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Abstract
Recently, large vision language models (LVLMs) have advanced AI
by integrating visual and linguistic data for tasks like visual conver-
sation, image captioning, and visual question answering. Current
LVLM research either scales up model size for performance or re-
duces parameters for limited computational resources. We believe
both large and tiny models have unique strengths and that col-
laborative training yields better results than independent training.
We propose Collaborative Training of Tiny-Large Vision Language
Models (CTVLMs), a framework connecting large and tiny models
via a projection layer and leveraging a synergistic training strat-
egy. Our framework improves training efficiency by strengthening
the interconnection between large and tiny models. Using the pa-
rameter efficiency of tiny models, we effectively align image-text
features, then apply knowledge distillation to help large models
better align cross-modal information. During fine-tuning, the large
model’s extensive knowledge enhances tiny model’s performance.
This collaborative approach allows models to adapt to various com-
putational resources and outperforms existing methods in vision-
language tasks.
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1 Introduction
In recent years, multimodal large-scale pre-trained models have
emerged as amajor breakthrough in artificial intelligence, capturing
significant research interest. By amalgamating diverse data types,
including visual and linguistic information, these models[2, 9, 22, 31,
68, 77, 79, 80, 83, 86–88] exhibit a profound ability to understand and
execute complex tasks such as image captioning and visual question
answering. The advancement of these models has considerably
pushed the frontiers of machine comprehension and generative
abilities, establishing a foundation for enhanced human-computer
interaction and more intelligent services.

The prevailing approach in Vision Large Language Models re-
search is to scale up the model size and feed more data to achieve
better scaling effects [2, 3, 7, 9, 13, 43, 51, 74]. Concurrently, as
the model size scales up, the demand for computational resources
increases, making the inference deployment of LVLMs less efficient
and more challenging. Consequently, there has been a surge in
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Figure 1: Compared with previous visual language models,
the independent training method could only produce two
types of models separately. Large languagemodels: They pos-
sess impressive performance but require substantial compu-
tational resources. Tiny language models: Require minimal
computational resources, making them easy to deploy in en-
vironments with limited capabilities, such as mobile phones.
In our proposed structure, we conduct joint training of both
large and small models, enabling them to handle various
scenarios effectively.

research aimed at improving the efficient inference and ease of de-
ployment for LVLMs. This includes studies on model compression,
pruning, and distillation [11, 30, 63, 69] to address these challenges.

However, these two mainstream research directions are indepen-
dent and lack integration. The current training strategy is relatively
inefficient, demonstrates poor inter-model connectivity, and does
not effectively leverage the respective strengths of large and tiny
models. In other words, lacking a comprehensive approach that
leverages the strengths of both to mutually enhance the training
process. Therefore, we are inspired to ask: is it possible to jointly
leverage both training regimes and develop a more effective train-
ing framework that simultaneously boosts the performance of both
tiny and large MLLMs?

To this end, we introduce a novel collaborative training strategy
for both large and tiny language models, aimed at simultaneously
enhancing the performance of both through an efficient mutual
learning approach. At the core of our collaborative training, the
larger model can impart superior knowledge to the tiny model
through knowledge distillation, while the tiny model can assist
the large model in achieving multimodal alignment and provide a

broader range of multimodal information feature representations
than a single model setup. Specifically, during the training process
of our proposed framework, we employed CLIP-VIT-L/14[52] as the
image encoder and OPT-125m[90] as the tiny language model for
the text encoder, which is a representative and lightweight language
model. Additionally, Vicuna-7B was selected as the Large Language
Model, we use two linear layers to interconnect each other.

Following our proposed framework, the model underwent a two-
stage training process: alignment and instruct tuning. In the first
phase, the tiny language model-led guide of the large language
model. We use a large corpus of image-text pairs was utilized to
align the token embedding and multimodal features. Compared
to directly aligning with the large language model, the tiny lan-
guage model has a similar parameter count to the image encoder,
facilitating convenient and effective multimodal alignment. After
alignment the image-text feature between vision model and tiny
model, we employ knowledge distillation techniques[21], we use
the powerful multimodal image-text capabilities of the tiny model
to enhance the cross-modal information alignment in the large
model. In the tuning phase, the rich knowledge reservoir of the
large language model was utilized to enhance the multimodal un-
derstanding capabilities of the tiny model. It is noteworthy that
we use reverse Kullback-Leibler Divergence (KLD)[18] to guide the
learning of tiny model by large model, it encourages the student to
generate samples preferred by the teacher within its own capacities.
During the training phase, we used the feature outputs from the
tiny model to replace the previously used unimodal image feature
in the large language model. Incorporating both image and text fea-
tures enabled more effective multimodal fusion, enhancing the large
language model’s ability to understand image-text relationships.

