonnet: I can see a colorful polyhedron in the
image. This appears to be a cuboctahedron, which is an
Archimedean solid. It has 8 triangular faces and 6 square faces,
with 12 identical vertices where 2 triangles and 2 squares meet.
The model shown has a checkered pattern with light blue/teal.

Figure 1: Examples of failure cases illustrating errors in reasoning by frontier models that led to
misclassification of polyhedra. These cases highlight systematic mistakes in geometric recognition,
such as misidentification of face geometry, convexity, and compound structures. Text highlighted in
green indicates correct statements, while text in red indicates incorrect reasoning.
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Table 8: Additional qualitative results for monocular 3D reconstruction, supplementing evaluations
presented in the main paper. Columns depict, from left to right: the input 2D image, followed by
front-view and side-view renderings of reconstructions from Shap-E [Jun & Nichol| (2023)), Stable
Fast 3D (2024), and OpenLRM He & Wang| (2023) methods. Each pair of rows shows
synthetic (top) and real-world (bottom) images of selected polyhedra: truncated icosidodecahedron
(Archimedean solid), compound of five tetrahedra (compound), compound of five octahedra (com-
pound), great triambic icosahedron (stellation), and final stellation of the icosahedron (stellation).

9
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. Synthetic Wild
Category Metric
Shap-E SF3D OpenLRM Shap-E SF3D OpenLRM
F-score 1 0.367 0.521 0.626 0.380 0.378 0.224
Platonic Hausdorff Distance |  0.083  0.047 0.043 0.158 0.123 0.173

Chamfer Distance |  0.001  0.001 0.001 0.006  0.004 0.008

F-score 1 0.355  0.477 0.586 0.309 0.348 0.175
Archimedean Hausdorff Distance |,  0.083  0.052 0.062 0.134  0.137 0.215
Chamfer Distance |  0.001  0.002 0.001 0.008  0.007 0.009

F-score 1 0.361 0.478 0.597 0.257  0.365 0.172
Catalan Hausdorff Distance |,  0.086  0.059 0.050 0.156  0.120 0.184
Chamfer Distance |  0.001  0.002 0.002 0.009  0.005 0.007

F-score 1 0.259 0.231 0.239 0.162  0.096 0.191
Stellations Hausdorff Distance |  0.119  0.179 0.158 0.313  0.292 0.297
Chamfer Distance |  0.002  0.011 0.007 0.051 0.020 0.009

F-score 1 0.255 0.292 0.258 0.257 0.124 0.245
Kepler-Poinsot Hausdorff Distance |,  0.115  0.116 0.120 0.147  0.254 0.218
Chamfer Distance |  0.002  0.001 0.002 0.002 0.017 0.006

F-score 1 0.272  0.253 0.252 0.220 0.113 0.184
Compounds Hausdorff Distance | 0.110  0.136 0.135 0.172  0.294 0.271
Chamfer Distance |  0.001  0.002 0.002 0.003  0.023 0.013

F-score 1 0.263  0.194 0.250 0.232  0.120 0.182
Uniform Nonconvex Hausdorff Distance |  0.122  0.144 0.119 0.145 0.257 0.186
Chamfer Distance |  0.002  0.005 0.002 0.004  0.021 0.008

Table 9: Quantitative comparison of state-of-the-art monocular 3D reconstruction methods (Shap-
E Jun & Nichol| (2023)), Stable Fast 3D Boss et al.| (2024) (SF3D), OpenLRM |He & Wang| (2023))
evaluated on synthetic and real-world (”wild”) datasets across various polyhedral categories. Con-
sistently low F-scores (below 0.6) indicate substantial reconstruction difficulties, emphasizing the
complexity of accurately capturing detailed geometric structures in polyhedra and highlighting ar-
eas needing significant methodological improvements.

