
A Calibration557

A.1 Choice of calibration metrics558

We consider both the Spearman rank correlation and Pearson bivariate correlation. We believe559

that the former better represents the actual statistical power of the metric compared to the true560

distributional shift value, as it is robust to outliers and isn’t impacted by distributional shape (i.e.,561

skewness, kurtosis). After all, we do not know if some ‘true’ |G⇡
M̂
(s, a)| is even linearly correlated562

with the MSE values that we report, so naïvely comparing based on bivariate correlation may result563

in incorrect assessment of penalty efficacy. However, we do also include the Pearson bivariate564

correlation to help us gain insight into how the penalty distribution shape changes with design choices.565

For instance, consider two metrics that have identical Spearman coefficients, but vastly different566

Pearson coefficients–this implies they have significantly different distributions.567

A.2 Offline Dataset Transfer Calibration568

A.2.1 HalfCheetah569

(a) Random transferred to Expert

(b) Medium transferred to Expert

(c) Medium transferred to Random

(d) Expert transferred to Random

Figure 6: Scatter Plots showing HalfCheetah D4RL transfer tasks.
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A.2.2 Hopper570

(a) Random transferred to Expert

(b) Medium transferred to Expert

(c) Medium transferred to Random

(d) Expert transferred to Random

Figure 7: Scatter Plots showing Hopper D4RL transfer tasks.
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A.3 Ground Truth Calibration571

A.3.1 HalfCheetah572

(a) Random

(b) Mixed

(c) Medium

(d) Medium Expert

(e) Expert

Figure 8: Scatter Plots showing HalfCheetah D4RL ground truth calibration.
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A.3.2 Hopper573

(a) Random

(b) Mixed

(c) Medium

(d) Medium Expert

(e) Expert

Figure 9: Scatter Plots showing Hopper D4RL ground truth calibration.
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B Full Results Increasing Models574

B.1 Penalty Distribution575

B.1.1 Offline Dataset Transfer Distribution576

(a) Random transferred to Expert

(b) Medium transferred to Expert

(c) Medium transferred to Random

(d) Expert transferred to Random

Figure 10: Box Plots showing HalfCheetah D4RL transfer tasks.
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(a) Random transferred to Expert

(b) Medium transferred to Expert

(c) Medium transferred to Random

(d) Expert transferred to Random

Figure 11: Box Plots showing Hopper D4RL transfer tasks.
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B.1.2 Ground Truth Distribution577

(a) Random

(b) Mixed

(c) Medium

(d) Medium Expert

(e) Expert

Figure 12: Boxplots showing HalfCheetah D4RL ground truth penalty distributions.
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(a) Random

(b) Mixed

(c) Medium

(d) Medium Expert

(e) Expert

Figure 13: Boxplots showing Hopper D4RL ground truth penalty distributions.
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B.2 Penalty Performance578

B.2.1 HalfCheetah D4RL: Transfer579

Figure 14: HalfCheetah Spearman Statistics
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Figure 15: HalfCheetah Pearson Statistics
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B.2.2 Hopper D4RL: Transfer580

Figure 16: Hopper Spearman Statistics
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Figure 17: Hopper Pearson Statistics
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B.2.3 HalfCheetah D4RL: Ground Truth Dynamics581

Figure 18: HalfCheetah Spearman Statistics

Figure 19: HalfCheetah Pearson Statistics

B.2.4 Hopper D4RL: Ground Truth Dynamics582

Figure 20: Hopper Spearman Statistics

Figure 21: Hopper Pearson Statistics
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C Skewness and Kurtosis Comparisons583

C.1 Skewness and Kurtosis Overall584

Table 5: Skew (�1) and Kurtosis (�2) statistics of all experiments averaged over different test settings using the
MOPO Default of 7 models.

Transfer Ground Truth
HalfCheetah Hopper HalfCheetah Hopper

Penalty �1 �2 �1 �2 �1 �2 �1 �2

MOPO -0.010 0.580 0.689 1.377 0.671 0.920 1.873 2.864
MOReL 0.919 0.957 1.967 4.578 1.661 3.081 2.571 7.465
Ensemble Std. 0.794 0.806 2.136 6.560 1.656 3.178 2.739 9.061
Ensemble Var. 1.823 4.830 3.436 15.983 2.612 8.800 4.517 25.380
LOMPO 6.893 114.843 10.920 180.716 5.100 37.865 14.415 251.705
M2AC 1.778 5.729 3.729 29.606 1.840 4.600 4.008 28.089