In summary, our proposed collaborative training approach rapidly
aligns the image encoder with the tiny language model. Subse-
quently, we employ a distillation strategy to help the large model
align cross-modal information. During the fine-tuning phase, the
multimodal features output by the tiny model enhance the large
model’s multimodal understanding capabilities. Furthermore, the
large model can impart a richer knowledge base to the tiny model.

Our main contributions can be summarized as follows:
• We propose a novel approach called Collaborative Training
of Tiny-Large Vision Language Models (CTVLMs) that en-
hances the alignment of multimodal information between
large and tiny models. This method leverages the efficiency
of the tiny model to facilitate a more effective alignment
process. The tiny model not only improves multimodal align-
ment but also enriches the large model’s understanding of
image-text relationships.

• We propose a novel collaborative training strategy where
the large model imparts its extensive knowledge to the tiny
model, optimizing the learning process. This improves the
tiny model’s performance and enhances the large model’s
ability to handle cross-modal information. This mutual learn-
ing approach significantly advances both models beyond
traditional single-model training methods.

• The experimental results from the vision-language and mul-
timodal dialogue benchmarks convincingly demonstrate the
superiority of our collaborative training strategy over previ-
ous state-of-the-art methods.
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2 Related Work
2.1 Large Vision Language Models
The integration of computer vision and natural language processing
has led to the development of Vision-Language Models (VLMs),
which combine visual and linguistic elements to enhance cross-
modal comprehension and reasoning. This integration is pivotal in
improving tasks that require both visual perception and language
understanding. Inspired by the success of language models like
BERT [29] and Transformer [71], various approaches, including
VLBERT [64], UNITER [10], LXMERT [67], and ALBEF [38], have
been developed to combine vision and language models, aiming
to establish alignments between the two modalities. Additionally,
within frameworks akin to the transformer-decoder model, such as
OPT [90] and GPT [54], various methods employ a vision encoder to
extract visual features, including GIT [72], SimVLM [78], CoCa [81],
. These features are then utilized by a language decoder to generate
textual responses based on the extracted visual information.

Recently, we have witnessed a rapid development on large lan-
guage models [49, 70]. These models show superior performance
over previous language models. These models, however, are char-
acterized by their larger size, requiring significantly more compu-
tational resources. Recent developments on large language mod-
els have led to the emergence of Large Vision Language Models
(LVLMs), designed to enhance language models with the capa-
bility to analyze and interpret visual information. For example,
Flamingo [2] utilizes both visual and linguistic inputs to exhibit re-
markable few-shot learning abilities in visual question-answering
tasks. BLIP-2 [35] introduces a Q-former architecture that com-
presses vision features into a fixed number of queries for processing
by large language models. Similarly, LLaVA [42] employs a straight-
forward linear layer to connect the vision encoder with the large
language model. InstructBlip [13] further refines this approach by
integrating instructions into the Q-former, allowing for the gen-
eration of instruction-specific visual queries. With the increasing
capabilities of Vision Large Language Models (LVLMs), there has
been a rapid growth in training data and parameters, escalating
from initial 1B models to current systems with 34B and even exceed-
ing 100B training parameters. This escalation significantly amplifies
the demand for computational resources, slows down the inference
process, and complicates deployment.

In this paper, we introduce a collaborative learning framework
that concurrently optimizes both a tiny vision-language model and
its larger counterpart. Within this framework, the smaller model is
designed to extract more precise visual features, thereby enhancing
the performance of the larger model. In turn, the larger model offers
expert guidance to refine the capabilities of the tiny model.

2.2 Knowledge Distillation
Knowledge distillation[21], as a widely used model compression
technique, aims at training a student model with the guidance of a
teacher model [16, 56, 58]. In the NLP community, many works ap-
ply KD to text classification tasks by mimicking the teacher model’s
output distribution[40, 63, 89], hidden states[28, 66], or attention
scores[73, 76]. For text generation, the standard KD method is to
approximately minimize the forward KLD between the student’s
and the teacher’s generation distribution by using the teacher’s

Figure 2: The Architecture of our Collaborative Training
of Tiny-Large Vision Language Models(CTVLMs). There are
Three models in our Method, Vision Model, Tiny Language
Model, and Large Language Model. First, we input the images
into the Vision Encoder and Prompt connect with Text into
the Text Embedding, resulting in separate image tokens and
text tokens. We input both image and text tokens into Tiny
Language Model to alignment visual and language features.
Then the multimodal Tokens and Text Tokens input into the
Large Language Model. Both our Tiny and Large Models can
output Language Responses to achieve vision-language tasks.
We use Collaborative Training Strategy to connect Tiny and
Large language models.

output at each time step as supervision[58] or direct training on
the teacher’s generated texts.

