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A WHY GRADIENT DESCENT IMPLICITLY REGULARIZES

This is a sketch of why gradient descent implicitly regularizes. Suppose we have a model Xw for a
vector of data y ∈ Rn and want to minimize the norm of the error,

L(w) = ∥Xw − y∥22 = ∥e∥22
where we introduce some short-hand notation. We use the gradient learning rule,

w(t+ 1) = w(t)− ηXT e(t)

⇒ e(t+ 1) = e(t)− ηXXT e(t)

⇒ e(t+ 1) = (I − ηXXT )e(t)

Each matrix satisfies X ∈ Rn×d1 where n is the number of samples and d1 is the dimension of
each sample. In the overparameterized setting we have d1 > n and so XXT will generically have
full-rank and the error will go to zero.

This lies in the difference between XXT which appears here in the error analysis and XTX which
appears in the solution. So we can have XXT ∈ Rn×n generically full-rank only if we have more
parameters than there is data. On the other hand, we only have XTX full-rank if also it’s satisfied
that there is more data than parameters. This is important because in this case we can compute the
pseudo-inverse easily. Generically, we can show that if we use gradient descent we have something
like the following,

(XTX)−1X︸ ︷︷ ︸
left inverse

X−1︸︷︷︸
inverse

XT (XXT )−1︸ ︷︷ ︸
right inverse

for the cases where we are under-parameterized, minimally parameterized, or over-parameterized to
model the data.

So under gradient flow we’ll suppose the parameters update according to,

ẇ = −ηXT e

w(0) = 0

Observe that the gradient ẇ is invariantly in the span of XT so we may conclude that w(t) is always
in the span of XT . Generically, any solution in the over-parameterized setting is a global optimizer
such that Xw = y. This means that the limit of the flow can be written as w∗ = XTα for some
coefficient vector with the constraint that Xw∗ = y. After some manipulations we find that,

y = Xw∗ = XXTα

⇒ α = (XXT )−1y

⇒ w∗ = XT (XXT )−1y = X+y

This means that the solution X+ picked from gradient flow is the Moore-Penrose psuedoinverse.
This can be defined as the matrix,

X+ = lim
λ→0+

XT (XXT + λI)−1

Also observe that there is a unique minimizer for the regularized problem,

min
w

L(w) + λ∥w∥22

with value wλ = XT (XXT + λI)−1y. Perhaps, Xw = y has a set of solutions, but it is clear this
set is convex so there is a unique minimum norm solution. On the other hand, each wλ corresponds
to a best solution with norm below the minimum. However, we have w∗ = limλ→0+ wλ from
continuity. Since w∗ is an exact solution it can’t have less than the minimum-norm and it is clear w∗

can’t have above the minimum-norm either since this is not the case for any of the wλ. We conclude
that gradient descent does indeed find the minimum norm solution.
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