C.2 Skew and Kurtosis Scaling with Model Count585

We omit LOMPO and M2AC due to the fact that their changes were so significant as to obfuscate the586

changes of the more performant penalties.587

We choose 7 models to act as our ’baseline’ (following the default MOPO setting), and we measure588

the change in the skew and kurtosis relative to this, hence 7 models always has a 0% change in our589

graphs. For brevity, in the transfer experiments, we average over all ‘transferred to’ environments,590

e.g., Random, Medium, etc.; the graph title refers to the data that the model was trained on.591

Again, we observe the environment and setting dependency of these metrics, sometimes having592

increasing skewness and kurtosis with model count, and other times decreasing. This further justifies593

using a ranking metric to compare penalties, as the overall penalty shape can vary hugely and594

unpredictably w.r.t. co-dependent hyperparameters. We do observe however in the ground truth595

experiments that ensemble standard deviation appears to be most robust to scaling with models.596

We also observe that the MOPO penalty can change shape significantly w.r.t. model count, and all597

penalties are not fully immune to this. This further advocates the use of shape meta-parameters to598

control for changing distribution properties when adjusting the number of models as a hyperparameter,599

as well as selecting penalties that are relatively invariant to model count to make tuning easier.600

(a) Skewness Scaling

(b) Kurtosis Scaling

Figure 22: HalfCheetah Transfer.
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(a) Skewness Scaling

(b) Kurtosis Scaling

Figure 23: Hopper Transfer.

(a) Skewness Scaling

(b) Kurtosis Scaling

Figure 24: HalfCheetah Ground Truth.
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(a) Skewness Scaling

(b) Kurtosis Scaling

Figure 25: Hopper Ground Truth.

D Further details on Ground Truth experiments601

D.1 Methodological Details602

We leverage the MuJoCo [45] simulator to provide us with ground truth dynamics that we can use to603

compare against our model predictions and penalties. This is done by providing the state and action604

inputs given to the model also into the simulator through the set_state method in the simulator605

API. It must be noted that this method also requires an addition ‘displacement’ value which is not606

modelled by the world models (nor is it provided in the D4RL data), however we found in practice607

this did not affect the dynamics predicted by the simulator, and simply setting this to 0 was sufficient608

to generate ground truth predictions.609

This makes it possible to provide the simulator the hallucinated model states, and provide a true proxy610

to the dynamics discrepancy. We note that since the states are ‘hallucinated’ by the model, it might611

be the case that they may not be admissible under the true environment, but in reality the simulator612

was able to almost any combination of state and action, barring settings that featured anomalously613

large magnitudes; to handle such cases we found it necessary to clip the model states to the range614

[�10, 10].615

In order to assess the permissibility of states, as well as measure the accuracy of the penalties as616

OOD input detectors, we provide an alternative distance measure based on the distance away from617

the training set. We use this measure for our analysis in Section 5.3, and is calculated as the distance618

from the offline training dataset, which we define to be the 2-norm between a given state-action tuple619

and its nearest point in the offline data. We describe this quantity henceforth as ‘Distribution Error’.620

D.2 On the nature of OOD data along hallucinated trajectories621

Here we discuss the nature of OOD data along a single hallucinated trajectory (in the model) in offline622

MBRL, analyzing the inductive bias that some ‘error’ increases with increasing rollout length in the623

model. We find that there is merit to this assumption, and show this in Fig. 26 for all HalfCheetah624

and Hopper environments in D4RL. Here we plot the median error at each time-step across 30, 000625

aggregated trajectories, and normalize them for comparison.626
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Figure 26: Median Errors across Rollouts of Ground Truths

We observe indeed that both median dynamics and distribution errors increase with increasing time627

step in the model. The only real exception is HalfCheetah Medium-Expert, which we believe to be628

due to our trained policy not being able to successfully exploit this environment.629

The above analysis captures overall trends in the error over a large number of trajectories. However,630

the way errors manifest during an individual rollout is not so straightforward. To illustrate this,631

observe Fig. 27, where we plot a random subset of 5 individual rollouts from the Hopper Medium-632

Expert data we generated.633

Figure 27: Several Individual Ground Truth Rollouts in Hopper Medium-Expert

We observe that errors along any single trajectory tend to manifest as ‘spikes’, and that it is entirely634

possible to recover from these, returning to either admissible dynamics, or parts of the state-action635

space that have been seen in the data. This speaks to the nature of how we ought to penalize policies636

for accessing regions of inaccuracy/uncertainty, and may justify a hybrid MOPO/MOReL approach,637

whereby we penalize individual transitions along a trajectory, but do not stop rollouts early. Indeed638

this is similar to the approach taken in M2AC (non-stop), albeit they choose to ‘mask’ uncertain639

transitions, not penalize them. We leave the design of such an algorithm to future work.640