Thanks to the advancements in Large Language Models (LLMs),
the current approach to knowledge distillation in LLMs has evolved
beyond mere architectural compression. Some methods [19, 27, 69,
85] now emphasize a more sophisticated process of eliciting and
transferring deep and expansive knowledge from large language
models.

In this paper, we implement a reciprocal teaching strategy in
which large and small models act as mutual educators. By employ-
ing a collaborative training framework, we aim to achieve enhanced
performance for both models.

3 Method
3.1 Collaborative Architecture
As depicted in Figure2, unlike traditional vision-only backbones[20,
45, 75] and dual-encoder models[25, 53, 65], the architecture of
our CTVLMs comprises a vision encoder, two closely integrated
language models with different magnitudes. The large and tiny
models are mirrors of each other, differing mainly in parameter
count, allowing for a unified infrastructure and optimization. We
use two MLP projection layers to map modality features into the
LLM semantic space, with Vicuna-7B[11] for the large model and
OPT-125m[90] for the tiny model. This setup validates our collab-
orative training approach, harmonizing small and large models.
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Our progressive strategy begins with pre-training the tiny model
to synchronize vision and language modalities through generative
learning, followed by comprehensive collaborative training using
Knowledge Distillation. This training is divided into two phases:
feature alignment and instruct tuning. In the feature alignment
phase, the tiny model rapidly aligns visual and linguistic features.
Distillation techniques then help the large model align. During tun-
ing, the large model enriches the tiny model’s knowledge through
reverse distillation.

Tiny Language Model:We implement the tiny language model
of our method with vanilla OPT[90]. To match the scale of the
vision encoder, we choose OPT-125m[90] as our tiny language
model(Tiny LMs) with only 115 million trainable parameters. We
use a tiny language model to align visual and linguistic features.
As shown in Figure2, Tiny LMs is developed based on the pre-
trained OPT-125m and exchanges the token embeds as Vicuna[11]
and newly added cross attention layers. This manner allows Tiny
LMs to smoothly integrate visual elements into the language model,
thereby enhancing the coherence and effectiveness of the combined
features.

Collaborative Model: Both our tiny and large LMs can support
various vision-language tasks. Given an input image 𝐼 ∈ R𝐻×𝑊 ×3,
and input text 𝑇 . Our model can generate a feature map 𝐹𝐼 and 𝐹𝑇 ,
the feature feeds into large LMs as the reorganized visual represen-
tations from Tiny LMs. The subsequent text tokens are generated
one by one sequentially. Compared to recently popular approaches,
our method has two advantages: (1) Enhanced the interconnect-
edness of large and tiny LMs. (2) Comprehensively improving the
performance of both large and tiny LMs.

We discuss the collaborative training based on Knowledge Dis-
tillation in Section 3.2. Subsequently, Section3.3 outlines the collab-
orative training strategy of our method.

3.2 Knowledge Distillation for Collaborative
training

In our collaborative training framework, we employ distillation and
reverse distillation techniques to connect the large and tiny lan-
guage models, allowing them to mutually learn from each other’s
strengths and thereby enhance each other’s performance. We con-
sider conditional text generation where the model produces a re-
sponse 𝒚 = {𝑦𝑡 }𝑇𝑡=1 conditioning on a prompt 𝑥 sampled from the
distribution 𝑝𝑥 , which is typically how LLMs perform tasks. We for-
mulate KD as an optimization problem to minimize the difference
between a fixed teacher model distribution 𝑝 (𝒚 | 𝒙) and a student
model distribution 𝑞𝜃 (𝒚 | 𝒙) parameterized by 𝜃 . The standard KD
methods approximately minimize the forward KLD:

KL [𝑝 ∥𝑞𝜃 ] = E𝒙∼𝑝𝒙 ,𝒚∼𝑝′ log
𝑝 (𝒚 | 𝒙)
𝑞𝜃 (𝒚 | 𝒙) (1)

where 𝑝
′
can be real data distribution (word-level KD) or teacher

distribution 𝑝 (sequence-level KD). Though widely used, KL [𝑝 ∥𝑞𝜃 ]
tends to overestimate the void regions of 𝑝 in text generation tasks
when 𝑞𝜃 is insufficiently expressive [26].