10
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Featurizer Concat Subtraction Absolute

(e1 Hez) (e1 —e2) (\61 - €2|)
CLIP 0.5065 0.5786 0.9400
ConvNext 0.5188 0.5468 0.9306
DeiT 111 0.4804 0.5537 0.9473
DINO 0.4616 0.5380 0.9674
DINOv2 0.4991 0.5693 0.9706
DreamSim 0.5221 0.5983 0.9843
MAE 0.5240 0.5247 0.9768
SAM 0.5035 0.5516 0.9519
SigLip 0.5399 0.5615 0.9594

Table 10: Balanced accuracy of linear probing approaches on pairwise embeddings for the Mental
Rotation Test (MRT). Given two embeddings e, es from each featurizer, we form input features by
concatenation (e;||ez), subtraction (e; — e2), or absolute difference (Je; — e
classifier. Results are reported on a simplified “trivial” setting, with synthetic-only image pairs and

shapes randomly split into 80% train and 20% test.

11

), followed by a linear
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Train Train Train

Featurizer (syn,syn)—Test (syn,syn)—Test (syn,wild)— Test

(syn,syn) (syn,wild) (syn,wild)
Absolute Difference |¢; — es]
CLIP 0.64 0.44 0.55
ConvNext 0.70 0.47 0.65
DeiT III 0.70 0.48 0.56
DINO 0.74 0.44 0.58
DINOV2 0.79 0.44 0.60
DreamSim 0.77 0.44 0.62
MAE 0.76 0.44 0.58
SAM 0.77 0.44 0.57
SigLip 0.76 0.44 0.64
Subtraction (e; — e5)
CLIP 0.36 0.39 0.56
ConvNext 0.51 0.49 0.54
DeiT III 0.45 0.46 0.53
DINO 0.48 0.49 0.49
DINOv2 0.53 0.51 0.45
DreamSim 0.38 0.34 0.55
MAE 0.37 0.34 0.53
SAM 0.47 0.48 0.50
SigLip 0.50 0.44 0.54
Concatenation (e1 ||e2)

CLIP 0.35 0.56 0.58
ConvNext 0.46 0.50 0.52
DeiT III 041 0.54 0.54
DINO 0.52 0.52 0.54
DINOv2 0.57 0.48 0.60
DreamSim 0.38 0.55 0.55
MAE 0.41 0.52 0.53
SAM 0.37 0.56 0.59
SigLip 0.36 0.44 0.54

Table 11: Accuracy on the Mental Rotation Test (MRT) evaluated on the hard test set, where only
pairs of visually similar shapes are considered. “Train (X)—Test (Y)” denotes the training and
testing domains. Results are presented for absolute difference (|e; — ez|), raw subtraction (e; — e3),
and feature concatenation (e1]|ez2). Absolute difference performed best overall.

12
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Pair 1 Pair 2 Pair 3

Synthetic Wild Synthetic Wild ‘ Synthetic Wild

Pair 4 Pair 5 Pair 6

Synthetic ‘ Synthetic

Table 12: Samples of visually and geometrically similar synthetic-wild shape pairs used in the hard
test set. Pairs were manually selected based on structural and visual similarities, such as shared
symmetries, vertex configurations, and derivation from common polyhedra (e.g., pair 6: Small cu-
bicuboctahedron and Small rhombihexahedron, both derived from the rhombicuboctahedron).

Category Gemini 2.5 Pro | fﬁﬁﬁi?gh ChatGPT 03 | , Saude
Syn Wild Syn Wild | Syn Wild | Syn Wild

Platonic 0.60 0.80 0.60 0.60 | 1.00 1.00 | 0.60 0.60
Archimedean 0.53 0.61 023 031 | 0.61 054 | 021 0.23
Catalan 0.15 0.15 0.15 0.15 | 0.08 0.08 | 0.09 0.08
Johnson 0.20 0.18 0.11  0.12 | 021 0.18 | 0.11 0.11
Kepler-Poinsot 1.00 1.00 025 025 | 025 025|025 025
Stellations 0.41 0.43 0.05 0.07 | 023 0.21 | 0.27 0.26
Compounds 0.16 0.17 0.00 0.00 | 0.16 033 | 0.33 0.33
Uniform non-convex | 0.08 0.09 0.00 0.00 | 0.05 0.06 | 0.00 0.00

Table 13: Accuracy (%) of various frontier models on 0-shot classification across polyhedron cate-
gories, reported on synthetic (Syn) and in-the-wild (Wild) images. The Syn—Wild gap is generally
small across categories and models, indicating comparable performance across domains.

13
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