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A WHY GRADIENT DESCENT IMPLICITLY REGULARIZES

This is a sketch of why gradient descent implicitly regularizes. Suppose we have a model X w for a
vector of data y € R™ and want to minimize the norm of the error,

L(w) = | Xw — y[l5 = Jle]l3
where we introduce some short-hand notation. We use the gradient learning rule,
w(t+1) = w(t) —nXTe(t)
=e(t+1) =e(t) —nXXTe(t)
=e(t+1) =T —nXXT)e(t)
Each matrix satisfies X € R™*% where n is the number of samples and d; is the dimension of

each sample. In the overparameterized setting we have d; > n and so X X7 will generically have
full-rank and the error will go to zero.

This lies in the difference between X X7 which appears here in the error analysis and X7 X which
appears in the solution. So we can have X X7 € R"*" generically full-rank only if we have more
parameters than there is data. On the other hand, we only have X X full-rank if also it’s satisfied
that there is more data than parameters. This is important because in this case we can compute the
pseudo-inverse easily. Generically, we can show that if we use gradient descent we have something
like the following,

(XTx)y'x x' XT(xxT)-!

—_—

inverse

left inverse right inverse

for the cases where we are under-parameterized, minimally parameterized, or over-parameterized to
model the data.

So under gradient flow we’ll suppose the parameters update according to,
w=-nXTe
w(0) =0

Observe that the gradient 1 is invariantly in the span of X7 so we may conclude that w(t) is always
in the span of X 7. Generically, any solution in the over-parameterized setting is a global optimizer
such that Xw = y. This means that the limit of the flow can be written as w* = X« for some
coefficient vector with the constraint that Xw* = y. After some manipulations we find that,

y=Xw"'=XXTa
=a=(XXT)"ly
= w' = XT(XX") "y =Xty

This means that the solution X ™ picked from gradient flow is the Moore-Penrose psuedoinverse.
This can be defined as the matrix,

Xt = lim XT(XXT +A1)~!

A—0Tt

Also observe that there is a unique minimizer for the regularized problem,

min L(w) + M]3

with value wy = X7 (XXT + A)~'y. Perhaps, Xw = y has a set of solutions, but it is clear this
set is convex so there is a unique minimum norm solution. On the other hand, each w corresponds
to a best solution with norm below the minimum. However, we have w* = limy,_.¢+ w) from
continuity. Since w* is an exact solution it can’t have less than the minimum-norm and it is clear w*
can’t have above the minimum-norm either since this is not the case for any of the wy. We conclude
that gradient descent does indeed find the minimum norm solution.
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