However, knowledge distillation (KD) is particularly suitable for
large language models (LLMs) as they perform generative tasks,
where the low-capacity student models struggle to replicate the

complex text generation patterns of teacher models or humans. To
mitigate these challenges for the student model, we employ Reverse
KLD in Stage Two. The learning objective for the LLM involves
minimizing the reverse KLD between the student and teacher model
distributions

𝜃 = argmin
𝜃

L(𝜃 ) = argmin
𝜃

KL [𝑞𝜃 ∥𝑝]

= argmin
𝜃

[
− E
𝒙∼𝑝𝒙 ,𝒚∼𝑞𝜃

log
𝑝 (𝒚 | 𝒙)
𝑞𝜃 (𝒚 | 𝒙)

] (2)

Minimizing reverse KLD has been identified to induce mode-
seeking behavior in generative modeling, where the model 𝑞𝜃 as-
signs high probabilities to the significant modes of 𝑝 while overlook-
ing the smaller ones. This phenomenon is documented in studies
like[8, 24, 33, 48]. On the contrary, minimizing forward KLD causes
𝑞𝜃 to allocate substantial probability masses to regions of 𝑝 with
zero probability, leading to the production of low-quality text in
practical applications. Reverse KLD, however, prioritizes the major
modes of 𝑝 , playing a vital role in ensuring the accuracy and reliabil-
ity of text generation. Unlike sequence-level knowledge distillation
that minimizes forward KLD, as seen in [30, 69], minimizing re-
verse KLD does not compel 𝑞𝜃 to conform to all 𝑦 sampled from
the teacher distribution 𝑝 . Instead, it prompts the student model to
generate samples that align with the teacher’s preferences within
its capacity, a goal more attainable for the tiny language model.

3.3 Collaborative Training Strategy
Stage I: Feature Alignment From Tiny to Large.(Tiny for
Large) Initially, we undertake generative learning to align the
OPT125m with CLIP-vit, focusing on image-text pair embeddings.
On the one hand, we can use the tiny languagemodel to align image-
text pairs more efficiently due to their comparable parameter scale.
On the other hand, since they share the same token embeddings, we
can also utilize distillation to better facilitate cross-modal alignment
for the large language model. The publicly available LAION-400M
dataset provides 80 million cleaned data samples, as summarized in
Table1. During training, the text is encoded using OPT125m as 𝑇𝑓 ,
and visual features are extracted with CLIP-vit as 𝐼𝑓 .

According to BLIP-2’s objective function, we compute the loss as
the sum of image-text contrastive (ITC), image-text matching (ITM),
and image-grounded text generation (ITG) losses. This process al-
lows for the extraction of powerful multi-modal representations,
aligning the feature space more closely with the Vision encoder.
Unlike QFormer [35], our tiny language model inherently possesses
promising image captioning abilities. Text tokens are sequentially
generated, guiding the large language model with the Tiny lan-
guage model. The tiny language model acquires robust multimodal
capabilities through its initial alignment with the image encoder.
Despite its strong linguistic abilities, the large language model’s
limited cross-modal alignment results in multimodal capabilities
that lag behind the tiny model. Consequently, we choose to guide
the large language model using the tiny language model. By lever-
aging the tiny language model’s cross-modal alignment from the
first stage, we aim to enhance the large language model’s image-
text comprehension capabilities. In the training phase, forward
distillation, as shown in Formula 1, facilitates the tiny language
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Figure 3: The Collaborative Training Strategy. It consists of two progressive stages, including Feature Alignment From Tiny
to Large and Enhancing Tiny Through Large in the Instruct Tuning. In the First stage effectively leverage public data from
diverse sources to align visual and Language features. In particular, we use Forwrd KLD to enhance the alignment capabilities
of the Large Model. In the second stage we use Reverse KLD to enhance the performance of the Tiny Model. Both Tiny and
Large Models have great performance in vision-language tasks.

model in guiding the large language model’s representation learn-
ing. Probability distribution guidance supervision enables the large
language model to effectively absorb the tiny language model’s
multimodal understanding capabilities. Concurrently, we freeze the
large language model’s parameters to prevent catastrophic forget-
ting. Notably, at this stage, only the projector inserted in the large
MLLM is trained. The total loss supervision at this stage comprises
caption loss and forward KLD loss, as mathematically expressed
below

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = (1 − 𝜆)𝐿𝑜𝑠𝑠𝑐𝑎𝑝 + 𝜆𝐿𝑜𝑠𝑠𝑘𝑙 (3)
where 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 representation the total loss including caption

loss 𝐿𝑜𝑠𝑠𝑐𝑎𝑝 and forward KLD loss: 𝐿𝑜𝑠𝑠𝑘𝑙 . Caption including both
tiny and large language model.𝜆 is a balancing coefficient and in
this stage 𝜆 = 0.3.

