
GrowNet Supplementary Material

1 Additional Related Work

A few works [4, 5] have also been proposed to directly combine Gradient Boosting with Convolutional
Neural Nets (CNN). The authors of [5] propose to train gradient boosting machine with CNN as a base
learner by introducing a custom multi-class softmax loss function for a specific scene classification
task in the remote sensing domain. The work in [4], on the other hand, focuses on training each
CNN sequentially on the mistakes of the previous networks, similar to Adaboost to perform on solely
image classification task. Our method is different from [5, 4] as it is a unified framework to perform
various machine learning tasks, such as classification, regression and even learning to rank. Moreover,
unlike those two methods, we leveraged a corrective step to update the previously added predictor
parameters and achieved a significant performance boost.

2 Additional Dataset Statistics

We evaluate our model on 5 datasets from 3 different tasks. A brief description of these datasets are
presented in Table 1.

We used Higgs Bozon dataset1 for classification. Higgs data is created using Monte Carlo simulations
on high energy physics events. It is a binary event classification data with 28 attributes.

For the regression task, 2 datasets from the UCI machine learning repository are selected. The first
one is Computed Tomography (CT) slice localization data2 where the aim is to retrieve the location
of CT slices on the axial axis. The data was constructed from a set of 53, 500 CT images that were
taken from 74 different patients (43 male, 31 female).

The second regression dataset is YearPredictionMSD3 data, a subset of Million Song dataset, from
the UCI repository. The goal is to predict the release year of a song from its audio features. The songs
are mostly western, commercial tracks ranging from 1922 to 2011, with a peak in the year 2000s.

We choose Yahoo LTRC dataset4 [1] for the learning to rank task as it is a well-know benchmark
dataset and also is used in the XGBoost paper. This dataset has 20K queries, each associated with
approximately 22 documents. Train-test split from the original paper is preserved. The second
benchmark ranking dataset we used is MSLR-WEB 10K5. The dataset contains 10K queries, each
of which corresponds to a list of 100− 200 documents.

3 Hyperparameters of GrowNet

Experiment Setup. All predictive functions added to the model are multilayer perceptrons with two
hidden layers. More hidden layers degraded the performance as the model starts overfitting. We
generally set the number of hidden layer units to roughly a third of, a half of or equal to the input
feature dimension. 40 additive functions were employed in the experiments for all three tasks, and

1https://archive.ics.uci.edu/ml/datasets/HIGGS
2https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
3https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
4https://webscope.sandbox.yahoo.com/catalog.php?datatype=c
5http://research.microsoft.com/en-us/projects/mslr/

Preprint. Under review.

https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
https://webscope.sandbox.yahoo.com/catalog.php?datatype=c
http://research.microsoft.com/en-us/projects/mslr/


Table 1: Datasets used in the experiments and their brief description. The second and third columns
marked as N, M represent number of samples and feature dimension of the dataset, respectively.

Dataset N M Task
Higgs Bozon 10M 28 Binary classification
Slice localization 53K 384 Regression
Year prediction 515K 90 Regression
Yahoo LTRC 473K 700 Learning to rank
MSLR-WEB 10K 1.2M 136 Learning to rank

number of weak predictors in test time is chosen by the validation results. From all the experiments,
we observe that 30 weak learners are more than enough to get the best results before the model
performance saturates. Early stopping or other heuristics can also be incorporated into the model to
terminate the training before the model begin to overfit.

The boosting rate is initially set to 1 and automatically adjusted during corrective step. Depending
on the dataset and the task at hand, it may be initially set to a lower number such as 0.1. In our
experiments, we did not tune or alter the boost rate.

We trained each predictive function for just 1 epoch, and the entire model is also trained for 1 epoch
during the corrective step using stochastic gradient descent with the Adam optimizer. The Adam
optimizer is run with l2 regularization at a rate of 0.001. Epoch numbers are increased to 2 for the
ranking task as we used larger batch sizes. Increasing the epoch number does not contribute to the
performance, and higher numbers cause overfitting. We also performed 2D batch normalization for
the hidden layers. The batch size for classification was set to 2048 and the learning rate was set to
0.005. ReLU was used as the activation function for the penultimate layer, whereas Leaky ReLU was
used for the hidden layers. For the ranking task, we replaced ReLU with ReLU6.

The source code is uploaded in a separate file.

4 XGBoost and AdaNet Tuning

4.1 XGBoost Tuning

For XGBoost, we tuned the main parameters, including the number of trees, learning rate, maximum
leaves and `2 regularization in the following range:

• Number of trees: {64, 128, 256, 512, 1000}
• Learning rate: {0.05, 0.1}
• Maximum number of leaves: {128, 256, 512}
• `2 regularization (lambda): {0, 0.2}

We did not tune XGBoost on Yahoo LTR (ranking task) and Higgs (classification task) datasets as we
used the well tuned results reported in the original XGBoost paper [2] as is.

4.2 AdaNet Tuning

We tuned 3 main parameters for AdaNet: the learning rate, the number of sub-networks and the
complexity regularization parameter (λ) within the following ranges:

• Learning rate: {0.01, 0.001, 0.0001}
• AdaNet iterations (# subnetworks): {2, 3, 4}
• Complexity regularizer λ: {0.01, 0.001, 0.0001}

The model was first tuned with default mixture weights and λ = 0, as suggested in the authors’
Github page6. From this experiment, we got the optimal learning rate and number of sub-networks.

6https://github.com/tensorflow/adanet/blob/master/adanet/examples/tutorials/
adanet_objective.ipynb

2

https://github.com/tensorflow/adanet/blob/master/adanet/examples/tutorials/adanet_objective.ipynb
https://github.com/tensorflow/adanet/blob/master/adanet/examples/tutorials/adanet_objective.ipynb


GrowNet AdaNet XGBoost
AUC 0.8401 0.8143 0.8304

Table 2: Classification results on Higgs-1M data. The scores are in AUC-ROC.