Finally, we address the issue of comparing OOD dynamics and inputs. As already observed in Fig. 27,641

these two errors are not necessarily always the same, and oftentimes it is possible that one quantity is642

large, whilst the other is small. We revisit Fig. 1 to explore this, now also plotting the Distribution643

Error in Fig. 28.644

Figure 28: Comparing OOD dynamics and inputs on a Hopper Medium-Expert trajectory
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We first speak to the inset annotated ‘1’. Here we observe that the transitions generated in fact closely645

resemble the data that our model was trained on, however the predicted dynamics are incorrect, and646

cause an aforementioned ‘spike’. This is the opposite of what is observed in the inset annotated647

‘2’; where we actually predict accurate dynamics, however the resultant state-action tuples do not648

closely resemble the data that our model was trained on. We generally observe that regions of high649

Distribution Error tend to be preceeded by ‘spikes’ pertaining to high Dynamics Error, and this650

present an exciting avenue for future work understanding how these quantities are related.651

E Using metrics as OOD event detectors652

E.1 Measuring Statistics653

Figure 29: Hopper Medium-Expert Ground Truth Experiments; Left: Precision v.s. Recall against Ground
Truth; Middle: Higher Performing Penalties v.s. Ground Truth MSE in Imagined Rollout; Right: Lower
Performing Penalties v.s. Ground Truth MSE in Imagined Rollout

As noted previously, different penalties have varying scales and distribution profiles, so we need a654

way of standardizing the method of assessment. Using our observation that errors manifest as ‘spikes’655

during a rollout, we propose treating each penalty as a classifier. Concretely, our test set consists of656

the ground truth data labeled by whether or not they exceed a certain percentile at a particular time657

step. Each penalty may be then be treated as a ‘classifier’ by normalizing its range to lie in [0, 1]. We658

can then use standard classification quality measures, such as AUC, to determine the effectiveness of659

these penalties at capturing these spikes, whilst sidestepping the issue of the different distributional660

profiles identified previously.661

Fig. 29 shows how our proposed method may be used to compare the effectiveness of each metric at662

capturing OOD events. In the figure, we plot a single rollout in the model, and the resultant ground663

truth MSE between the predicted next state and the true next state in black. We then superimpose664

the 90th, 95th and 99th percentile MSEs across the entire imagined trajectories onto the figure in665

gray dashed lines. To construct our OOD labels, we label any point below the percentile line as being666

‘False’, and any point above that line as being ‘True’. Finally, we normalize the uncertainty metrics as667

previously described into values in the range [0, 1], allowing us to construct precision-recall graphs668

and calculate classifier statistics.669
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E.2 Precision Recall Curves670

(a) 90th Percentile

(b) 95th Percentile

(c) 99th Percentile

Figure 30: Precision Recall curves on ground truth data.

F Key Differences between Code and Paper671

Here we summarize key differences between the paper and code for the MOPO and MOReL algo-672

rithms which we compare against that are crucial to achieve the same reported performance.673
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In MOPO,674

• Each layer in the model neural network has a different level of weight-decay675

• The authors’ code uses different objectives for training (log-likelihood) and validation (MSE).676

• The authors use elites, but only for next state prediction (as discussed previously).677

In MOReL,678

• There is a difference in the authors’ code about how the penalty threshold is calculated and tuned,679

and isn’t provided as a hyperparameter in the appendix.680

• The absorbing HALT state does not appear in the authors’ code.681

• The negative halt penalty appears significantly different between code and paper.682

• There is a minimum trajectory steps parameter (hardcoded to 4) not mentioned in the paper.683

G Hyperparameters and Experiment Details684

The D4RL [14] codebase and datasets used for the empirical evaluation is available under the CC BY685

4.0 Licence.686

The remaining hyperparameters for the MOPO algorithm that we do not vary by Bayesian Optimisa-687

tion were taken from the original MOPO paper [50].688

The hyperparameters used for the BO algorithm, CASMOPOLITAN, are listed in Table 6. We use the689

batch-mode of CASMOPOLITAN, where multiple hyperparameters settings are proposed and evaluated690

concurrently.

Table 6: CASMOPOLITAN Hyperparameters
Parameter Value

no. parallel trials 4
no. random initializing points 20

ARD False
acquisition function Thompson sampling

global BO True
kernel CoCaBo kernel [42]

691

Each BO run on a D4RL environment took ~200 hours on a single NVIDIA GeForce GTX 1080 Ti692

GPU taken up predominantly by MOPO training.693

Unless specified otherwise, plots and reported statistics are completed with 7 models in the ensemble,694

as this is the number chosen in the original MOPO paper used with the MOPO penalty.695
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