Stage II: Enhancing Tiny through Large in Instruction Tun-
ing.(Large for Tiny) In this phase, we capitalize on the extensive
knowledge reservoir of the large language model to steer the tiny
model’s learning process. large language models, with their capac-
ity for developing nuanced feature representations, considerably
enhance performance in specialized tasks. Their robustness, fos-
tered by extensive exposure to varied data and complex structures,
provides a strong defense against input noise and data disturbances.

Through the distillation of large language models into their smaller
equivalents, we facilitate the transfer of these advanced capabilities,
endowing the tiny model with a concentrated and potent knowl-
edge base. This not only boosts their efficiency but also significantly
elevates their effectiveness within their operational domain.

After the alignment in the first stage, both our tiny and large
language models have developed exceptional multimodal under-
standing capabilities. For the large language model, we utilize the
output of the tiny language model as input. The tiny model’s output,
enriched with combined image and text information, offers a richer
cross-modal information set than traditional unimodal features,
enhancing cross-modal knowledge comprehension. Subsequently,
the large language model is employed to direct the learning process
of the tiny model. In section 3.2, we explored two distinct distilla-
tion strategies, acknowledging that low-capacity student models
struggle to replicate the complex text generation patterns of teacher
models or humans. Thus, we implemented the reverse KLD algo-
rithm for distilling the tiny model, detailed mathematically in 2.
The supervision of total loss at this stage encompasses both caption
and reverse KLD losses, mathematically outlined as follows:

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = (1 − 𝜆)𝐿𝑜𝑠𝑠𝑐𝑎𝑝 + 𝜆𝐿𝑜𝑠𝑠𝑟𝑒𝑘𝑙 (4)
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where 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 representation the total loss including caption
loss 𝐿𝑜𝑠𝑠𝑐𝑎𝑝 and reverse KLD loss: 𝐿𝑜𝑠𝑠𝑟𝑒𝑘𝑙 . Caption including both
tiny and large language model.𝜆 is a balancing coefficient and in
this stage 𝜆 = 0.3.

In summary, through our collaborative training approach, the
large language model benefits from the tiny language model’s gen-
eration of more detailed and informative multimodal semantic fea-
tures, while the tiny language model benefits from the guidance
provided by the large language model’s knowledge, thus helping
each other to improve performance. Additionally, our tiny language
model can be deployed directly for inference without the need for
new fine-tuning training for each task, as was required with previ-
ous middleware approaches.

4 Experiments
In this section, we empirically investigate the effectiveness of our
CTVLMs method. We first provide the implementation and training
details, then report the evaluation results on vision-language bench-
marks compared with strong baselines. Then we provide analytic
results for a better understanding of the model.

4.1 Implementation Details
Model Configuration. In this work, we built our CTVLMs frame-
work following the implementation of LLaVA-1.5[42]. Specifically,
we use the CLIP-VIT-L/14[52] as the Vision encoder(default res-
olution 336 × 336), OPT-125m[90] as the Tiny Language Model,
and Vicuna-7B as the Large Language Model. After training, we
designated the Tiny Language Model as CT-TinyLM and the Large
Language Model as CT-LargeLM. We adopt AdamW [46] as the
optimizer. For efficiency in training, we utilize DeepSpeed Zero
Optimization stage 2. For stage one, we trained on 8 NVIDIA A800
GPUs using a batch size of 256 and training duration approximating
40 hours. Similarly, in stage two, we trained on 8 NVIDIA A800
GPUs using a batch size of 64 and training duration approximating
24 hours.

Data Settings. As shown in Table , we follow BLIP-2[36] to
align the vision encoder with the tiny language model on LAION-
400M[59] and CC3M[60] which filter our some extremely low-
quality data to train our model. Then we follow the LLaVA-1.5[42]
to align the multi-modal feature between tiny and large language
models. Subsequently, we leverage the instruction dataset assem-
bled from various sources to equip the model with a broad spectrum
of capabilities.

