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A MASKING

Here we will briefly expound upon our normalized attribution method, put forward in section 2.4.
for a data sample X we consider a set of attribution maps {φ(fv,x)} | x ∈ X}. Let v represent
the flattened, ordered vector of every scalar attribution in this set. We can then choose a percentile
range (p1, p2), such that values outside the range are fully masked/fully visible in the upsampled
mask, and values in between are partially masked. We can then normalize every element, u, of a
particular attribution map, φ(fv,x), by;

N (u;v, p1, p2) =


0 if u ≤ P (v, p1)

u−P (v,p1)
P (v,p2)−P (v,p1)

if P (v, p1) < u < P (v, p2)

1 if u ≥ P (v, p2)

(1)

By setting p1, the user can control how globally salient a region must be before it constitutes a partial
expression of the feature and can be unmasked. Conversely, by setting p2, the user determines the
percentile past which a feature is ’fully expressed’, and fully unmasked. As previously stated, this
approach is agnostic to the attribution method used; for example we applied this normalization
approach to gradCAM (Selvaraju et al., 2017a) attribution maps to generate the masks for Figure 9,
but simply used the features activation map itself as our attribution for latent accents in Figure 10,
as convolutional layers are already spatialized.

B PATH EXPERIMENT DETAILS

Figure 11: Small effect of regularization
layer on path coherence.)

For each of the 5 tested (0,.1,.2,.5,10) we generated
1751 matched accentuations, corresponding to all the
correctly predicted images across 50 random classes
in the Imagenet(Deng et al., 2009) validation set. We
accentuated each image toward its class label for 100
optimization steps using the Adam optimizer, with a
.05 learning rate. We used 16 augmentations each op-
timizition step, cropping with a maximum box size of
.99, and a scheduled minimum box size from .75 to
.05. We regularized through layer {mixed3a}, but note
that the optimal regularization layer seems to interact
with the layer of fv . Besides this and λ, we observe
the above hyperparameter produce quality accentua-
tions in the general case.

In addition to our experiments with lambda, we tested
the effect of regularization layer on the class-wise
path similarity metric. We found only a small ef-
fect, with the earliest and latest layers tested (conv2d0
and mixed5a) performing slightly worse, in agreement
with our qualitative evaluation of the corresponding
accentuations.

Figure 12 shows a random sample of our super-natural accentuations. These images are processed
by way of hidden vectors that better correlate with natural class images than the natural images
correlate with themselves.
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Figure 12: A sample of Super-natural class images.
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C A NOTE ON LEARNING RATE

Figure 13: feature visualizations and accen-
tuations for ’hummingbird’ at two learning
rates.

We observe that the learning rate is a far more sen-
sitive parameter for feature accentutions than for the
corresponding feature visualization. A ’good’ learn-
ing rate for a noise seeded feature visualizations will
often be too large for feature accentuation, causing
the visualization to deviate drastically from the tar-
get image in the the initial steps and never make it
back. A small learning rate keeps the visualization
perceptually similar to the seed image.

D ADDITIONAL
EXAMPLES FOR HYPERPARAMETERS

In the interest of conserving space, we initially uti-
lized a single example image to illustrate the im-
pact of manipulating hyperparameters that we con-
sider pivotal for Feature accentuation. However, to
bolster our demonstration, we present here a series
of supplementary examples drawn from our com-
prehensive testing dataset, aimed at showcasing the
consistent and robust nature of the described effects
across various instances. We deliberately choose to
show some examples multiples times, so the reader can get a sense for how images change along
multiple hyperparameter axes.

Figure 14: Additional example for our set of image parametrization.

Parametrization. The Fourier and MACO parametrization, while undoubtedly more intricate,
emerge as good contenders in generating meaningful perturbations. On the other hand, the Pixel
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parametrization method, while comparatively simpler in its approach, easily introduce adversarial
pattern. The seemingly basic alterations to pixel values can yield strikingly impactful results on
latent representation, akin to the subtleties found in adversarial perturbations.

Augmentation. With small crop augmentations, the regularizer and feature detector are essen-
tially zooming in and making local edits to the image. Unsurprisely, this yields crisper accentua-
tions. However, small crops can also lead to miniature hallucinatory features scattered throughout
the accnetuation, especially problematic given we seek explanations for the original, uncropped im-
age. Supplying a uniform mixture of crops each optimization step seems to regularize against these
hallucinations.

Figure 15: Additional regularization lambda examples

Regularization. One of the major hyperparameter influencing our optimization process is λ which
serves as a regularizer. It plays a vital role in striking a balance between accentuation and preserva-
tion of the original data characteristics. More examples are shown confirming that a lower λ value
can result in more pronounced accentuations, while a higher value tends to maintain the fidelity of
the input data.

Effect of the Layer Examining the impact of layer selection within our neural network architec-
ture, we provide additional examples showing the effect of this hyperparameter on Feature accentu-
ation.

The choice of the layer has a notable influence on the perturbation: different layers within our neural
network exhibit distinct tendencies in accentuating specific features or patterns within the input data.
Early layer tends to preserve pixel information while latter seems to allow greater perturbation but
preserve semantic (and often class) information.
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Figure 16: Additional regularization lambda examples

Figure 17: Additional regularization layer examples
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