GrowNet 1HL GrowNet 2HL GrowNet 3HL GrowNet 4HL
AUC 0.8288 0.8401 0.8146 0.7801

Table 3: Results from hidden layer experiment.

Then using the learned parameters from the previous setting, AdaNet is again tuned to learn the
mixture weights and regularization complexity parameter λ.

The model is trained for 30, 000 epochs, and the number of neurons in layers is set to 512, following
the results from AdaNet paper [3]. We also observed that the model with 512 neurons generally
renders better performance.

4.3 Classification on Higgs-1M

Following the same data split on Higgs data from the XGBoost paper [2], we created Higgs-1M data.
Table 2 reports the AUC scores on HIggs-1M data from GrowNet, AdaNet and XGBoost. GrowNet
renders favorable results compared to XGBoost and 3% increase over AdaNet result.

4.4 Discussion

The main purpose of these experiments is not to display the absolute dominance of the GrowNet over
XGBoost or AdaNet on all tasks, but to provide a proof-of-concept illustrating that our off-the-shelf
Neural Network solution is competitive with existing state of the art approaches.

A more fine-tuned and extensive XGBoost results can be found in the LightGBM Experiment Docs,
where it is clearly shown that GrowNet still outperforms XGBoost and has on par results with
LightGBM.

We did not compare the training time of GrowNet with XGBoost as (1) XGBoost on GPU does not
render stable scores, no reproducible results, (2) it has a memory issue. Thus, comparing the training
time of GrowNet on GPU and XGBoost on CPU heavily depends on the device capabilities and a fair
comparison would be very challenging.

5 Additional Illustrations for Ablation Study

Analogous to Figure 2 from the main text, Figure 1 presents pairwise losses on Microsoft dataset
from the ranking task.

Effect of hidden layers. Table 3 reports the results from the hidden-layer experiment. GrowNet
final, employing weak learners with 2 hidden layers, got the best performance (AUC score is 0.8401).
The model with a shallow network of 1 hidden layer as a weak learner obtains better performance
(AUC of 0.8336) once the number of hidden units is increased from 16 to 32. The inverse effect on
the model with weak learners of 3 or 4 hidden layers did not work as expected. That is, decreasing
the number of neurons in the hidden layers for these predictive functions did not improve much the
classification performance.

Details on DNN versus GrowNet

Both Deep Neural Network (DNN) models and Grownet are run on the same machine with NVIDIA
Tesla V100 (16GB) GPU.

Unlike GrowNet, DNN performed better with SELU activation functions. We also applied batch
normalization on the hidden layers of DNN. Each of DNN models run for 1000 epochs. The results
are reported in Table 4. The best performing DNN model has 10 hidden layers, and each epoch took

3

https://lightgbm.readthedocs.io/en/latest/Experiments.html


0 5 10 15 20 25 30
weak learners

0.170

0.175

0.180

0.185

0.190
Training (pairwise) loss on Microsoft data

GrowNet final
W first order stat.
W/o corrective step
GrowNet simple
Const. boost rate

Figure 1: Training loss visualization for the learning to rank task on MSLR dataset. We used pairwise
loss.

(a) Classification training loss (b) Classification test loss

Figure 2: Effect of hidden layers on model training and classification performance (AUC).

approximately 12 seconds. The model reaches its best performance after epoch 900. GrowNet shows
a clear advantage on both classification performance and training time.

Both methods, DNN and GrowNet are not fully optimized, thus their training time can slightly be
improved. Figure 3 displays the training time of GrowNet while adding new weak learners. DNN
with 30 hidden layers are implemented with Dropout(0.3), as without Dropout the model started to
overfit immediately after a few epochs. That also explains very close training times of DNN with 20
and 30 layers.

Models DNN-5 DNN-10 DNN-20 DNN-30 GrowNet
Training time (sec) 10.2 11.6 15.2 15.0 50.1
AUC 0.8288 0.8342 0.8338 0.8301 0.8401

Table 4: Training time and performance comparison between DNN and GrowNet on Higg-1M data.
Training time for DNNs are average seconds per epoch and for GrowNet average seconds per stages.

4



Figure 3: Training time over iterations. As observed, training time is linearly correlated with number
of weak learners.

The main point we want to convey in this experiment is showing that GrowNet is (1) much less
cumbersome in hyperparameter tuning, (2) faster in training, and (3) better in overall performance
than traditional DNNs. We agree that the gain is marginal on classification task, yet the data itself is
challenging and 1% improvement is significant in some scenarios. Furthermore, to show the model
robustness in hyperparameter selection, we kept the model simple by fixing the hidden unit size to
half of the feature dimension (as observed the best results from GrowNet on Higgs data is with 128
hidden units).

References
[1] Chapelle, O. and Chang, Y. Yahoo! learning to rank challenge overview. Journal of Machine

Learning Research - W & CP, 14:1–24, 2011. 1

[2] Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
785–794. ACM, 2016. 2, 3

[3] Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., and Yang, S. AdaNet: Adaptive structural
learning of artificial neural networks. In Proceedings of the 34th International Conference on
Machine Learning, 2017. 3

[4] Moghimi, M., Belongie, S. J., Saberian, M. J., Yang, J., Vasconcelos, N., and Li, L.-J. Boosted
convolutional neural networks. In BMVC, 2016. 1

[5] Zhang, F., Du, B., and Zhang, L. Scene classification via a gradient boosting random convolutional
network framework. IEEE Transactions on Geoscience and Remote Sensing, 54, 2016. 1

5