Feature Alignment FromTiny to Large. Specifically, for more
effective collaborative training in subsequent phases, we replaced
the original token embedding layer with the one from LLaMA,
identical to Vicuna’s. The projection layer is randomly initialized[4].
The parameters in the tiny language model and projector layer are
trainable. Then, the tiny Language model inherits its weights from
before, while the new learnable projector layer between tiny and
large language models is randomly initialized. Benefiting from
the powerful representations learned in the numerous image-text
pairs, we use the tiny language model as the teacher model to
guide the large language model in better aligning between different
modalities. Because the output feature of the tiny language model
includes both image and text information, our method allows the

Table 1: Datasets used for collaborative training. Among
them, LAION-400M is web-scale image-text pairs data. CC3M
is an academic caption dataset. LLaVA-1.5-558K and LLaVA-
1.5-mix-665K are proposed and made public by LLAVA 1.5,
used in alignment and visual instruction tuning.

Usage Source #Sample

Stage I LAION-400M[59], CC3M[6] 93M
LLaVA 1.5-558k[42]

Stage II LLaVA 1.5-mix-665k[42] 1.5M
Single-turn Data

large language model to obtain semantically stronger features with
stronger correlations to understand images and text compared to
using only image features.We keep both visual and languagemodels
frozen and only train the new projector’s parameters.

Enhancing Tiny through Large in Instruction Tuning. We
employ the large language model as the teacher model and utilize
the reverse KLD method to distill the tiny language model. Because
both our tiny and large language models have acquired strong
multimodal understanding capabilities during Stage Two training,
the substantial knowledge reservoir of the large language model
becomes indispensable at this point. During fine-tuning, we enable
the large language model to guide the tiny language model to
acquire even more powerful capabilities. All parameters except the
vision encoder are fully trainable.

4.2 Modality-Specific Evaluation
As illustrated in Table2, our model’s intrinsic capabilities were
assessed on the visual question-answering task, encompassing
VQAv2[4], GQA[4], SQA[47], and TextVQA[62]. Beyond conven-
tional multimodal tasks, the advent of ChatGPT [50] has shifted
attention towards evaluating multimodal models in practical sce-
narios, particularly in multimodal dialogue. We tested the InternVL-
Chat models on notable multimodal dialogue benchmarks such
as MMMU [84], MME [84], MMB [84], SEED [34], and POPE [39].
MMMU evaluates comprehensive model understanding across vari-
ous sensory inputs. MME offers a robust benchmark with 14 sub-
tasks geared towards assessing themodel’s perceptual and cognitive
abilities. MMB examines a broad spectrum of multimodal function-
alities, including image-text matching and video captioning. SEED
focuses on the quality of explanatory dialogue, while POPE serves
as a prevalent dataset for evaluating object hallucination phenom-
ena. For fairness, we report the activated parameters and image
resolution of each model.

In Table3, we observe that with the assistance of the small model,
the large model achieves an improved CIDEr score on the COCO-
caption dataset during the alignment phase. This indicates that the
small model, using distillation training strategies, enables better
alignment of visual-language features in the large model. In Table
2, we compare the performance of models with and without the
collaborative training strategy. It is evident that the performance
of models subjected to distillation far surpasses those without it.
Merely using the tiny language model as an intermediary module to
align visual and linguistic features, similar to the Qformer in BLIP2,
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Table 2: Comparison with SOTA models on vision-language tasks. Vision question-answering VQAv2[17], GQA[23], SQA[47],
TextVQA[62]. Multi-Modal Dialogue Benchmarks, includingMMMU [84]; MME: the Perception and Cognition split sum score of
MME [15]; MMB: MMBench [44]; SEED: SEED-Bench [34]; POPE [39]; The number reported in MMMU denote the performance
on the val split. KLD mean Kullback-Leibler Divergence

Model Res. Act. VQAv2 GQA SQA TextVQA MMMU MME MMB SEED POPE

BLIP-2 [36] 224 7B 41.0 41.0 61.0 42.5 – 1293.8 – 46.4 85.3
InstructBLIP-7B [14] 224 8.0B – 49.2 – 50.1 30.6 1391.4 36.0 53.4 –
IDEFICS-9B [32] 224 9B 50.9 38.4 – 25.9 – – 48.2 – –
Qwen-VL [3] 448 9.6B 78.8 59.3 67.1 63.8 – – 38.2 56.3 –
Qwen-VL-Chat [3] 448 9.6B 78.2 57.5 68.2 61.5 37.0 1487.5 60.6 58.2 –
Fuyu-8B [5] 1024 8B 74.2 – – – – 728.6 10.7 – 74.1
LLaVA-1.5-7B [41] 336 7.2B 78.5 62.0 66.8 58.2 – 1510.7 64.3 58.6 85.9

CT-LargeLM 7B w/o KLD 336 7.4B 78.9 62.5 67.5 60.3 34.1 1517.2 64.7 58.4 86.3
CT-LargeLM 7B 336 7.4B 79.9 63.8 68.5 62.3 35.6 1540.2 67.4 59.2 86.6

Table 3: Ablation study about the Tiny For Large demon-
strates the multimodal alignment capabilities of our models.
The CIDEr source in MS-COCO caption datasets. LLaVA1.5 is
only trained with Stage 1.

Method CIDEr

DALL-E [55] 20.2
ruDALL-E-XL[61] 38.7
minDALL-E[57] 48.0
X-LXMERT [12] 55.8
Parti[82] 83.9
Flamingo(3B;4-shot)[2] 85.0
Vanilla CM3[1] 71.9
LLaVA-1.5-7B(after the first training stage)[42] 95.7

CT-TinyLM 98.3
CT-LargeLM(w/o KLD) 96.2
CT-LargeLM(w KLD) 97.6

where only increasing the MLP layer’s parameters is not sufficient
for better multimodal understanding. However, with our collab-
orative training strategy, the large language model significantly
enhances its capabilities in visual-language tasks. At the scale of
7B activation parameters in table2 our LLM comprehensively sur-
passes LLaVA-1.5-7B. Moreover, it even exceeds Qwen-VL and Fuyu
with 8B and 9B activated parameters. In Table3.2, compared to the
strategy of training small models independently, our collaborative
training strategy, leveraging knowledge from the large model, re-
sults in substantial improvements in visual-language tasks for tiny
LMs. These experiments collectively validate the effectiveness of
our method.

4.3 Ablation Study
In this section, we aim to illustrate the impact of distillation learning
on enhancing mutual performance within our training framework.
We investigate whether the tiny language model’s fused features
can acquire more comprehensive cross-modal information than a

solely visual model. Our exploration includes evaluating the tiny
language model’s guidance on the large language model via dis-
tillation loss in the initial phase, and vice versa in the subsequent
phase. Additionally, we assess whether the multimodal features
extracted by the tiny language model can enhance the large model’s
understanding of multimodal information.

Effect of Tiny for Large. To investigate the tiny language
model’s instructive role for the large language model, we employed
forward Knowledge Distillation (KLD) during the second phase to
align the probability distribution output of the large languagemodel
with that of the tiny language model. As shown in Table3, after
the first phase of training, LLaVA-1.5[42] achieved a CIDEr score
of 95.7 on the coco-caption dataset. However, after pre-training
on a large dataset, our tiny language model surpassed the perfor-
mance of many 1B and larger models with a CIDEr score of 98.3
on coco-caption, demonstrating its strong multimodal alignment
capability. Thus, through the distillation learning in the first phase,
our large language model’s abilities were also enhanced, proving
the effectiveness of our method.

Effect of Large for Tiny. To validate the guiding role of the
large language model on the tiny language model, in the second
phase, we employed the reverse Knowledge Distillation (reKLD)
algorithm to leverage the powerful knowledge capabilities of the
large language model to distill the tiny model. We trained the tiny
language model (only-opt) without the large language model. In
Table4, we observed that without distillation, the large language
model faces difficulties in effectively aiding the tiny language model
to boost its performance. Moreover the reverse KLD yields better
results compared to forward distillation. This might be due to the
limited number of parameters in the tiny language model, which
hinders its ability to learn the knowledge from the Large model
fully. Instead, it encourages the student model to generate samples
preferred by the teacher within its capacities, which improves the
student model’s performance after training, thereby maximizing
the potential of our proposed training framework. Furthermore, the
reverse KLD method enhances the selective learning capability of
the tiny model, allowing it to focus on acquiring the most relevant
and impactful knowledge from the large model. This method pro-
motes a more efficient learning process and helps in overcoming
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Table 4: Ablation study about the Large For Tiny. The perfor-
mance in vision question-answering Task. And also explores
different distillation methods, demonstrating that reverse
distillation yields better results.

VQAv2 GQA TextVQA

BLIP-2 OPT-6.7B [37] 54.3 41.0 42.5
Instruct-BLIP [14] – 49.2 50.1

Only TinyLMs 60.4 45.6 39.1
TinyLMs(w/o KLD) 61.5 46.3 40.2
TinyLMs(w KLD) 66.8 47.6 43.1
TinyLMs(w reKLD) 68.3 49.3 45.2

the challenges associated with the parameter disparity between the
two models.

Multimodal Comprehension Enhancement. To verify that
integrating multimodal information in the input enhances the mul-
timodal comprehension capability of large language models, com-
pared to unimodal input, in the fine-tuning phase, previous large
vision language models (LVLMs) typically mapped image features
to text space through a simple linear layer before fusing them with
textual information. In our approach, we utilize a tiny language
model to merge image and text features, substituting the sole image
feature input into the large language model, thereby endowing it
with superior multimodal features and enhancing its capability in
image-text understanding. In Table5, “P” represents prompt fea-
tures, “I” for image features, and “T” for text features. Experiments
reveal that the fused information of image and text substantially
aids the large language model in image-text comprehension tasks.
Meanwhile, since “P” is consistently the same and contains no rel-
evant information, it proves to be ineffective during training. For
the tiny language model, although the enhanced capabilities of the
large language model could improve the tiny language model’s per-
formance through distillation, the decisive factor remains its own
supervisory information, hence the output features from TinyLM
itself have no impact on its performance.

Effect of the proportion of Distillation. The proportion of
distillation loss significantly impacts model performance during the
knowledge distillation process. Properly calibrating this loss propor-
tion is crucial for achieving the optimal balance between knowledge
transfer and model training efficiency. In this experiment, we ex-
plored the impact of the distillation ratio on the performance of our
model. As shown in Table6, we observed When 𝜆 = 0.7 tiny LLMs
get low performance in vision-language tasks. High distillation
loss weight may lead to overfitting on the large model’s specific
behaviors, potentially ignoring the intrinsic learning capabilities
of the tiny model. Due to their mutual influence, the large model
ends up with suboptimal features, leading both models into a vi-
cious cycle where their performance simultaneously deteriorates.
When 𝜆 = 0.1, tiny LLMs might not sufficiently capture the nu-
anced knowledge or expertise from the Large model, resulting in
suboptimal performance. Through experimentationwe use 𝜆 = 0.3
during our training process.

Table 5: Ablation study about Multimodal Comprehension
Enhancement. P represents prompt features, I for image fea-
tures, and T for text features. And discussed the impact of
different outputs on the performance of our model.

VQAv2 GQA Text VQA

TinyLMs I+T 68.3 49.3 45.2
P+I+T 68.2 49.1 45.1
I 67.9 49.1 45.0

LargeLMs I+T 79.9 63.8 62.3
P+I+T 79.3 63.3 61.7
I 78.6 62.3 59.2

Table 6: Ablation study of the proportion of KL-divergence
Distillation Loss, we compare both Tiny and Large models’
performance in vision-language tasks with different 𝜆

𝜆 VQAv2 GQA Text VQA

TinyLMs 0.1 59.8 43.5 38.7
0.3 68.3 49.3 45.2
0.7 40.3 25.6 23.4

LargeLMs 0.1 78.9 62.7 60.5
0.3 79.9 63.8 62.3
0.7 63.8 54.9 53.1

5 Conclution
In our research, we explored the effectiveness and feasibility of joint
training of large and tiny models, proposing a new Collaborative
Training of Tiny-Large Vision Language Models(CTVLMs) frame-
work that transforms the conventional strategy of independently
training these models. Our framework integrates an image encoder
with a closely connected pair of large and tiny models, enabling
efficient alignment across modalities by leveraging the tiny model’s
superior capabilities in addressing cross-modal challenges. During
the fine-tuning phase, we replace traditional image features with
the multimodal information output from the tiny model, thereby
providing the large model with a richer input of features. Simultane-
ously, we harness the large model’s robust knowledge base to boost
the overall performance of the tiny model. This approach not only
enhances the efficiency of the training process but also significantly
improves the performance and connectivity between the models.
Our collaborative training strategy uses knowledge distillation to
facilitate a robust exchange of capabilities, where the large model
enriches the tiny model with its extensive knowledge, and the tiny
model contributes to refining the multimodal comprehension of the
large model. The strategic use of knowledge distillation and multi-
modal alignment allows for amore dynamic interaction between the
models. This two-phase training process—alignment and instruc-
tive tuning—ensures that each model leverages the strengths of the
other, leading to a more cohesive and potent learning system. This
innovative methodology not only optimizes model performance
but is also efficiently utilized.
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